
CSG111 January 16-17, 2007
Dr. Wand Readings: EOPL, Chap. 2

Lecture 2: Data Types and their Representations;
Syntax: Scanning and Parsing

Key Concepts:

Data types
The Data Abstraction Principle
Interface, specification, implementation
Constructors and Observers
Information-hiding
Representations: data-structure, procedural

Environments
Interpreter Recipe
Scanning, Lexical Specification

token (lexical item)
Regular expressions
Scanning in SLLGEN

Parsing
Context-free grammar
Parsing in SLLGEN
Concrete and abstract syntax
Abstract Syntax Tree
��������� and 	�
�� ������
������	 �

1

2.1 Data Types

Every time we represent some set of things in a program, we’re creating a data
type for those things.

Want to arrange things so that we can change the representation without changing
code throughout the program.

The Data Abstraction Principle

Divide a data type into two pieces:

1. An interface that tells us what the data of the type
represents, what the operations on the data are, and
what properties these operations may be relied on to
have. (“what”)

2. An implementation that provides a specific represen-
tation of the data and code for the operations that
depend on that data representation. (“how”)

This way you can change the implementation without changing the code that uses
the data type (user = client; implementation = supplier/server). The client should
be able to work without knowing how the data type is implemented. This is called
information hiding. Later on, we’ll see how to enforce this.

The vital part of the implementation is the specification of how the data is repre-
sented. We will use the notation � v � for “the representation of data v”.

2

2.2 Example: Arithmetic

Data to be Represented: the non-negative integers

Interface:

(�
 � �) � � 0 ��
��	����
 � ��� � n �����

	�
 � n � 0
��
n � 0�

	������ � n ����� � n � 1 ��
� �
�� � n ��� ����� � n �

Now we can write procedures to do the other arithmetic operations, and these will
work no matter what representation of the natural numbers we use.

�
�

�
� �
 ����� 	�

� ��� � � � ����� ��
�
� �

��	����
 � ��� � � ��
	������ �

����� 	 �
� �
��

� � � ���������
will satisfy

�
����� 	 � x � � y ����� � x � y � , no matter what implementation of the

integers we use.

Or similarly:

�
�

�
� �
 � � �
 	�

� ��� � � � ����� ��
�
� �

��	����
 � ��� � � � �
 � � ��
� ��� 	 ��� � � �
 	 �

� �
��
� � � ���������

3

Implementations:

1. Unary representation:

� 0 ��� � �
� n � 1 ��� � � � � 	
 � � n �)

So the integer n is represented by a list of n

 � ’s. e.g., 0 is represented by

� � , 1 is
represented by

�
 � � , 2 is represented by
�
 �
 � � , etc.

It’s easy to see that we can satisfy the specification by writing:

�
�

�
� �
 �
 � � � � ���

�
�

�
� �
 ��	����
 � ��� � ��� � � �

�
�

�
� �
 	�������

� ��� � � � � � � � � � � 	
 � � �����
�
�

�
� �
 � �
���� � � �

2. Scheme number representation:

� n � = the Scheme integer �

�
�

�
� �
 �
 � ��� ��

�

�
� �
 ��	����
 � ��� �
 � ��� ��

�

�
� �
 	������ �

� � � � � � � � � ��� � ��������
�

�
� �
 � �
��

�
� � � � � � � � � �

� � �������
3. Bignum representation (Base B, least-significant bigit first):

� n � �
	

() n � 0
(� � � 	 r � q �) n � qB � r � 0 � r � N

So if N � 16, � 33 � � � �
	 � , � 258 ��� � 	 � ��� (258 � 1 � 162 � 0 � 161 � 2 �
160). Exercise: write the operations in this implementation.

4

2.3 Environments

2.3.1 Interface

Data: An environment is a function whose domain is a finite set of Scheme sym-
bols, and whose range is the set of all Scheme values.

Typical environment: �
(s1 � v1) ������� � (sn � vn) �

where the si are distinct symbols and the vi are any Scheme values.

We sometimes call the value of s in an environment env its binding in env.

Three procedures in the interface:

�

 � � � � �
 ��� � � ��� �� � ����� � �
 ��� � f � s � � f (s)�

� �
 � � ��
 ��� s v � f ��� � � g � �

where g(s) �
	

v if s 	 � s
f (s) otherwise

Example:

 �
�

�
� �

�

� �
 � ���
 ��� � ����

� �
 � � ��
 ��� � ���

� �
 � ���
 ��� � ����

� �
 � � ��
 ��� � � ����

 � � � � ��
 ��� �������������

constructs a scheme value
 which is a representation of the environment�
(� � 6) � (� � 8) � (� � 7) �

There are lots of other ways to build representations of the same environment.

5

Constructors and Observers Can divide the functions in any interface into

� constructors that build elements of the data type, and

� observers that extract information from values of the data type.

Here
 � � � � ��
 ��� and

� �
 � � ��
 ��� are the constructors, and � �����

�
�
 ��� is the

only observer.

6

2.3.2 Data Structure Representation

We can obtain a representation of environments by observing that every environ-
ment can be built by starting with the empty environment and applying

� �
 � � ��
 ���
n times, for some n

�
0, e.g.,

�

� �
 � ���
 ��� sn vn
������

� �
 � ���
 ��� s1 v1�

 � � � � ��
 ��� ��� ����� �

So every environment can be built by an expression in the following grammar:

Env-exp :: � �

 � � � � ��
 ��� �

:: � �

� �
 � ���
 ��� Symbol Scheme-value Env-exp �

7

Can use the same grammar to describe a set of lists. This gives the following
implementation:

���
 ��������� �

 � � � � ��
 ��� � � �
 � �
 � ���
 ��� 	

� ��� � �
 ��� �
empty-env � � � �

 ����
�

�
� �

 � � � � ��
 ����

� ��� � � � � � � �
 � � � � �
 ��� �����
extend-env � 	

� ��� � � � �
 ��� �

 ����
�

�
� �

� �
 � ���
 ����
� ��� � � � �

	
� � � � � 	 � �
�� ��
 ��� ��

���	 � �
 � �
 � � ��
 ��� 	
� ��� � � 	 � �
���
 ��� �����

apply-env �
 ���	� 	
� � �
 � � ��

�

�
� �
 � �����

�
��
 ����

� ��� � � � �

 ��� 	

� � �� � � � ����

�
 � � � � ���
 ��� � �
 � � � � ��
 ��� ��

 � ��� �
 ��� ��� � � ����� � ��
 ���
�� � � � � ��� ���

� � ��� 	 � 	
� � ������

�
 � � � � ���
 ��� � �
 � �
 � ���
 ��� ��
��
 �

���
	 � �
��� 	 � � � � � � �
 ��� ����
	 � �
��� � � � � � � � � �
 ��� ����
	 � �
����
 ��� � � � ����� �
 ��� ������

�
� �

�
 � � 	 � �
�� � 	 � � 	
� � �

	 � �
�� � � � �� � ����� � ��
 ��� 	 � �
���
 ��� 	
� � ��������

 � 	�
�

 � � � �
 ��� � � � � ��� � � ��
 ���
��� � �
 ��� � � � ���
 ������ 	 �
 ��� ���������

The procedure � �����
�
��
 ��� looks at the data structure
 ��� representing an environ-

ment, determines what kind of environment it represents, and does the right thing.
If it represents the empty environment, then an error is reported. If it represents an
environment built by

� �
 � ���
 ��� , then it checks to see if the symbol it is looking
for is the same as the one bound in the environment. If it is, then the saved value
is returned. Otherwise, the symbol is looked up in the saved environment.

