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Lecture 1: Background
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Specification, Implementation
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The Smaller-Subproblem Principle
Follow the Grammar!
Generalization
Auxiliary Procedures and Context Arguments No Mysterious Auxiliaries!
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1.1 The Big Picture

How a program gets executed:

Front End

program text syntax tree

Front End

program text syntax tree

Interpreter

answer

or Machine

translated
program

Compiler

Interpreter

answer

Real World

input−output

Real World

input−output

(b) Execution via Compiler

(a) Execution via interpreter
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These components may get refined:

Compiler

Front End Scanner Parser

Analyzer Translator

We will be concerned with language specification. We write each part of the
specification in an appropriate specification language.

Scanner Parser Interpreter

regular expressions grammar semantic rules

Front End

tokens

syntax tree answer

Parser
Spec

Scanner
Spec

Semantic
Spec

program 
text

Sometimes you can automatically generate the component from the specification
(scanners, parsers), sometimes it’s impossible; occasionally it’s possible but better
to do it by hand. But usually it’s better to use a tool.

There are standard tools for generating scanners and parsers; we will use our own
tool, called SLLGEN, for that.

We will, however, write our interpreters by hand, in Scheme.

It’s always important to distinguish between a language we are studying or im-
plementing, sometimes called the object language, and the language we use to
implement it, called the implementation language. We will have many small ob-
ject languages, but our implementation language will always be Scheme.
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1.2 The Four Questions

When looking at a language, we will always ask four questions. As we proceed
through the course, we will ask these questions in more and more sophisticated
ways; I’ll show some of these subquestions now, even though we haven’t yet
covered enough to understand what they mean:

1. What are the values in the language?

� What are the values manipulated by the language, and what operations
on those values are represented in the language?

� What are the expressed and denoted values in the language?
� What are the types in the language?

2. What are the scoping rules of the language?

� How are variables bound? How are they used?
� What variables are in scope where?

3. What are the effects in the language?

� Are there side-effects in the language?
� Can execution of programs have effects in the world?
� Can execution of programs have effects on other programs?
� Can execution of a program fail to terminate?
� Are there non-local control effects in the language?

4. What are the static properties of the language?

� What can we predict about the behavior of a program without knowing
the run-time values?

� How can we analyze a program to predict this behavior?

4



1.3 Inductive Definitions of Sets

Know Your Sets

When writing code for a procedure, you must know precisely what
kinds of values may occur as arguments to the procedure, and what
kinds of values it is legal for the procedure to return.

Definition 1 (Example of a Top-Down Definition) A non-negative integer n is
in S whenever

1. n � 0, or

2. n � 3 � S.

S is the set of multiples of 3. This definition leads to a test:

in-S? � ��� �	
 � ������ �	��� 
	������������� 
�
��������� � �
usage: � ���	
���� ��������� � � � ��� ��������� ��� ��� ���� �����
� ���� ���	� ���	
��!�
� ���#"���� � �$�
� � � �&% ���'��� ���(� �
� ����
� 
�� � 
 �*)'�+,�
� ���	
���� � 
 �-)'�����������

Here we have written a recursive procedure in Scheme that follows the definition.
To determine whether n � S, we first ask whether n � 0. If it is, then the answer
is true. Otherwise we need to see whether n � 3 � S. To do this, we first check to
see whether (n � 3) . 0. If it is, then we can use our procedure to see whether it
is in S.
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Two alternative ways of writing the same definition of S:

Definition 2 (Example of a Bottom-Up Definition) Define the set S to be the
smallest set contained in N and satisfying the following two properties:

1. 0 � S, and

2. whenever n � S, then n � 3 � S.

Definition 3 (Example of definition by rules of inference)

0 � S

n � S
(n � 3) � S

� Each entry is called a rule of inference, or just a rule; the horizontal line is
read as an “if-then”.

� The part above the line is called the hypothesis or the antecedent; the part
below the line is called the conclusion or the consequent.

� When there are two or more hypotheses listed, they are connected by an
implicit “and.”

� A rule with no hypotheses is called an axiom.

� The rules are interpreted as saying that an integer n is in S if and only if
the statement “n � S” can be derived from the axioms by using the rules of
inference finitely many times.

These three definitions are entirely equivalent. We’ll move back and forth between
them freely.
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Definition 4 (list of integers, top-down) A Scheme list is a list of integers if and
only if either

1. it is the empty list, or

2. it is a pair whose car is a integer and whose cdr is a list of integers.

We use Int to denote the set of all integers, and List-of-Int to denote the set of
lists of integers.

Definition 5 (list of integers, bottom-up) The set List-of-Int is the smallest set
of Scheme lists satisfying the following two properties:

1. � � � List-of-Int, and

2. if n � Int and l � List-of-Int, then � n � l
� �

List-of-Int.

The phrase � n � l
�

denotes a Scheme list whose car is n and whose cdr is l.

Definition 6 (list of integers, rules of inference)

() � List-of-Int

n � Int l � List-of-Int

(n � l) � List-of-Int
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1. � � is a list of integers, because of property 1 of definition 5 or the first rule
of definition 6.

2. � ��� �� ��� is a list of integers, because of property 2 of definition 5, since
���

is a integer and � � is a list of integers. We can also write this as an
instance of the second rule for List-of-Int .

��� �
Int � � � List-of-Int

� ��� �� ��� � List-of-Int

3. � ) � � ��� �� ����� is a list of integers, because of property 2, since
)

is a
integer and � ��� �� ��� is a list of integers. We can write this as another
instance of the second rule for List-of-Int .

) �
Int � ��� �� ��� � List-of-Int

� ) �� ��� �� ����� � List-of-Int

4. � 
�� �� ) �� ��� �� ������� is a list of integers, because of property 2, since

��

is a integer and � ) � � ��� � � ����� is a list of integers. Once more we
can write this as an instance of the second rule for List-of-Int .


�� �
Int � ) � � ��� � � ����� � List-of-Int

� 
�� � � ) � � ��� � � ������� � List-of-Int

5. Nothing is a list of integers unless it is built in this fashion.
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1.4 Defining Sets Using Grammars

Normally use grammars to define sets of strings, but can use them to define sets
as well.

List-of-Int :: � � �
List-of-Int :: � � Int � List-of-Int

�

two rules, corresponding to the two properties in Definition 5 above.

