Jonathan Stucklen & Harshavardhan Gangula

Advanced Software Engineering (CSG 260)

Project Proposal

We propose an extension to AspectJ allowing persistence (i.e., data marshaling) to be specified for classes. Essentially, the declarations in AspectJ would consist of the following:

declare marshalable
 : <Class_ID> [, <Class_ID>]*

declare unmarshalable : <Class_ID>.<Field_ID> [, <Class_ID>.<Field_ID>]*

Declaring a class as marshalable indicates that all instances of the class should be marshaled upon allocation or modification of any instance of the class.
 If the entire class is declared as marshalable, all fields in the class will be marshaled. Specific fields within a class may be specified as unmarshalable to indicate that they should not be marshaled (in addition, any transient fields should not be marshaled). 

When storing an object persistently, the context in which the object is allocated will also be marshaled. Specifically, all objects in the object graph along all traversals from the object to a Root Object (to be described below) will be marshaled, regardless of whether or not an object is specified as marshalable. Furthermore, all objects along the traversal from the object along fields that are not declared unmarshalable will be marshaled. When an object is marshaled that was not declared as marshalable (due to it appearing on one of the above mentioned traversals), all fields that were not declared as unmarshalable in that object will be marshaled. That is, the default behavior is to marshal all fields in an object unless otherwise specified via a declare unmarshalable statement.

Root Objects represent a root of a tree of objects within a program. A root object is allocated via a Root Site. A Root Site is point of allocation, within a static context
, of any object that could contain a marshalable object. Part of the implementation of this project will be to write an aspect that identifies all Root Sites and associates s compile time unique identifier to each of them. The allocation of the object will need to be replaced (via a pointcut) with a method that attempts to unmarshal the Root Object from persistent storage (based on the Root Site unique ID). If unmarshaling fails, the method must proceed with the allocation else the unmarshaled object is returned.
 This will allow a program to restart in the same state as when it terminated.

In addition to the above declare statements, we need a way to specify the method of marshaling data. We will do this with the following two declare statements:

declare marshalMethod : <Marshal_Method_Signature>

declare ununmarshalMethod : <Unmarshal_Method_Signature>

Where Marshal_Method_Signature and Unmarshal_Method_Signature are declared as follows:

Marshal_Method_Signature:

void *.*(int uid, Object obj)
Unmarshal_Method_Signature:
Object *.*(int uid)
The uid parameter specifies a unique ID for the object. If the object is a Root Object, this is the unique id of the Root Site assigned at compile time. Otherwise, the ID is generated at run time and must be guaranteed to be unique.

Note that there are still some open issues to be resolved. For instance, if a program contains multiple Root Sites of which only some will be reached depending on a run time parameter (say specified via a command line parameter or user input), there will be no way to restore the marshaled state. However, in an instance it can be argued that it would not make sense to restore the state since the state of the program truly is different.

� Marshalable is probably a bad keyword to use. I don’t even know if this is a real word. Maybe we’ll change this. (

� Changes to any field within the class constitutes modification.

� E.g., an allocation from main or a static initializer in a class.

� Note that not all Root Objects allocated at Root Sites will be marshaled. If the object is declared as marshalable it will be marshaled and, at that point, all objects along the traversal to a root object will be marshaled. If the object if not marshalable, it will not be immediately marshaled.

� This may not be the best solution, but could be changed in the future. It’s the easiest for now.