8

This is a very common pattern of code. We call it the interpreter recipe:

The Interpreter Recipe

1. Look at a piece of data.

2. Decide what kind of data it represents.

3. Extract the components of the datum and do the right
thing with them.

We call this dead-simple data structure representation the abstract syntax tree or
AST representation because it represents the syntax of the expression that built the
environment.

Of course we could use lots of different data structures instead. For example, we
could say

 ��������� � � � � 	 � ��� � � �
 ��� �
In this representation, we’d write:

�
�

�
� �

 � � � � ��
 ����

� ��� � � � � �� � �����
�
�

�
� �

� �
 � ���
 ����
� ��� � � � �

	
� � � � � 	 � �
�� ��
 ��� �� � � � 	 	
� �� � � � 	 � � � 	 � �
����
 ��� �������

[Easy puzzle: what would � �����
�
��
 ��� look like for this representation?]

9

2.3.3 Procedural Representation

The environment interface has an important property: it has only one observer,
� �����

�
��
 ��� . This allows us to represent an environment as a Scheme procedure

that takes a symbol and returns its associated value.

To do this, define
 � � � � ��
 ��� and

� �
 � ���
 ��� to return procedures that, when

applied, do the same thing that � �����
�
��
 ��� did in the preceding section.

�
�

�
� �

 � � � � ��
 ����

� ��� � � � � ��
� ���� � � �

	
� � ��

 � ��� �
 ��� � � � � ����� � ��
 ��� �� � � � � ��� ���
� ���	� 	 � 	

� � �������
�
�

�
� �

� �
 � ���
 ����
� ��� � � � �

	 � �
��� 	 � � 	 � �
��� � � � 	 � �
�� ��
 ��� ��
� ���� � � �

	
� � ��

�
� �

�
 � � 	 � �
��� 	 � � 	
� � �

	 � �
��� � � �� � � ��� � ��
 ��� 	 � �
����
 ��� 	
� � ���������

�
�

�
� �
 � �����

�
��
 ����

� ��� � � � �

 ��� 	

� � ��

 ��� 	

� � �����
If the empty environment, created by invoking
 � � � � ��
 ��� , is passed any symbol
whatsoever, it indicates with an error message that the given symbol is not in its
domain. The procedure

� �
 � ���
 ��� returns a new procedure that represents the
extended environment. This procedure, when passed a symbol 	

� � , checks to see
if the symbol it is looking for is the same as the one bound in the environment. If
it is, then the saved value is returned. Otherwise, the symbol is looked up in the
saved environment.

We call this a procedural representation, in which the data is represented by its
action under � �����

�
��
 ��� .

This turns out to be a useful technique in more situations than you might think, eg
whenever the set of values being represented is a set of mathematical functions.

10

2.4 Lexical Scanning

Programs are just strings of characters. Need to group these characters into mean-
ingful units. This grouping is divided into two stages: scanning and parsing.

Scanning is dividing the sequence of characters into words, punctuation, etc.
These units are called lexical items, lexemes, or most often tokens. Refer to this
as the lexical structure of the language.

Parsing is organizing the sequence of tokens into hierarchical syntactic structures
such as expressions, statements, and blocks. This is like organizing (diagram-
ming) an English sentence into clauses, etc. Refer to this as the syntactic or gram-
matical structure of the language.

Typical pieces of lexical specification:

� Any sequence of spaces and newlines is equivalent to a single space.

� A comment begins with � and continues until the end of the line.

� An identifier is a sequence of letters and digits starting with a letter, and a
variable is an identifier that is not a keyword.

) begin baz

foo bar %here is a comment

")" "begin" ident

ident ident
comment ignored

distinguish punctuation, keywords from identifiers

space ignored

11

2.4.1 What’s in a token?

Data structure for token consists of three pieces:

� A class, a Scheme symbol that describes what kind of a token you’ve found.
The set of classes is part of the lexical specification.

� A piece of data describing the particular token. The nature of this data is also
part of the lexical specification. For our system, the data will be as follows:
For identifiers, the datum is a Scheme symbol built from the string in the
token. For a number, the datum is the number described by the number
literal. For a literal string, the datum is the string (used for keywords and
punctuation)

In a language that didn’t have symbols, we might use a string (the name of
the identifier), or an entry into a hash table indexed by identifiers (a symbol
table) instead. Using Scheme spares us these annoyances.

� Debugging information, such as line and character numbers.

Job of the scanner is to go through the input and analyze it to produce these tokens.
Generally the scanner is a subroutine that, when called, produces the “next” token
of the input.

Could write scanner from scratch, but that’s tedious and error-prone. Better idea:
write down the lexical specification in a specialized language. Such a specialized
language is called a domain-specific language, or DSL.

12

2.4.2 Specification via regular expressions

Most common language is a language of regular expressions. Regular expressions
are widely used for pattern matching (eg in Perl, grep, etc.).

R :: � character
�
R R

�
R � R

�
R �� �

character

What do these mean?

A character c matches the string consisting of the character c.�
c matches any 1-character string other than c.

RS matches any string that consists of a string matching R followed by a string
matching S. (This is called concatenation).

R � S matches any string that either matches R or matches S. (This is sometimes
written R

�
S).

R � matches any number n of copies (n
�

0) of strings that match R. This is called
the Kleene closure of R.

Examples:

ab matches only the string � � .

ab � cd matches the strings � � and � � .

(ab � cd)(ab � cd � e f) matches � � ��� , � � � � , � �

�
, � � � � , � � � � , or � �
 � .

(ab) � matches the empty string, � � , � � ��� , � � � � � � , ��� � � � � � � ,

(ab � cd) � matches the empty string, � � , � � , � � � � , � � � � , � � � � , � � � � , � � � � ��� ,
. . . � � � � � � ,

Regular expressions for our example:

whitespace � (space � newline) (space � newline) �

comment � � (
�

newline) �

identifier � letter (letter � digit) �

Rule for scanners: always take the longest match. This way
��� � comes out as one

identifier, not 3.