In this definition we have

� Nonterminal Symbols. These are the names of the sets being defined. In
this case there is only one such set, but in general, there might be several
sets being defined. These sets are sometimes called syntactic categories.

We will use the convention that nonterminals and sets have names that are
capitalized, but we will use lower-case names when referring to their ele-
ments in prose. This is simpler than it sounds. For example, Expression is a
nonterminal, but we will write e � Expression or “e is an expression.”

Another common convention, called Backus-Naur Form or BNF, is to sur-
round the word with angle brackets, e.g. � expression � .

� Terminal Symbols. These are the characters in the external representation,
in this case � , � , and

�
. We typically write these using a typewriter font,

e.g.
��� "����

.

� Productions. The rules are called productions. Each production has a left-
hand side, which is a nonterminal symbol, and a right-hand side, which
consists of terminal and nonterminal symbols. The left- and right-hand sides
are usually separated by the symbol :: � , read is or can be. The right-hand
side specifies a method for constructing members of the syntactic category
in terms of other syntactic categories and terminal symbols, such as the left
parenthesis, right parenthesis, and the period.
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Shorthand notation in grammars:

Alternatives in a single line:

List-of-Int :: � � ��� � Int � List-of-Int
�

Omitting repeated LHS’s:

List-of-Int :: � � �
:: � � Int � List-of-Int

�

Kleene star:
List-of-Int :: � ��� Int ��� �

Separated Lists:

Comma-separated strings in � Int ��� ( � ) :

	 
 
 
 
 ���	� �#"����� � �������!� � � ��� � ��
����
�
��� � ��
��� )�� ��� � ���

Semicolon-separated strings in � Int ��� (;) :

	 
 
 
 
 ���	� �#"����� � �������!� � � ��� � ��
����
�
����� ��
� � ) � ����� ���

10



1.5 Defining Procedures Recursively

The Smaller-Subproblem Principle

If we can reduce a problem to a smaller subproblem, we can call the
procedure that solves the subproblem to solve the problem.

Imagine we want to define a function to find powers, eg. e(n � x) � xn for any
non-negative integer n. (We define e(0 � x) � 1).

e � � � �	
 �	������ � �	� 
	������� ���� 
�
 �����

usage: � � �����
produces:

��� �

� ���� ���	� �

� ���#"���� � �����
� � � �&% ���'��� ���

�

� ���
� � � 
 � � �	� ���������

Let’s watch this work. We can use good old-fashioned algebraic reasoning.

� � )�
,�
� � ��
 � �  
,���
� � ��
 � ��
 � � � 
,�����
� � ��
 � ��
 � ��
 � � +�
'�������
� � ��
 � ��
 � ��
 � �����
� �� 


What’s the moral? If we can reduce the problem to a smaller subproblem, then
we can call the procedure itself (“recursively”) to solve the smaller subproblem.
Then, as we call the procedure, we ask it to work on smaller and smaller subprob-
lems, so eventually we will ask it about something that it can solve directly (eg
n � 0, the basis step), and then it will terminate successfully.
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1.6 Manipulating lists of symbols

��� � ���� ��� � � � "���� ��� ��� �	� ��� ���
��� 
 
 �#"�����
��� 
 
 � � ���	� �,� ��" � � � � � � � " ������� �� ��	���� � � " ��� � � ��"���� � � �� ����� ���

��� � � � ���	��� ����� � � � � � "���� ��
�

1.6.1 remove-first

remove-first � � ��" � � ���� �	
�� � � � " � 
�
 � �� � ��
�� � � ��"$�
usage: � ��#"��#��� 
�� � � � � � � " �������
produces:

� ���� � ������ ����� � ��
��  � ����� 
�� ���	� ��� � � ��� ��� 
� ���� � � � � � � �� �
� � � � "

�

��� � ��#"�� ����� ���� � �� " �#��� 
���� � � ��� ��� � ��� � � ���� � �� " �#��� 
���� � � ��� ��� � � � � � ����� � � � � �
��� � �� " �#��� 
���� � � ��� ��� � � � � � � ��� � � � � � � �

� ���� ���	� ��#" � ��� 
���� � � �
� ���#"���� � � � " �������
� � � � ��
������ ��������� � �
� � � � �����'� � � " � � ��� ���������
� � � � �������
� � � � � � � ��� �������
� ���#" �#����
���� � � � � � " � � � � ������������������
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1.6.2 remove

remove � � � " � � �� � ��
�� � � ��"$� 
�
 � ����� ��
���� � � "$�
usage: � ��#"��#��� � � " �������
produces:

� ���� � ������ ����� � ��
��  � ����� 
�� �� � � � � 
�� �� � � ��� � � � � ����
� � � � "

�

��� � ��#"�� ����� ���� � �� " �#��� � � � � ��� � � ���� � �� " �#��� � � � � �� � � ��� � � � � �
��� � �� " �#��� � � � � � � � � � � ��� � � � � � �

� ���� ���	� ��#" � ���
� ���#"���� � � � " �������
� � � � ��
������ ��������� � �
� � � � �����'� � � " � � ��� ���������
� ��#"��#��� � � " � � � � ���������
� � � � � � � ��� �������
� ���#" �#��� � � " � � � � �������������������
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1.7 Follow the Grammar!

Follow the Grammar!

When defining a procedure that operates on inductively-defined data,
the structure of the program should be patterned after the structure
of the data.

More precisely:

� Write one procedure for each nonterminal in the grammar. The procedure
will be responsible for handling the data corresponding to that nonterminal.

� In each procedure, you will have one � � �� line for each production corre-
sponding to that nonterminal. You may have additional case structure, but
this will get you started on the right foot.

Procedure
� 
�� � �

Input: Two symbols:
�	�� 

and
��� �

, and an list
����� �

Output: a list similar to
����� �

but with all occurrences of
� � �

replaced by instances
of

�	�� 
.

Example:


 � ��
�� � � � � � � � ��� � � � � � � � �������
��� � � � � � � � �����

But wait: need to be more precise about what kind of lists are possible inputs.
Let’s write a grammar to describe these nested lists of symbols:

Definition 7 (s-list, s-exp)

S-list :: � ��� S-exp � � �
S-exp :: � Symbol

�
S-list

An s-list is a list of s-exps, and an s-exp is either an s-list or a symbol. Here are
some s-lists:

� �� � �
� � � ����� ��
���� ����� �  � ��� � � ��� � ��� ��� � ��� �	�	� � ����� �����
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The Kleene star gives a concise description of the set of S-lists, but it is not so
helpful for writing programs.