13

2.4.3 Specifying scanners in SLLGEN

SLLGEN is a package for generating scanners and parsers in Scheme.

In SLLGEN, scanners are specified by regular expressions, which are written as
lists in Scheme. Here’s our example:

�
�

�
� �
 ��

� �
� ������� � �
 	 � � ��
 �����

� �
 	 � � ��
 � 	�� � � �� � �����
 � � � � � � � ��������� � ��� �
�� �
 � �� �
 ����� 	�� � � ��
� �
 � � �

�
��
 �

�
��
 � �
 �

� ����� ��� � � � ��
 ���
 � � � � � � ����� 	
� � ��� � �� � � ��
 � �

��� � � �
� ������� � � � � � � ��� � � � �
 � �����

Don’t have to worry about keywords when writing a lexical specification: the
parser-generator will add those automatically.

2.4.4 Testing the scanner

	���� �
 � � � � �
�� 	 �� � ��� � 	�� � ���
 � generates a scanning procedure. You’ll proba-
bly only need it for testing. First argument is the lexical specification, second is
the grammar (that’s empty here).

Demo: here I’ve put ��

� � in a module and opened it in DrScheme.

�
��� ���
 � �
	 ��� � �
 �
� �
 � 	 � � � 	���� � � � � � � �� � ��� � � �
 � � � � ������
 ����� � �
� � 	�� �
 �
�� � � � � � 	�� � � � � 	 � � � � ��� � � �
 � 	 � � �
 �

�

�
� �
 	�� � � � �

	���� �
 � � ��� �
�� 	 � � � ��� � 	�� � � �
 � ��

� � � � �����
 �

	�� � � � � � � � � ��� � �
 �
 ��	 � � �����
 � �
�
 � � � � � � � ����

� �
 � � �
�
�
 �

� ��� ��� � � ��	 � �� �
 � � � �
 ��
� �
 � � �

�
�
 � � ��� ����

� �
 � � �
�
�
 � �
 � � � 	 � � � � �
 ��� � � ��	 � � ��

� ��
� �
 � � �

�
�
 � � � � 	 ���

14

2.4.5 The SLLGEN scanner specification language

	�� � � �
 ������� � �
 �
 � � � ��� �� � � � � � � ����� �
�
 �

�
� � � � �� � � � � � � � ��� � � ���
 � �
 �
 � � ����� � � � � � ���
 �

� ���
 ����� 	
� ���� �

�
 �

�
� ����� �
 	 �
 �� � ��� �
 �

�
� ����� � ����� � �
 	 � �
���� � � � �
 �
 �

�
� 	� � ��������� �
 �

�
� � ����� � � � � �
 �
 �

�
�� � � � � � ��� �
 �

�
� ����� � � � � � ���
 � ��� � � � � � � �
 �
 �

�
� 	

�
 	 �
 ������� 	 � � � � � ����� � �
 	 � �
 	 � � � ���� ��� �	� � � ����� � �
 	 ��� � ��
 ���
 �� 	�
��
�� ����� � �
 	 ��� � � � � � �� ���
�� � ������� � ����� � �
 	 ��� � � � �
 �
 ���
� �
 	 � � ��
�� � ���� � �
 �� � 	� ����� � �
 	 ��� � � � ���� � �
 �� � � � � � ��� � ����� � �
 	 ��� � � � ���� � �
 � � � �
 � � � � � � �
 � � �
 � � � ���

� � � � ���
 ��� � ����
�� � � ����� � �
� ���� � � �

� ��� �
 �

A scanner is a list. Each item in the list is a specification of a regular expression,
consisting of a name, a sequence of regular expressions, and an action to be taken
on success.

The name is a Scheme symbol. It is the name of lexical class being defined.

The second part of the specification is a sequence of regular expressions, because
the top level of a regexp in a scanner is almost always a concatenation. Each
regular expression in the sequence follows the obvious Scheme-like syntax: we
use � � and � � � � ��� for union and concatenation, and ����� ��� for Kleene star.

The base cases for the regular expressions are Scheme strings, negation (of a char-
acter, not a string– see our example), and four predefined testers: ��
 ���
 � (matches
any letter), ��� � � � (matches any digit),

���
� �
 	 � � ��
 (matches any Scheme whites-

pace character), and � � � (matches any character).

15

As the scanner works, it collects characters into a buffer. When the scanner deter-
mines that it has found the longest possible match of all the regular expressions in
the specification, it executes the outcome of the corresponding regular expression.

An outcome can be one of the following:

� The symbol 	�� � � . This means this is the end of a token, but no token
is emitted. The scanner continues working on the string to find the next
token. This action is used for whitespace and comments. The class name is
ignored.

� The symbol 	
� � ��� � . The characters in the buffer are converted into a

Scheme symbol and a token is emitted, with the class name as its class
and with the symbol as its datum.

� The symbol � � � �
 � . The characters in the buffer are converted into a
Scheme number, and a token is emitted, with the class name as its class
and with that number as its datum.

� The symbol 	 � � � ��� . The characters in the buffer are converted into a
Scheme string, and a token is emitted, with the class name as its class and
with that string as its datum.

If there is a tie for longest match between two regular expressions, 	 � � � ��� takes
precedence over 	

� � ��� � (so keywords that would otherwise be identifiers show
up as keywords).

16

2.5 Parsing

Parsing is organizing the sequence of tokens into hierarchical syntactic structures
such as expressions, statements, and blocks. This is like organizing (diagram-
ming) an English sentence into clauses, etc. Refer to this as the syntactic or gram-
matical structure of the language.

Output of parser is a tree, called parse tree or abstract syntax tree (AST). Mostly
we’ll call these AST’s.

Example:

�
�

�
� �
���� ��� ���

�
�
 	 � ���
 �
 �� 	 � ���
 �
 � � �� � ��� � � � � �� 	 � ���
 �
 � ��

	 ��� � � 	 � ���
 �
 � � � ��
	 ��� � 	 	 � ���
 �
 � � � ��������
����
�� 	 � ���
 �
 � �� �
 	 �

�
� �
 	�	� � � � �� ��� � � 	 � ���
 �
 � � � ���� � 	�	 � ��� � 	 � ���
 �
 � ��

�
�
	 	

� ���� � � �� � � 	

�
� �
 	�	 � � � � �����

�
�

�
� �
���� ��� ���

�
�

�
� �
 	�	 � � �

�
� �
 	�	 � � � �� � ��� ��
 � ��

� � 	
� � � � � � ����

	�� � ��
 � ��

�
� �

�
� �
 	�	� � � � ��

�
� 	

�
� �
 	�	� � � � �����

17

begin x := foo; while x do x := (x + bar) end

assign-statement

var-exp var-exp var-exp

sum-exp

var-exp

while-statement

compound-statement

assign-statement

����� � � ��� ���
�
 � � �

� ��� � ��� � ��� ����
 �
� �

� ��� ��� � � ��� �
 � �

����� � � � ��� ���

 �

	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 ��
 �
	 � � ��� ��� � 	�	� ��� � 	 � ���
 �
 �� �
 �

	 � � � � ����� ��� ��
 � � � ��� ���
 �
	 � � ��� ��� ��� ����
�� 	 � ���
 �
 � �
 �

	 �� ��� ��� � ��� ��
 � � � �
 �
	 �� ��� ��� � 	�	 � ��� � 	 � ���
 �
 �� �
 �

	 � � ��� ��� 	�� � ��
 � �
 �
	 � � ��� ����� ��� ��
 � � � �
 �
	 � � ��� ����� ��� ��
 � � � ��� ���������

18

2.5.1 Specification via context-free grammars

We’ve seen lots of grammars so far. These are called context-free grammars. (Why
context-free? To find out, go take automata theory).

Our example,

Statement :: � �
 � � � Statement � Statement
 � �
:: � ���

����
 Expression � � Statement
:: � Identifier ��� Expression

Expression :: � Identifier
:: � �

Expression
�

Expression �
A non-terminal can produce a string by applying a production, eg:

�
� �
 	�	 � � � �
 �

�
� �
 	�	 � � �

�

�
� �
 	�	� � � � 	�� � ��
 � �

�
 �
� �
 �� �

�
�
 �

�

�
� �
 	�	� � � � � ��� ��
 � �

�
 ��� �

�
� �
 	�	 � � � �

�
 ��� � �

�
� �
 	 	 � � �

�

�
� �
 	�	 � � � ��� 	�� � ��
 � �

�
 ��� � �
� �
 � � �

�
�
 �

�

�
� �
 	�	 � � � ��� � ��� ��
 � �

�
 ��� � � � �

�
� �
 	�	 � � � ���

�
 ��� � � � �
� �
 � � �

�
�
 � ��� � ��� ��
 � �

�
 ��� � � � ��� ���
We associate a name with each production; these become the variants for our
AST’s; the AST documents the productions that were used to build the string. We
don’t have to keep non-terminal names or punctuation in the AST, because this
information is already in the production.

19

2.5.2 Specifying grammars in SLLGEN

SLLGEN includes a sublanguage for specifying grammars. Here’s our example
again:

�
�

�
� �
 	 � � � ��
�� ��� ����
�� � ������ ���� ��� 	 � ���
 �
 � �� � �
 � � � � 	 � ���
 �
 � � � � � 	 � ���
 �
 � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 �� ��
	 � ���
 �
 ��� � ��� ����
 �

�
� �
 	�	 � � � � � � � 	 � ���
 �
 � � ����

����
�� 	 � ���
 �
 � � ��
	 � ���
 �
 ���

� �
 � � �
�
�
 � � ��� �

�
� �
 	�	 � � � �

� 	 	 � ��� � 	 � ���
 �
 � � ��

�
� �
 	�	 � � ��
� �
 � � �

�
�
 � �� ��� ��
 � � ��

�
� �
 	�	 � � �� � � �

�
� �
 	�	 � � � � � �

�
� �
 	 	 � � � � � � �

	�� � ��
 � � �����
This is in

� ��� � ����� ����� � ��� 	 � �
 � �
���� � � � � � 	�
 � � 	 � ����� � � ��
 � � 	 � ��
 � � � �
 � 	 � � ���������� � � 	�� �
.

20

Testing the grammar

����� � � � ��� � � ��� ���
��� � � ��� � � �
 � ��� ���

�
�
 	

� � ��� � �
 �������� ����
	���� �
 � � ��� �
����
 � � �
 ��� ��� ��� � �
 	 ��

� � 	 � � ����
�� ��� ����
�� ��� ����� ��� �
��� � � ��� � � 	�� � ���
 � � � � � � � � � � ��
�

�
� �
�� � 	 � � 	�� � ��

	���� �
 � � � � �
 � 	 � � � ��� � 	�� � � �
 � ��

� � 	 � � ����
�� ��� ����
�� ��� ����� ��� ���

��� � � ��� � � � ��� 	�
 ��
�

�
� �
 	�� � ��� � ��� 	�
�

	���� �
 � � � � �
 � 	 � � � ��� � � ��� 	�
 � ��

� � 	� � ����
 � ��� ����
�� ���� ��� ��� ���

�
�

�
� �
 	

� � � � � �
���� ��� ��� � �
 	�
� ��� � � � � � �

	�� � �
 � � 	
� � � ���

�
� �
���� ��� ���

�
�
 	 ��

� � 	 � � ����
�� ��� ����
�� ������������ �����
�
�

�
� �
 	 ���� � � �
 � � � � ��� � ��� � ��� ����
 �

� �
� ��� ��� � � ��� �
 � � � �

The procedure 	���� �
 � � ��� �
�� 	 � � � ��� � � ��� 	�
 � generates both a scanner and parser.
It takes all the literal strings from the grammar and adds them to the regexps of
the scanner, so you don’t have to worry about this.

21

2.5.3 Running the tests

 �

	�� � � � � ��� 	�
 	 ���� ���
 �
	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 ��
 �

	 � � ��� ��� � 	�	� ��� � 	 � ���
 �
 �� �
 �
	 � � � � ����� ��� ��
 � � � ��� ���
 �

	 � � ��� ��� ��� ����
�� 	 � ���
 �
 � �
 �
	 �� ��� ��� � ��� ��
 � � � �
 �
	 �� ��� ��� � 	�	 � ��� � 	 � ���
 �
 �� �
 �

	 � � ��� ��� 	�� � ��
 � �
 �
	 � � ��� ����� ��� ��
 � � � �
 �
	 � � ��� ����� ��� ��
 � � � ��� ���������
 �

	
� � � � � �
���� ��� ��� � �
 	���

�

�
� �
���� ��� ���

�
�
 	 � ���
 �
 �� 	 � ���
 �
 � � �� � ��� � � � � �� 	 � ���
 �
 � �� � ��� � � � � � � 	 � ���
 �
 � � � � 	 � ���
 �
 � � � �� � ��� � � � � � � 	 � ���
 �
 � � ��� 	 � ���
 �
 � � � ��������

����
�� 	 � ���
 �
 � ������
����
�� 	 � ���
 �
 � � � �

�
� �
 	�	 � � ��� ������

����
�� 	 � ���
 �
 � � � � 	 � ���
 �
 � � � ���� � 	�	 � ��� � 	 � ���
 �
 � �� � 	�	� ��� � 	 � ���
 �
 � � � � 	
� � � � � � �� � 	�	� ��� � 	 � ���
 �
 � � �

�
� �
 	�	 � � � � ������

�

�
� �
���� ��� ���

�
�

�
� �
 	�	 � � �

�
� �
 	�	 � � � �� � ��� ��
 � �� � ��� ��
 � � � � 	

� � ��� � � ����
	�� � ��
 � ��

	�� � ��
 � � 	 �

�
� �
 	�	 � � ��� ��

	�� � ��
 � � 	��

�
� �
 	�	 � � ��� �����

The field names are uninformative because the information isn’t in the grammar;
if you want better field names you can always write out the �

�
� �
���� ��� ���

�
�
 by

hand.