So rewrite the grammar to eliminate the use of the Kleene star.

S-list :: � � �
:: � � S-exp � S-list

�
S-exp :: � Symbol

�
S-list

The follow-the-grammar pattern says we should have two procedures, one for
dealing with S-list and one for dealing with S-exp:

subst � � � " � � ��" � ��
���� � 
�
 ��
����� �

usage: � � 
�� � � �	�  � � � ������ ���
produces:

� � � �� � � ���� � �  � ��� �� �*� � � 
�� �� � � ���*� ��� � � �� ����� � ��� �� �	�  

� ���� ���	� � 
�� � �
� ���#"���� � � �  � � � ������ ���

� � �

���

subst-in-s-exp � � � " � � � " � ��
 � ��� 
�
 ��
 � ���

usage: � � 
�� � ��
	��� 
���� ��� �	�  � � � ��� �����
produces:

� � � �� � � ��� ���  � ��� ��� � � � � 
� ��� � � ���*����� ��� �������� � ��� �� � �  

� ���� ���	� � 
�� � ��
	���	
	��
 � ���
� ���#"���� � � �  � � � ��� �����

� � �

���

15



Let us first work on
� 
�� � �

. The grammar tells us there should be two alternatives:

subst � � � " � � ��" � ��
���� � 
�
 ��
����� �

� ���� ���	� � 
�� � �
� ���#"���� � � �  � � � ������ ���
� � � � ��
������ ������ ��� � ��� ������ � �#"�����,�

� � �

� � � �	 	��� �,� � �#"������ ������� �

� � �

����� � � � �	 	��� �,� � ��� �	
 � "������ ������� �

If the list is empty, there are no occurrences of
� � �

to replace.

subst � � � " � � ��" � ��
���� � 
�
 ��
����� �

� ���� ���	� � 
�� � �
� ���#"���� � � �  � � � ������ ���
� � � � ��
������ ������ ���
� � �
� � �

�����

If
� ���� �

is non-empty, its car is an S-exp, and its cdr is an S-list. So we recur on
the car using

� 
�� � ��
	���	
	��
 � ���
, and we recur on the cdr using

� 
�� � �
.

subst � � � " � � ��" � ��
���� � 
�
 ��
����� �

� ���� ���	� � 
�� � �
� ���#"���� � � �  � � � ������ ���
� � � � ��
������ ������ ���
� � �
� � � � �
� � 
�� � ��
	��� 
���
 � ��� �	�  � � � � � ��� ������� � ���
� � 
�� � � �	�  � � � � � � � ������ � ��� �������
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Now we can move on to
��
�� � ��
 ���	
���
�� ���

. From the grammar, we know that the
symbol expression

��� ���
is either a symbol or an s-list. If it is a symbol, we need

to ask whether it is the same as the symbol
� � �

. If it is, the answer is
� �  

; if it is
some other symbol, the answer is the same as

��� ���
. If

��� ���
is an s-list, then we

can recur using
��
�� � �

to find the answer.

subst-in-s-exp � � � " � � � " � ��
 � ��� 
�
 ��
 � ���

� ���� ���	� � 
�� � ��
	���	
	��
 � ���
� ���#"���� � � �  � � � ��� �����
� � � � � � "���� ��� ��� �����
� � � � �����'� ��� ��� � � � � � �  ��� �����
� ��
�� � � �	�  � � � ��� �����������

Since we have strictly followed the definition of S-list and S-exp, this recursion is
guaranteed to halt. Since

� 
�� � �
and

� 
�� � ��
	� �	
���
 � ���
call each other recursively,

we say they are mutually recursive.

The decomposition of
� 
�� � �

into two procedures, one for each syntactic category,
is an important technique. It allows us to think about one syntactic category at a
time, which simplifies things tremendously in more complicated situations.
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1.8 Auxiliary Procedures and Context Arguments

Sometimes you need to generalize the problem before you can solve it.

number-elements � � ����� ��
���� � � �	�#" ��
 �����
 �,�

�
 � ���� ��
!� � � ���� � ���� ���������

usage: � ��
�"��	���
 �����#" � �����
�� �'� " � � v0 v1 v2 � � �

� �
� ��� + v0

� � � v1
� �  v2

�
� � �

�
��� � �	�� ������� � �� � ������ % � ���	� ��,�	� ���#"-�� � � � ��� ��������!�

number-elements-from �� ���� ��
!� � � � �	�#"�� 
 ���� 
	�,��� �����


�
 � ���� ��
!� � � ���� � ���� ���������
usage: � ��
�"��	���
 �����#" � �����
�� �'� " � � v0 v1 v2 � � �

� n �� ��� n v0
� � n � 1 v1

� � n � 2 v2
�

� � �

�
��� � ��#"�� ��� ���� � ��
�"�� ���
 ����#" � ��� ��
�� ������� ������
�� �,�	" � � � � � � )'��� ��� ) �,� � � �$� � 
 � ���
��� � �	�� ������� � � ���� � ��� �	� ���	��� � "������ � � � ���	� � � � � � � � �	���
	� � �� � ����� �

�

� ���� ���	� ��
�"�� ���
 ����#" � ��� ��
�� ������� ������
�� �,�	"
� ���#"���� � �� � ���
� � � � ��
������ ��� � ��� � �
� � � � �
� ���� � � � � ��� ��� �����
� ��
�"��	���
 �����#" � �����
�� �	����� ���!��
�� �'�	" � � � � ��� � � � � � �$�����������

��� ���# � ��
�"�� ���
 ����#" � ��� � ��� � � ����� 
 � �
��� � ��
�"�� ���
 ����#" � ��� ��
�� ������� ������
�� �,�	" �� �-+'�

�

� ���� ���	� ��
�"�� ���
 ����#" � ��� �
� ���#"���� � �� � �
� ��
�"��	���
 �����#" � �����
�� �	����� ���!��
�� �'�	" ��� ��+,�����
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There are two important observations to be made here:

� ��
�"��	���
 ���� " � ������
�� ����� � �����
����,� "
has an independent specification. It’s

not random! This gives us a slogan:

No Mysterious Auxiliaries!
When defining an auxiliary procedure, always specify what it does
on all arguments, not just the initial values.

� The two arguments to
��
�"��	���
 ���� " � ������
�� ����� � �����	
�� �,�#"

play two dif-
ferent roles.