These �

�
� �
���� ��� ���

�
�
 s show what goes in the node for a production: a subtree

for each non-terminal, and the data field for each data-bearing terminal (identifiers
and numbers). Literal strings aren’t stored, because they are the same for every
instance of the production.

22

2.5.4 The SLLGEN grammar specification language

�������� ��������� �
� � � ����� � � � � ����� � � ��� � �
 � � � ���

� � 	 � � � � � ��	
� 	 � ����� 	

� � ��� � �
� � � ����� � � � � ����� �

�
�
	 � � 	 � � � � � � ���
 �

�
�
	 ����� 	

� � � � � �
 � ���
 	 � � ��� ���
�
�
 � � �

� � 	 ����� � � � 	�� � �
 � ����� �
� � 	�� � �
 � ����� 	

� ���� � �
	 � � � ���� � � � �� � � � 	�� � �
 � ����� � � � � � ��� � ��� � 	 � �
 ��� � � 	�� � �
 � ����� � � �
 � �

� � � � � � ���
 ��� � 	
� � ��� � �
 � ���
 	 � � ��� � � � � � ���

A grammar is a list of productions. The left-hand side of the first production is the
start symbol for the grammar.

Each production consists of a left-hand side (a non-terminal symbol), a right-hand
side (a list of rhs-item’s) and a production name.

The right-hand side of a production is a list of symbols or strings (or ������� � ’s or
	�
 � ������
�� ����	 � ’s – we’ll talk about those later). Symbols are non-terminals (if
they don’t appear on lhs, or as a lexical class, an error will be reported); strings
are literal strings.

The production name is a symbol which becomes the variant of the �

�
� �
���� ��� ���

�
�
 .

Important: The parser must be able to figure out which production to use know-
ing only (1) what non-terminal it’s looking for and (2) the first symbol (token) of
the string being parsed. Grammars in this form are called LL(1) grammars (SLL-
GEN stands for Scheme LL(1) parser GENerator). This will be good enough for
our purposes. SLLGEN will warn you if your grammar does not meet this restric-
tion.

23

2.5.5 ��� ����� ’s and �
	����������	��������
��� ’s

An ��������� is a Kleene star in the grammar: it matches an abitrary number of
repetitions of its entry. Example: Change our grammar to say

�
�

�
� �
 � �
�� ������������� ��� 	 � ���
 �
 � �� � �
 � � � � � ������� � 	 � ���
 �
 � � � � � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 �� �
����� ���

This makes a compound statement a sequence of (an arbitrary number of) semicolon-
terminated statements. Such a statement might be represented by a diagram like

begin ;<statement> end

This ��������� generates a single field in the AST, which will contain a list of the
data for the thing inside the ����� ��� .

24

Our example (in ���� ��� ��� 	 � 	�� �) generates the following datatypes:

 �
	���� �
 � � 	

� � � ���

�
� �
���� ��� ���

�
�
 	 ��

� � � �
�� ���� ��� ��� ��
�

�
� �
���� ��� ���

�
�

	 � ���
 �
 � �
	 � ���
 �
 � � �� � ��� � � � � �� 	 � ���
 �
 � �� � ��� � � � � � � 	 � ���
 �
 � � � 	 �

���	 � � �
�

	 � ���
 �
 � � � ����� � ������� ������� ��������
����
�� 	 � ���
 �
 � ������

����
�� 	 � ���
 �
 � � 	��

�
� �
 	�	 � � ��� ������

����
�� 	 � ���
 �
 � � 	 	 � ���
 �
 � � � ���� � 	�	 � ��� � 	 � ���
 �
 � �� � 	�	� ��� � 	 � ���
 �
 � � � � 	
� � � � � � �� � 	�	� ��� � 	 � ���
 �
 � � � �

�
� �
 	�	 � � � � ������

�

�
� �
���� ��� ���

�
�

�
� �
 	�	� � �

�
� �
 	�	� � � �� � ��� ��
 � �� � ��� ��
 � � 	 � 	

� � ��� � � ����
	�� � ��
 � ��

	�� � ��
 � � 	��

�
� �
 	�	 � � ��� ��

	�� � ��
 � � 	 �

�
� �
 	�	 � � ��� �����

Here’s another example:

 �
�

�
� �
 	�� � � � � ��� 	�
�
	���� �
 � � ��� �
�� 	 � � � ��� � � ��� 	�
 � ��

� � � �
�� ������������ ���

 �

	�� � � � � ��� 	�
 � �
 � � �
� ��� � ��� � � ��� � ��� � � ��� ��� �
 � � � �
 �

	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 ���
 �
	 � � � � ��� � 	 	 � ��� � 	 � ���
 �
 � � �
 �

	 � � ��� ����� ��� ��
 � � � ��� ���
 �
	 � � ��� ��� � 	�	 � ��� � 	 � ���
 �
 � � �
 �

	 � � ��� ����� ��� ��
 � � � ��� ���
 �
	 � � ��� ��� � 	�	 � ��� � 	 � ���
 �
 � � �
 �

	 � � ��� ����� ��� ��
 � � ��� �������
The � ��� � � � � �� 	 � ���
 �
 � � has 1 data field, which contains a list of the statements
inside the begin-end.

25

Another example We can put more complicated things inside an ��������� . For
example:

�
�

�
� �
 �������� ��� �

� ���
 � � �
 	�	 � � � � � � ��
 � � �� � ��

�
� ��

�
� �
 	�	 � � �

�
� �
 � � �

�
��
 � � � ��� ��
 � � ��

�
� �
 	�	 � � �� � ��
 � � � ��������� � �
 �� �

�
�
 � � � �

�
� �
 	�	 � � � � � � � �

�
� �
 	�	 � � � �

��
 � ��

�
� ��

�
� �
 	�	 � � �� � � � � � � � ������� �

�
� �
 	 	 � � � � � � � �

	�� � ��
 � � ����
�
	���� �
 � � ��� �
����
 � � �
 ��� ��� ��� � �
 	 ��

� � ������������ � �
�
�

�
� �
 	�� � ��� � ��� 	�
�

	���� �
 � � � � �
 � 	 � � � ��� � � ��� 	�
 � ��

� � � ������ ��� � ���

 �
	�� � � � � ��� 	�
 � ��
 �

� � �
�
� � � � � �

� �
� � � � �

� � � �
� �

�
�
�
�
� � � �

� � ����� � �
 �
	 �� ��� ��� ��
 � ��
 � ���� � � ��
 �

	 � � � � ��� 	�� � ��
 � �
 �
	 �� ��� ��� � ��� ��
 � � � �
 � 	 �� ��� ��� � ��� ��
 � � � ���
 �

	 � � ��� ��� 	�� � ��
 � �
 �
	 �� ��� ��� � ��� ��
 � � � �
 � 	 �� ��� ��� � ��� ��
 � � � ���
 �

	 � � ��� ��� 	�� � ��
 � �
 �
	 �� ��� ��� � ��� ��
 � � ���
 � 	 �� ��� ��� � ��� ��
 � � � �����
 �

	 � � ��� ��� 	�� � ��
 � �
 �
	 �� ��� ��� 	�� � ��
 � �
 �

	 � � ��� � ��� ��� �
 � � � �
 � 	 � � ��� ����� ��� ��
 � � � ���
 �
	 �� ��� ��� 	�� � ��
 � �
 �

	 � � ��� � ��� ��� �
 � � � �
 � 	 � � ��� ����� ��� ��
 � � � �������
Here

� ������� � � �
 � � �
�
�
 � � � �

�
� �
 	�	� � � � generated 2 lists: a list of identi-

fiers and a list of expressions. This is handy because it will let our interpreters get
at the pieces of the expression directly.

26

Let’s look at the datatypes generated for � ������ ��� �
:

�
�

�
� �
 �������� ��� �

� ���
 � � �
 	�	 � � � � � � ��
 � � �� � ��

�
� ��

�
� �
 	�	 � � �

�
� �
 � � �

�
��
 � � � ��� ��
 � � ��

�
� �
 	�	 � � �� � ��
 � � � ��������� � �
 �� �

�
�
 � � � �

�
� �
 	�	 � � � � � � � �

�
� �
 	�	 � � � �

��
 � ��

�
� ��

�
� �
 	�	 � � �� � � �

�
� �
 	�	 � � �

� ���������

�
� �
 	�	� � � � � � � �

� � � ��

�
� ����

 �
	���� �
 � � 	

� � � ���

�
� �
���� ��� ���

�
�
 	 ��

� � � ������ ��� � ��
�

�
� �
���� ��� ���

�
�

�
� �
 	�	� � �

�
� �
 	�	� � � ��
� � � ��

�
��

�� � ��

�
� � � � � � �
 � � ���� � ��� ��
 � �� � ��� ��
 � � ��� 	

� � ��� � � ����
��
 � ��

�
��

��
 � ��

�
� � 	 �

���	 � � �
�

	
� � � � � � ��� ��� ������

��
 � ��

�
� � � �

���	 � � �
�

�
� �
 	�	 � � � � ��� ��� ������

��
 � ��

�
� � �

�
� �
 	�	 � � ��� ����

	�� � ��
 � ��
	�� � ��
 � � � � �

���	 � � �
�

�
� �
 	�	 � � � � �������

27

The rule is that a rhs-item inside an ��������� generates a list of whatever it would
generate if the ����� ��� weren’t there. So if we wrote

�
�

�
� �
 �������� ��� � � �

� ��� � � �� � �
 � � � � � � � � ������� � �� � � � ��� � � � 	 � � ��� � �� � � � � � ��� � � � � � �
� � � �� ���

����� ���
We would generate one list for each � � 	�� � �
 � in the ��������� . But of course strings
don’t count, so this example will generate 3 lists. So the �

�
� �
���� ��� ���

�
�
 would

look like:

�
�

�
� �
���� ��� ���

�
�
 � � � � � � ��

� � � �� �� �
�
 � � � � � � � �� �
�
 � � 	 �

���	 � � �
� � � � � ���� �

�
 � � � �
���	 � � �

� � � 	 � ���� �
�
 � � � �

���	 � � �
� � � � � ���� �

�
 � � � � � � � ���
����� �

We can also have nested ������� � ’s in which case you’ll get a list of lists. We’ll get
to those a little later.

28

Separated Lists

Sometimes you want lists with separators, not terminators. This is common enough
that it is a built-in operation in SLLGEN. Just write:

�
�

�
� �
 �������� ��� �� ��� 	 � ���
 �
 � �� � �
 � � � � �

	�
 � ������
�� ����	 � 	 � ���
 �
 � � � � � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 �� �
� �����
���

 �
	���� �
 � � 	

� � � ���

�
� �
���� ��� ���

�
�
 	 ��

� � ��� ����� ��� � ��
�

�
� �
���� ��� ���

�
�

	 � ���
 �
 � �
	 � ���
 �
 � � �� � ��� � � � � �� 	 � ���
 �
 � �� � ��� � � � � � � 	 � ���
 �
 � � � � � �

���	 � � �
�

	 � ���
 �
 � � � ����� � ����� ��� 	 ���
 � 	
� � ��� � �� ������

����
�� 	 � ���
 �
 � ������
����
�� 	 � ���
 �
 � � � � �

�
� �
 	�	 � � � � ������

����
�� 	 � ���
 �
 � � ��� 	 � ���
 �
 � � � ���� � 	�	 � ��� � 	 � ���
 �
 � �� � 	�	� ��� � 	 � ���
 �
 � � � � 	 	
� ���� � � �� � 	�	� ��� � 	 � ���
 �
 � � � � �

�
� �
 	�	 � � � � �����

�����

 �
�

�
� �
 	�� � � � � ��� 	�
�

	���� �
 � � � � �
�� 	 �� � ��� ��� ��� 	�
 � ��

� � ������������ � � ���
 �

	�� � � � � ��� 	�
 � �
 � � �
 � � � �
 �
	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 �� � ���
 �
	�� � � � � ��� 	�
 � �
 � � �

� ��� � ��� � � ��� � ��� � � ��� ���
 � � � �
 �
	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 ���
 �

	 � � � � ��� � 	 	 � ��� � 	 � ���
 �
 � � �
 �
	 � � ��� ����� ��� ��
 � � � ��� ���
 �

	 � � ��� ��� � 	�	 � ��� � 	 � ���
 �
 � � �
 �
	 � � ��� ����� ��� ��
 � � � ��� ���
 �

	 � � ��� ��� � 	�	 � ��� � 	 � ���
 �
 � � �
 �
	 � � ��� ����� ��� ��
 � � ��� �������
 �

	�� � � � � ��� 	�
 � �
 � � �
� ��� � ��� � � ��� � ��� � � ��� ��� �
 � � � �

� ��� 	� ��� � ��� �� �
 � �
��� � �
 � � � � � � � 	�
 � ���	 � � 	
 � � � � � �
 � � �

�
� �
�

�� �
 �� ��� 	 � � � ��� ��� �
 � � �

29

Nested arbnos

We will occasionally use nested ����� ��� ’s and 	�
 � ������
�� ����	 � ’s. A non-terminal
inside an ��������� generates a list, so a non-terminal inside an ����� ��� inside an
������� � generates a list of lists.