The first argument is the list we are working on. It gets smaller at every
recursive call.

The second argument is an abstraction of the context in which we are work-
ing.

��
�"��	���
�����#" ��������
�� ������� � ���
����,� "
always works on a sublist of the

original list. The second argument represents the information that was in
the original list but would now be invisible to us because we are looking
at the sublist. In this case, the only information we need is the number of
elements that are above the current sublist. This need not decrease at a re-
cursive call; indeed it grows, because we are passing over another element
of the original list. We sometimes call this a context argument or inherited
attribute.
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1.9 Tail Recursion

How could we talk about recursion without doing factorial?

fact � � ��� 
�
 ����

usage: � �� � � �$�
produces:

���

� ���� ���	� �� � �

� ���#"���� � �$�
� � � �&% ���'��� ��� � � � � � �� � � � 
 � � �����������

We can model a calculation with
�� � � :

� ��� � � � �
� � � � � �� � �-)'���� � � � � ��) � �� � �  �����
� � � � � ��) � �  � �� � � � �������
� � � � � ��) � �  � � � � �� � ��+,���������
� � � � � ��) � �  � � � � �������
� � � � � ��) � �  � �����
� � � � � ��)  ���
� � � � � �
�  �

This is the natural recursive definition of factorial. Each call of
�� � � is made

with a promise that the value returned will be multiplied by the value of
�

at the
time of the call. Thus

�� � � is invoked in larger and larger control contexts as the
calculation proceeds.
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Compare this behavior with that of the following procedures.

fact-iter � ����� 
�
 � ���

usage: � �� � ��
	� ����� ���
produces:

���

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� �� � ��
	� �����
 � � � � � �����

fact-iter-acc � ����� � ���� 
�
 �����

usage: � �� � ��
	� �����
 � � � � �,�
produces:

��� � �

� ���� ���	� �� � �	
	� ������
 � � �

� ���#"���� � � �,�
� � � �&% ���'��� ��� � � �� � ��
	� �����
 � � � � 
 � � � � � � �,���������

With these definitions, we calculate:

� ��� � ��
	� ����� � �

� � ��� � ��
	� �����
 � � � � � �

� � ��� � ��
	� �����
 � � � ) � �

� � ��� � ��
	� �����
 � � �  �� �

� � ��� � ��
	� �����
 � � � �  � �

� � ��� � ��
	� �����
 � � � +  � �

�  �
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In keeping with our preceding slogan (“No Mysterious Auxiliaries!”), notice that
�� � �	
	� ������
 � � � has its own purpose statement: it calculates n! � a. This is easy
to check, and also justifies the initial call from

��� � ��
	� ����� to
�� � ��
	� �	���
 � ��� . It

also makes
��� � ��
	� �����
 � � � a generalization of

��� � � , just as
��
�"��	���
 �����#" � �����


� ����� � �����
�� �,� "
was a generalization of

��
�"�� ���
 ����#" � ��� �
.

But we digress. . . .

Here,
�� � ��
	� �����
 � � � is always invoked in the same context (in this case, no

context at all). When
�� � ��
	� �����
 � � � calls itself, it does so at the “tail end” of

a call to
�� � ��
	� �����
 � � � . That is, no promise is made to do anything with the

returned value other than return it as the result of the call to
�� � ��
	� �����
 � � � .

This is called tail recursion.

Thus each step in the derivation above has the form � �� � ��
 � �����
�� � � n a � .
Because the program is tail recursive, it behaves just like a flowchart written in
Scheme: no control stack is necessary, even though we are doing almost nothing
but procedure calls.
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1.10 Testing

You’ve always gotta have a test plan! The software to set up and run the test is
sometimes called the “test scaffolding” or the “test harness”. The test harness is
in

� � � � �	�#" ��
	��� � �
�

� � " . Here’s how to use the test harness:

��� "�� � 
���� � �
�

� � "

� " � ��
����"�� � 
	��� � � � �� ��� ��� ���
�

� ��������� � ��� �

� ���,�#� � ��� � 
�� � ���
��������������� ��� ��
�� ��� � ���������������������������
��� ����	� �������� � � ��� � � ���� ������� � ��� � � ����� � � � � � ��� ��� ������� � � 
 
 � � � � ���� �	
�� � ��� �����

���� ��� ��� � � � "�� � �	��� � ���� �

��� � 
�� � � � ���� � � � � � "���� ��� � ���� � 
�
 ������ �

��� 
 ������ � � � 
�� � � �	�  � � � ������ � �
��� ��,��� 
 � ��� � � � � ���� � � ���� �  � ��� ���� � ��� 
� ���� � ���*� ��� � �
��� �� � ��� � ��� ��� �	�  

�

� ���������	� � 
�� � �
� ���#"���� � �	�  � � � ���� � � �
� � � ��

 � ��
 � ��� ������ � � � ��� ���	� ����� � �#"������'�
� � ��� � ���� � ��� ��� ����� �'� � 
�� � � � ��
����

 � �	� � �,� ������ � � � ��� �  '� � � � � ���	� � � � � �	�

� � � � �
� ��
�� � ��
 ���	
���� ��� �	�  � ��� � � ��� � ���� � ���
� ��
�� � � �	�  � � � � � ��� � ���� � ������������

���
� � �

" � ��� ���,� � ����
���� �  � ��� ��
�������� �	� ������ �
� � �

�
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��� �'� �
�

� � "
� " � ��
���� �'� � � �� ��� ��� ���

�

� ��������� � ��� �

� ��� � 
 � ��� � � � � � �	�#" � 
 ��� � �
�

� � " � �
� ��� � 
 � ��� � "�� � 
	��� � �

�

� � " � �
��� ����� ��
�� 
�� � � � � � � " � � � " � � � " � ��
����� � � ��
���� � 
�
 
 � � �	� � � � � ���
��� ���� ����� �	� ��� ��� � ����� �	
 �	�#" � � ��� ����� ����� � �	��� ��
 � �#" ���������
	�� �

���� 
 ���	� � ��
 �	
 � ���	����� "�� ��� ��� ����� � � � � �� � ��
 � � �# ���� � � 
	���
 ��� �	 ����'���
� ���������	� ���	� ��
�� 
�� � � �
� ���#"���� � ����� ��
 �	�#"�� �	�  � � � ������ � � � ���
� �!� ��� � ����������� ���� � ����� ��
 �	�#"��,�
� ����� ��� ��
�� � � " �

� � 
 �	
 � ���	����� " � ��� ��
�� � � � ���� � � �  ���� � � ���� � � � � �

��� 
	����!�����
� � � � � ������
�� � � " �,�
� �!� ��� � ����������� � �	��� ��������� � �
� �!� ��� � ����������� ����������	������ � ���������

� �	��� ��
���
�� � � � � � 
�� � ��
������ ��
 � � ��� � � ��� � � � � � � � �����
� ��� � � � � � � � � �����

� �	��� ��
���
�� � � � � � 
�� � ��
������ ��
  � ��� � � � ��� � ���

� �	��� ��
���
�� � � � � � 
�� � ��
������ ��
�) � ��� � � � � � � �,� � � � � � �'���
���

� � �

" � �� �� �	� ��� ���
�
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Here’s what happens when we run
�'� �

�

� � " :

�	�� � � " � �'� ����� � � �#" � � ����������� � ) 
 
�

�� ����
	���� ��� "�� � 
���� � � �

�
�

� � � � �	�#" � 
 ��� � �
�

� � " � � �  +��
�

�
�


 � +��� �  +�+ 

� 
�� � ��
������ ��
 � �	���������

� 
�� � ��
������ ��
  �	���������

� 
�� � ��
������ ��
�) �	���������




If any of these failed, you could go back and call
� 
�� � �

again to see what it did.
Or you could modify

���	� ��
�� 
�� � � �
to print out more information when a test

fails.

The basic testing procedure provided by
���	� ��
 
�� �����

�

� � " is the procedure
� 
��	
 � ��� ����� " �����

.

��� � 
 � 
 � ���	����� " � �� � ��,� � ��� 
�� � � ���� �	
�� � � � �	� " � 
 ������
	�,�
� � � � �#" � 
 �	���
	� � � � � � �#" � 
 �	���
	� � � � � �#" � 
 �	���
	� 
�
���������

�
 � � � � �(����� � ���

���
usage: � ��
 �	
 � ���	����� "�� ��� ��� ������� � ��� �� � �	
 � � �	 	��� � � 
 ���
 � � �	 ����,�!�

��� ��� � �� ��� ��� �'� ����� �
� � � "��	������� ���	� ���� 
�� � ��� � ��� �� � �	
 � � �	 	��� 
 ��� ���

��� � � 
 ���
 � � �	 ����,�
��� ������
��� � � �	�	� � � � � ���� � ���!� � � � ����� ��� � � � ��� � � ���	� � � �	 ���� � �

��� � � ���� � � � � ���	���� ����� � ��� � �� ���	� ���� 
 � �
�

When we test interpreters, we’ll have a slightly more elaborate setup, in which the
solution and tests are spread out over several modules.

Note that the three examples above test every branch in our procedure.

These files are at��� ��� �����  � � �

� � �
�

�	� 

�

��� 
 � � ��
�� ��� � � � � ����� � �����	����� � � ��� � ��
�� � �
All our code will be in subfolders of

� ��������� �
.
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1.11 Trees

[Note: This is based on Section 2.4 in EOPL3.]

We will do a lot a manipulation of trees. For this we’ve created some extensions
of Scheme. For PLT Scheme, these are loaded by selecting the EOPL language
level. To see how this is done, consider a definition of binary trees

Bintree :: � Int
� � Symbol Bintree Bintree

�

But we would like to manipulate trees independent of their representation as
Scheme data structures. For this we need an interface. What should the inter-
face look like? We’ll need:

� constructors that allow us to build each kind of binary tree,

� a predicate that tests to see if a value is a representation of a binary tree, and

� some way of determining, given a binary tree, whether it is a leaf or an
interior node, and of extracting its components.

We create this interface using
��������	� 
������������	�

:

� ���� ���	� 
��������������	� � ������� � � ������� ���
� ��� ���
 � � ��
� �����
�" ��
�"��	���,�����

� � ����������� �
 ������
� ����� � � "���� �����
� ����� � � � ������ �!���
� ���	����� � ��������� ���������

This says that a
� ����������

is either

� a
��� ���
 � � ��

consisting of a number called the
�����
�"

of the
� ����������

or

� an
��������� ��� �
 � � ��

consisting of a
�����

that is a symbol, a
�������

that is a� ��������� �
, and a

� �	�����
that is also a

� � ������ �
.
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It creates a data type with the following interface:

� a procedure,
�������
 ������

, for constructing a
��� ���
 � � ��

. The procedure
��� ���
���� ��

tests its argument with
��
�"��	���,�

; if the argument does not pass
this test, an error is reported.

� a 3-argument procedure,
� ����������� �
 ������

, for building an
� ����������� �
 ������

.
This procedure tests its first argument with

� � "��������
and its second and third

arguments with
� ������� ���

to ensure that they are appropriate values.

� a 1-argument predicate
� ������� ���

that when passed a
�������
 ������

or an
��������� ��� �
 � � ��

returns true. For all other arguments, it returns false.

General form of
��������	� 
������������	�

:

� ���� ���	� 
��������������	� type-name type-predicate-name
� � variant-name � � field-name predicate

� ��� � ��� �

This creates a variant-record data type, named type-name. There are one or more
variants, and every value of the data type is a value of exactly one of the vari-
ants. Each variant has a variant-name and zero or more fields, each with its own
field-name and associated predicate.

Having zero fields is useful:

� ���� ���	� 
��������������	��" �����	� 
	���� " �����	��
	�����'�
� � � ��� �����
� �������� �� � � � ���	� ����� �����	������,�!�����

In languages like C or Java, a variable of type
�

can be either null or a “real”
�
, so

these languages confuse
�

and � " �����	��
�� � . Then you have to remember when you
have to check for

��
 � �
and when can get away without it. We’ll use constructions

like this to keep them nice and separate.
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In PLT Scheme, trees are represented using a PLT Scheme data type called a
structure:


 � ���������	� ����� � 
 � � �������
 ������*)'���
 ����� � 
 �

� � � �� 
 � � � ��� ���
���� ���)'�

 � ���������	� ����� � 
 

� �����	������� ��
 ��� �� � ����� � ������ 
 � � ��� ���
 ��� ��� � �����

 ����� � 
 
� � � �� 
 � � � ��������� ��� �
 � � ��
����� �

� � � ����
 � � � ��� ���
 � � ���)��
� � � ����
 � � � ��� ���
 � � �� � ���


 � ���������	� ����� � 
 � � ��������������
 ��� ��� � �����  ��� � 
  ����� � 
 � ���

 ����� � 
 �

� � � �� 
 � � � ��������� ��� �
 � � ��
����� 
� � � ��� 
 � � � �����	������� ��
 ��� �� ����� �� � � ��� 
 � � � ��� ����
 ��� ���)'�

� � � ��� 
 � � � ��� ����
 ��� �� � ���
� � � ��� 
 � � � ��� ���
 ��� ����)'���
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However, we said we wanted an interface that would allow us to manipulate trees
independent of their representation as Scheme data structures. This means that
you may not rely on this representation in your code. You may not use the PLT
selector functions to get at the components. (Indeed, you cannot: we’ve carefully
designed the system that way.)