As an example, consider a �
 � � � like the last one, except that we have parallel
assignments:

�
�

�
� �
 �������� ��� �� ��� 	 � ���
 �
 � �� � �
 � � � ��

	�
 � ������
������	 ��
	�
 � ������
���� ��	 � � �
 � � �

�
�
 � � � �

� � � ��
	�
 � ������
���� ��	 �

�
� �
 	 	 � � � � � �

� � � �
�
 � � � �� ��� � � � � �� 	 � ���
 �
 �� ��

�
� �
 	�	 � � �

� � � ��
 � � �� � ��

�
� ��

�
� �
 	�	 � � �

�
� �
 � � �

�
��
 � � � ��� ��
 � � ����

 �
�

�
� �
 	�� � � � � ��� 	�
�

	���� �
 � � � � �
�� 	 �� � ��� ��� ��� 	�
 � ��

� � ������������ � ���
 �

	�� � � � � ��� 	�
 � �
 � � �
� � ��� � � � � ��� � � � � � 	 ��� � �
 � � � �
 �

	 �� ��� ��� � ��� � � � � �� 	 � ���
 �
 ����� � � � � � � � � � � 	 ��� ��� � ��� ���	 � � � �
�
	 � 	
 � � � �

�
	 ��	 � ���	 � � � � ��	 ����
 �

	 � � ��� ����� ��� ��
 � � � � ��� � ��� ���	 � � � � � 	 � 	
 � � � � � 	 ��	 � ���	 � � �

�
� 	 �
 �

	 �� ��� ��� � ��� ��
 � � � ����
 �
	 �� ��� ��� �� � ��
 � � � ����
 �
	 �� ��� ��� �� � ��
 � � � �
 �
	 �� ��� ��� �� � ��
 � � � �������

Here of course I’ve used 	�
�� ������
������	 � instead of ��������� , but they generate
the same data.

30

 �
	���� �
 � � 	

� � � ���

�
� �
���� ��� ���

�
�
 	 ��

� � ��� ����� ��� � ��
�

�
� �
���� ��� ���

�
�

	 � ���
 �
 � �
	 � ���
 �
 � � �� � ��� � � � � �� 	 � ���
 �
 � �� � ��� � � � � � � 	 � ���
 �
 � � � �

���	 � � �
� �

���	 � � �
�

	
� � ��� � � ������ � ��� � � � � � � 	 � ���
 �
 � � � �

���	 � � �
� �

���	 � � �
�

�
� �
 	�	 � � ��� ����������

�

�
� �
���� ��� ���

�
�

�
� �
 	�	� � �

�
� �
 	�	� � � ��
� � � ��

�
�
�
�� � �

�
� 	 � � ��
 � � ���� � ��� ��
 � � � � ��� �
 � � � 	

� ���� � � �����
This looks hairy, but it turns out to be very natural.

31

2.5.6 SLLGEN error messages

SLLGEN can generate a bunch of error messages. These may occur at parser-
generation time or at parse time.

The most common errors arise at parse time, when your string doesn’t match the
grammar.

 �
�

�
� �
 	 � � ����
�� ��� ����
 � �������� ���� ��� 	 � ���
 �
 � �� � �
 � � � � 	 � ���
 �
 �� � � � 	 � ���
 �
 � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 � � ��
	 � ���
 �
 � �� � ��� ����
 �

�
� �
 	�	 � � � � � � � 	 � ���
 �
 � � ����

����
�� 	 � ���
 �
 �� ��
	 � ���
 �
 � ��

� �
 � � �
�
��
 � � ��� �

�
� �
 	�	 � � � �

� 	�	 � ��� � 	 � ���
 �
 � � ��

�
� �
 	 	 � � ��
� �
 � � �

�
��
 � �� ��� �
 � � ��

�
� �
 	 	 � � �� � � �

�
� �
 	�	 � � � � � �

�
� �
 	�	 � � � � � � �

	�� � �
 � � �����
 �
�

�
� �
 	�� � � � � ��� 	�
�
	���� �
 � � ��� �
�� 	 � � � ��� � � ��� 	�
 � ��

� � 	 � � � ��
�� ��� ����
�� � ������ ��� ���
 �
	�� � � � � ��� 	�
 � �
 � � �

� ��� � ��� � ��� ����
 �
� �

� ��� ��� � � ��� � �
 � � � �� ��� ��� �
�� � ���
�� � � 	���� �
 � ��� � � ��� � ��� 	� ��� �
��� �� �
 �� ��� � � ���

� � � �
 � � �
� � � � � �� �
 �� ��� 	 � � � � � 	 	 � � � � � � � � ����� � � � ����

	 �� � ��� � �
 � � � � � � ��� � � �
 � � 	 � ���
 �
 � � � �
	 � � � ��� � � � �� ��� � � �
 � � 	 � ���
 �
 � � � �

	 �� � ��� �
 � � � � � �
�������
 � ��� � � � � �� 	 � ���
 �
 � � ���
�
 � � �
 �

32

This is an error during parsing. It was trying to match the production that it repre-
sents as:

���
	 �� � ��� � �
 � � � � �� ��� � � �
 ��� 	 � ���
 �
 � � ��
	 �� � ��� � � � �� ��� � � �
 ��� 	 � ���
 �
 � � ��
	 �� � ��� �
 � � � �� �
�������
 � ��� � � � � � � 	 � ���
 �
 � � ���

It was looking for the string
 � � , but it found something else (the �). This could
mean one of several things:

1. The most likely explanation is that the string you gave it was wrong: it
didn’t fit the grammar. This is the kind of message you get when you feed
the parser an ungrammatical string.

2. Another possibility is that the grammar was incorrect. (If the string and the
grammar don’t agree, one of them is wrong, and either one could be the
culprit).

3. A third possibility is that the scanner is wrong and gave the wrong scan of
the string. This is possible, though relatively unlikely.

In this case, the string was wrong: it had a terminating � where it was not legal.