Instead, we will decompose trees using the special form � �	����� . All of the knowl-
edge about the representation of trees is encapsulated inside

��������	� 
������������	�

and � �	����� , so if we ever decide to change the representation of trees, we only
need to change these two special forms.
� �����	� works by doing very simple pattern-matching on trees. Here’s an example:
���

leaf-sum � � ������� � 
�
 ��
�"�� ���
���

usage: � ��� ����
�� 
�" ����� �,�
���

produces:
��� � � 
�" � � ���	� ��� ��� �������	���
	��� ��� ������

� ���� ���	� ��� ����
�� 
�"
� ���#"���� � ��� �,�
� � ��������� ��������� � ���� �

� ��� ���
 � � �� � �����
�" � �����
�"$�
� � ����������� �
 ������ � ����� ������� ���	����� �
� � � ��� ����
�� 
�" ����� � �

� ��� ����
�� 
�" ���	����� �����������
� �����	� branches on

����� �
to see which variant it belongs to, and takes the corre-

sponding branch. Then each of the variables in the branch is bound to the cor-
responding field of

��� �
, and the expression in the branch is evaluated. Thus, if

���� �
were bound to

� � ����������� �
 ������ ����� � � � ��� ����
 ��� ��*)�� � ��� ���
 � � �� � ���
�

then

1. The
�����	������� ��
 ��� ��

branch would be selected,

2.
�������

would be bound to � ��� ���
 ��� ���*)'� and
���	�����

would be bound to
� ��� ����
 ��� �� � �

, and

3. the expression � � � �������
�� 
�" ������� � � �������
�� 
�" ���	���������
would be eval-

uated.

We will write lots of code like this.
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� �����	� binds its variables positionally: the i-th variable is bound to the value in
the i-th field. So we could just as well have written:

���
leaf-sum � � ������� � 
�
 ��
�"�� ���

���
usage: � ��� ����
�� 
�" ����� �,�

���
produces:

��� � � 
�" � � ���	� ��� ��� �������	���
	��� ��� ������

� ���� ���	� ��� ����
�� 
�"
� ���#"���� � ��� �,�
� � ��������� ��������� � ���� �

� ��� ���
 � � �� � � � ���
� � ����������� �
 ������ � � � � �
� � � ��� ����
�� 
�" ���

� ��� ����
�� 
�" �������������

The general form of a � �	����� expression:

� � ������� type-name expression
� (variant-name ( � field-name � � ) consequent) � �
� ������� default

���

A � ������� -clause may have more than one expression; the expressions are evaluated
left to right, but only the value of the last one is returned. This is handy for
inserting tracing printouts, etc.

The final clause may be an
������

clause, like the
������

clause in a � � �� . However,
we typically do not use

������
clauses. That way if we leave something out, we’ll

get an error immediately.
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���
double-tree � � ������� � 
�
�� ����������

���
usage: � �,��
�� ��� 
������ � ���� �'�

���
produces:

� � ��������� � � 
 � � �� �	� ��� �*� � �	�����	��� � ��
��  � ��� �� � ���	� ��
�"��	��� �
��� ��� ��� � ������� ��� ���� �,��
��������

�

� ���� ���	� �,��
�� ��� 
������ �
� ���#"���� � ��� �,�
� � ��������� ��������� � ���� �

� ��� ���
 � � �� � � �
� ��� ���
 ��� ���
� �  �������

� � ����������� �
 ������ � ����� ������� ���	����� �
� �����	������� ��
 ��� ��
�����

� �'��
�������
����� � ������� �
� �'��
�������
����� � ���	�����������������

Note how this procedure follows the grammar for trees!
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Note the distinction between the nodes names and the procedures that construct
them. We could write

� ���� ���	� �,���
� ���#"���� � �$� � ��� ���
���� �� �������

� ���� ���	� �,��
�� ��� 
������ �
� ���#"���� � ��� �,�
� � ��������� ��������� � ���� �

� ��� ���
 � � �� � � �
� �,���
� �  �������

� � �

�����

but not

� ���� ���	� �,���
� ���#"���� � �$� � ��� ���
���� �� �������

� ���� ���	� �,��
�� ��� 
������ �
� ���#"���� � ��� �,�
� � ��������� ��������� � ���� �

� �'��� � � � ��� ��� � � " 
 � � �	� ��� ���
 � � �� � ��� � �,���
�

� ��� ���
 ��� ���
� �  �������

� � �

�����

32



number-leaves � � � ������ � 
�
�� ������� �
usage: � ��
�"��	���
��� � ����� � �
produces:

� ���� � ������ ���	�*�����	����� �� � ��
�� ���* �� � � � ���� ����� ����� ����

��
�"��	������ � ������� ����� � �,� " +

� ���� ���	� ��
�"�� ���
����� �����
� ���#"���� � ���
� � ���
� ��
�"��	����
��� � �	����
�� �	����� ���!��
�� �'�	" �-+,�������

number-leaves-starting-from � � ������� � � � ��� 
�
 � � ������ � � �����

usage: � ��
�"��	���
��� � ����� � ���
produces:

� �	�	� �  �� ����� � ��� ��� � ������ ������ � � ��
�  � ��� ��� � ���	� ��
�"��	������
� �	����� ���!� � �,� " � � � ��  �������� � ��� ��� ���	� ��� � � ����� 
 ��
 ����� ��� ������ ��
�"��	���

� ���� ���	� ��
�"�� ���
����� ������
	� ������� �����
����'� "
� ���#"���� � � ���
� � ��������� ��������� � �

� ��� ���
 � � �� � � �
� � � � �
� ��� ���
 � � �� ���
� � � � �����

� � ����������� �
 ������ � ����� ������� ���	����� �
� ����� ��� ��� � � � ��
�"��	���
��� � ������
�� ����� � �����
����,� " ������� �$�����
� ����� ��� � � �  � ��
�"��	���
��� ��������
�� ������� � ���
�� ��� " ���	����� � � � � ��� � � �������
� � � � �
� ��������� ��� �
 � � ��
�����

� � ��� � � � � �
� � ��� � � �  ���

� � � � � � �  ���������������

Note the use of
�����

to avoid retraversing the subtrees. [Puzzle: this algorithm
runs in time proportional to the size of the input tree. If we didn’t use

�����
, so that

each subtree were traversed twice, what would the running time be?]
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1.12 A Larger Example

Consider a set of trees given by the following grammar:

Red-blue-tree :: � Red-blue-subtree
Red-blue-subtree :: � � �����
 ������ Red-blue-subtree Red-blue-subtree

�
:: � � � ��
	� 
 � � �� � Red-blue-subtree � � �
:: � � ��� ���
 � � �� integer

�

We wish to write a procedure that takes a tree and builds a tree of the same shape,
except that each leaf node is replaced by a leaf node that contains the number of
red nodes above it in the tree.

Why did we make Red-blue-tree a separate non-terminal? Because the top of a
tree never has any nodes above it (especially no red nodes!), so it will be treated
specially.
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���������
	�����������
������������ �������������������� �!�����"����!���#�#��%$&	� ���'�"� ������(#����)���+*
��������,	� ����
�.-�#,"����,	� ����
�/#����)�0�/#��������,	� �����132

�/#��������,	� �����4�2
�/#��������,	� ����65�2�2�2

��������,	� ����
�/#��������,	� �����732
��������)	� ����
�/#��������,	� �����832
�/#��������,	� �����932�2�2�2�2�2

: ������3�
; �<�)���"�!,�>=.����������
; �<�)���"�!,�>=?������,	� ����
; �@�)���"A!)�>=B-3#,"����)	� ����
� ; �<�
���"�!,�C=D#��������,	� ����E132
; �<�
���"�!,�C=D#��������,	� ����F4�2
; �<�
���"�!,�C=D#��������,	� �����5�2�2�2

; �@�)���"A!)�>=?������,	� ����
; �@�)���"A!)�>=.#��������)	� ����E732
; �@�)���"A!)�>=?������,	� ����
; �@�)���"A!)�>=D#��������,	� ����F832
; �@�)���"A!)�>=D#��������,	� ����F932�2�2�2�2

: �?GA���H���#�����I�������J3�,���3������������,���������������2
; �<�)���"�!,�>=.����������
; �<�)���"�!,�>=?������,	� ����
; �@�)���"A!)�>=B-3#,"����)	� ����
� ; �<�
���"�!,�C=D#��������,	� ����K��2
; �<�
���"�!,�C=D#��������,	� ����K��2
; �<�
���"�!,�C=D#��������,	� ����K��2�2�2

; �@�)���"A!)�>=?������,	� ����
; �@�)���"A!)�>=.#��������)	� �����L�2
; �@�)���"A!)�>=?������,	� ����
; �@�)���"A!)�>=D#��������,	� ����F132
; �@�)���"A!)�>=D#��������,	� ����F132�2�2�2�2
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This grammar has three non-terminals: tree, subtree, and list of subtrees, so we
follow the grammar and write three procedures,

"���� ��
��� � ������
  � ��� 
�����
��� ����
," �# ����
�� 
������ �

(
" ��� �	
��� � �	����
  � ���	
�����
��� �����	
 � 
������� �

is too long a proce-
dure name, even for me) and

" �  �� �
����� ��
����
�� 
������ ���
.

� ���������	��
�������������	� ����
 � ��
	� 
���� � ����
 ����
 � 
���������
� � 
���� �
� �'��� � ����
 ����
	� 
	� 
�������� ���������

� ���������	��
�������������	� ����
 � ��
	� 
���
��������� ����
 ����
	� 
	� 
�������� ���
� �����
 ��� ��
� ���� � ����
 ����
	� 
	� 
�������� �����
� ����� � ����
 ����
	� 
	� 
�������� �������

� ����
 � 
 ��� ���
� ��� � � � ���� ��
�� � �����
 ����
	��
�� 
������ ���������

� ��� ���
 ��� ���
� ������
�" ��
�"��	���,�������

We could have defined a separate
�����������	�

for list of subtrees, instead we repre-
sent these as Scheme lists, and use the predicate constructor

����� ��
����
:

��� ���� ��
!� � � ������� � ���	� 
�
 �������� � �����

� ���� ���	� ���� �	
�� �
� ���#"���� � ��������
� ���#"���� � ����!�
� ��� � ��
�� �������!�
� � �� � �	� � �,�������
� ������ � � ��� ����!���
��� ���� ��
!� � ����� � � � � � ������������������

This is included in the EOPL language level, so you don’t need to define it.
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mark-leaves-with-red-depth � �����
 ��� 
	� 
������ � 
�
 ����
 � ��
	� 
���� �
usage: � " ������
��� ��������
  � ���	
������
��������� ������,�
produces:

� ����
 ����
	� 
����� � ��� ��� ���� � ����
�  � ��� ��� � � ��� ��� ��� ���
�������� � ��� �� � ��� ��� ��� ��� � � �����	� � ����� ��� � ��
�"��	��� � � ���� ��� ����
� � �#��� � �

�

� ���� ���	�" ��� �	
��� � �	����
  � ���	
�����
��� ����
� ���#"���� � ��� �,�
� � ������� ����
 � ��
	� 
���� � ������

� ��
����� � � �,��� � �
� � 
���� �
� " �# �� �
�����
 � ��
	� 
���
��������� �'��� ��+,�����������

mlwrd-red-blue-subtree � ����
 ����
	� 
	� 
�������� � � �����


�
 ����
 � ��
	� 
���� � 
���
���������
usage: � " �# � �
�����
 ����
 � 
�� 
������ � � 
������ � ��� �� ��	���� � ��� ���	�

��
�"��	��� � � ���� ��� ��	� � ���#��� ��� ��� � 
������� � ��� ���	� � ��� � �� ���� �
�

produces:
� ����
 ����
	� 
	� 
�������� � ������ ��� ��� � 
������ � �

��
�  � ��� � � � � ��� ��� ��� ��� ��� ����� � ��� �� � ��� ��� ������
� � �����	��� ����� ���	� ��
�"��	��� � � ���� ��� ���� � � �#��� � �

�

� ���� ���	�" �# ����
������
 ����
	��
�� 
������ �
� ���#"���� � ��
��������� ��� � � � � ��� � ��
�"��	��� � � ���� ��� ��	�

� � ���#�	� ���	� ��
���������
� � ������� ����
 � ��
	� 
���
��������� � 
������ �
� ��� ���
 � � �� � ��� � �������
 ������ �����
� �����
 ������ � ����� � ����� ���
� �����
 ��� ��
� " �# �� �
�����
 � ��
	� 
���
��������� ���� � � � � � ��� � � �	��"�� �� ���� ��� ��
� " �# �� �
�����
 � ��
	� 
���
��������� ����� � � � � � �������

� � ��
	� 
 � � �� � ��� � ���
� ����
 � 
 ��� ���
� " �# �� �
����� ��
!� �
�����
 ����
 ��
�� 
��������	� ��� � � ������� � ��� "�� �� ���� ��� ��	�

�����
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mlwrd-list-of-red-blue-subtrees
� � ���� ��
�� � �����
 ����
	��
�� 
������ �,� � ���� 
�
 � ���� ��
�� � ����
 ����
 � 
�� 
������ �,�

usage: � " �# � �
�� � ��
�� ��
�����
 ����
	� 
 � 
������� ��� ��� � � �$�
produces:

� ���� � � � � 
������ ��� ����� � �����
��������� ��� �* � ��� � � � � ��� ��� ��� ��
�������� � ��� �� � ��� ��� ��� ��� � � �����	� � ����� ��� � ��
�"��	��� � � ���� ��� ���� � � �#��� � �

� ���� ���	�" �# ����
���� ��
�� �
�����
 � ��
	� 
���
������������
� ���#"���� � ��
����������� ��� � � � � ��� � ���	� ��
�"��	����� � �����

� ��� ��	� � ���#��� ���	�	��� ��� ���

� � � � ��
������ � 
�������� ����� � � �
� � � � � � " �# � �
�����
 ����
 � 
�� 
������ � � � ��� � 
������� �	��� ���
� " �# � �
�� � ��
�� ��
�����
 ����
	� 
	��
������� ��� � � � � ��
������������� �����������
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1.13 letrec

Lots of times we’d like to define recursive procedures locally, like
��� � ��
	� �����

above.

fact-iter � ����� 
�
 � ���

usage: � �� � ��
	� ����� ���
produces:

���

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� �� � ��
	� �����
 � � � � � �����

fact-iter-acc � ����� � ���� 
�
 �����

usage: � �� � ��
	� �����
 � � � � �,�
produces:

��� � �

� ���� ���	� �� � �	
	� ������
 � � �

� ���#"���� � � �,�
� � � �&% ���'��� ��� � � �� � ��
	� �����
 � � � � 
 � � � � � � �,���������

You’d like to write

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� ����� ��� ��� � ��
	� �����
 � � �

� ���#"���� � � �,�
� � � � % ���,��� ��� � � �� � ��
 � �����
�� � � � 
 � � � � � � �'�����������

� ��� � ��
	� �����
 � � � � � �������

But we can’t do that, because the scope of
�� � ��
	� �����
 � � � doesn’t include it’s

definition. Instead, we use
������� � :

� ������� �
��� � �#" � � ��,� � � �
� � �#" �  ��,� �  �

� � �

�
��� �����

creates a set of mutually recursive procedures and makes their names available in
the body.
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So we can write:

fact-iter � ����� 
�
 � ���

usage: � �� � ��
	� ����� ���
produces:

���

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� ������� � ��� �� � ��
	� �	���
 � ��� � � � ��� � ����� 
�
 �����

� ���#"����� � � �'� �
produces:

��� � �

� � � �&% ���,��� ��� �

� �� � �	
	� ������
 � � � � 
 � � � � � � �,�����������
� ��� � ��
	� �����
 � � � � � �������

Note how we’ve put in the documentation for the local procedure. Just because
it’s local doesn’t mean you don’t have to document it!

The most common use of letrec is to define a single procedure and then start it.
For this there is a special form called named let. This overloads the ordinary

�����

form. For example,

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� ������� � ��� �� � ��
	� �	���
 � ���

� ���#"����� � � �'�
� � � �&% ���,��� ��� �

� �� � �	
	� ������
 � � � � 
 � � � � � � �,�����������
� ��� � ��
	� �����
 � � � � � �������

could be replaced by

� ���� ���	� �� � �	
	� �����

� ���#"���� � �$�
� ����� �� � ��
	� �����
 � � � � � � ��� � ����� 
�
 �����

��� � ��� � � � ��� �
produces:

��� � �

� � � �&% ���,��� ��� �

� �� � ��
	� �����
 � � � � 
 � � � � � � �,�����������
��������� � is handy because it allows us to think about recursion locally. It will be
an important feature of the languages we define.
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1.14 Sequencing

Want to have some finer control over the order in which things are done in Scheme.
We need this for worrying about (a) side-effects and (b) termination. In general,
there is only one rule about sequencing in Scheme:

Arguments are evaluated before procedure bodies

So in

��� ��� "���� � � � % � ��� ����� � ��� � � ���  � ���!)'�

� ��� �
,
� ��� 

, and
� ���!)

are guaranteed to be evaluated before
��� � �

, but we don’t
know in what order

� ��� �
,
� ��� 

, and
� ���!)

are going to be evaluated, but they will
all be evaluated before

����� �
.

This is precisely the same as

� ����� ��� � � ��� � � � � � ���  � �&% � ���!)'���
����� ���

In both cases, we evaluate
� ��� �

,
� ��� 

, and
� ���!)

, and then we evaluate
����� �

in
an environment in which

�
,
�
, and % are bound to the values of

� ��� �
,
� ��� 

, and
� ���!)

.

Think about this. It is important.

We can use this to control the order of evaluation when that’s important:

� �	��� ��� � ��� � � ���  � � ��� ��� "���� � � � � ���  � � ��� � �
� � ����� ��� � � ��� � ��� � ���  �

where
�

is a variable that does not occur in
� ��� 

. (Think
�

for dummy).
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