Here’s another one:

 �
	�� � � � � ��� 	�
 � �
 � � �

� ��� � ��� � ��� ����
 �
� �

� ��� � � � ���
 � � � �� ��� ��� �
�� � ���
�� � � 	���� �
 � ��� � � ��� � ��� 	� ��� �
��� �� �
 �
 � � �
 � � � � � � �

�
� �
 	�	 � � �
 � � � � � �
 � � �

�
� �
� � � � �
 � �

�
 � � �
 �

Here it was looking for an expression, and it found the number � . But there is no
production that allows an expression to begin with a number!

33

�
�

�
� �
 �������� ��� � � �� ��� 	 � ���
 �
 � �� � �
 � � � � �

	�
 � ������
�� ����	 � 	 � ���
 �
 � � � � � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 �� �
����� ���
 �

�

�
� �
 	�� � � � � ��� 	�
 ��

	���� �
 � � � � �
�� 	 �� � ��� ��� ��� 	�
 � ��

� � ������������ � � �����
 �

	�� � � � � ��� 	�
 � � �
 � � �
� ��� � � � ��� � � � ��� � �
 � � � �� ��� ��� �
�� � ���
�� � � 	���� �
 � ��� � � ��� � ��� 	� ��� �

��� �� �
 �
 � � �
 � � � � � � � 	�
 � ���	 � � �
 � � � � � �
 � � �

�
� �
�

�� �
 �� ��� 	 � � � ��� � � �
 � � �

�
 � � �
 �

� 	�
 � ���	 � � �
 is a new non-terminal generated by a 	�
�� ������
������	 � . So it was
looking for an

�
	�
 � ������
������	 � ���������
	����� � , where something is something

that can’t begin with an
 � � , and it found an
 � � in the input string when it got to
this point. Alas, the name of the nonterminal here is often uninformative, but the
line number can help. Similar nonterminals are generated for an ��������� .

Of course, in real life, it may not be so simple to find the error!

34

Errors may also come during the parser generation process:

 �
�

�
� �
 ��� ����� ��� � � � �� ��� 	 � ���
 �
 � �� � �
 � � � � �

	�
�� ������
������	 � 	 � ���
 �
 � � � � � � �
 � � � �� ��� � � � � �� 	 � ���
 �
 � � ��
	 � ���
 �
 � �� � ��� ����
 �

�
� �
 	�	 � � � � � 	 � ���
 �
 � � ����

����
�� 	 � ���
 �
 �� ��
	 � ���
 �
 � � �

� �
 � � �
�
�
 � � � � �

�
� �
 	 	 � � � � � 	�	 � ��� � 	 � ���
 �
 � � ��

�
� �
 	 	 � � �

�
� �
 � � �

�
�
 � � � ��� ��
 � � ��

�
� �
 	 	 � � �

� � � �

�
� �
 	�	 � � � � � �

�
� �
 	 	 � � � � � � � 	�� � ��
 � � �����
 �

	���� �
 � � � � �
 ���
 � � �
���� ��� ��� � �
 	 ��

� � ��� ����� ��� � � � � �� ��� ��� �
�� � ���
�� � � 	���� �
 � ��� � � ��� �

�
� � � ��� ��� ��� ���

�
�
 	 �

 ����
 �� � � �
 � � �
� � � � ��� � � 	

� ���� � � � � � � 	 � � ��� ����
 �

�
� �
 	�	� � � � � 	 � ���
 �
 � � �

�
 � � �
 �

Here 	���� �
 � � � � �
����
 � � �
���� ��� ��� � �
 	 got confused because it couldn’t figure
out what � � was: it wasn’t a terminal, because it didn’t occur in ��

� � , and it
wasn’t a non-terminal, because it didn’t occur on the left-hand side of a production
in ���� ��� ��� � � � � .

Similar errors will arise if you do things like misspell nonterminals in a grammar,
or if the scanner and the parser disagree on the spelling of the lexical classes.

 �
�

�
� �
 ��� ����� ��� � � �� ��� 	 � ���
 �
 � �� � �
 � � � � 	 � ���
 �
 �� � � � 	 � ���
 �
 � � �
 � � � �������
 �

�

�
� �
 	�� � � � � ��� 	�
�
	���� �
 � � ��� �
�� 	 � � � ��� � � ��� 	�
 � ��

� � �������� ��� � � � ���
� ��� ��� � � � � � � � � � � � �����
 � � � ��	 � 	 � � ��� � � �
�
	 � ���
 �
 �� � � �
 � � � � 	 � ���
 �
 � � � � � 	 � ���
 �
 � � �
 � � � ��� �

Here the grammar itself is syntactically incorrect: I forgot to put a name on this
production.

35

 �
�

�
� �
 ��� ����� ��� � � �� ��� 	 � ���
 �
 � �� � �
 � � � � 	 � ���
 �
 �� � � � 	 � ���
 �
 � � �
 � � � �
� � � � � ����
	 � ���
 �
 � �� � �
 � � � � �

	�
�� ������
������	 � 	 � ���
 �
 � � � � � � �
 � � � �
� � � � � 	 �����
 �

�

�
� �
 	�� � � � � ��� 	�
�
	���� �
 � � ��� �
�� 	 � � � ��� � � ��� 	�
 � ��

� � �������� ��� � � � ���� ��� ��� �
�� � ���
�� � � 	���� �
 � ��� � � ��� � ��� 	�
 � � �
 �
 ���� � � � �

�������� ��� ��� � ��� � ��� � � � �
� � � � � � ���� � �
 �
 � �
�� � � � ��� � 	�	 � �
 � � � �

� � ��� � �
 � � � � � � 	 � ���
 �
 � ������ � �
 � � � � � �
	 � � � ��� � �
 � � � � � � ����� ��� 	�
 �����	 �

� ��� �
	 � � � ��� �
 � � � � � �
�������
 � � � �� 	 ������ � �
 � � � � � �

	 � � � ��� � �
 � � � � � � ��� � � �
 � � 	 � ���
 �
 � � � �
	 � � � ��� � � � �� ��� � � �
 � � 	 � ���
 �
 � � � �

	 �� � ��� �
 � � � � � �
�������
 � � � � � �����
This means that the grammar failed the LL(1) test: there are two productions for
	 � ���
 �
 � � that both start with �
 � � � .

There are many more error messages, but these are the most common. Please let
me know if you get an error message you can’t figure out. I’ll share these with the
class (anonymously) so that everyone will share the results.

36

	Data Types
	Example: Arithmetic
	Environments
	Interface
	Data Structure Representation
	Procedural Representation

	Lexical Scanning
	What's in a token?
	Specification via regular expressions
	Specifying scanners in SLLGEN
	Testing the scanner
	The SLLGEN scanner specification language

	Parsing
	Specification via context-free grammars
	Specifying grammars in SLLGEN
	Running the tests
	The SLLGEN grammar specification language
	arbno's and separated-list's
	SLLGEN error messages

