CSG111
Dr. Wand

February 20-21, 2007
Readings: EOPL3, Chapter 4

Lecture 5: The Store

Key Concepts:

Effects
The store
locations, values, references
L-values, R-values
Assignment vs. binding
the state of the store
Communication through the store
Hidden state
Explicit-Reference Design
references as values
Store-Passing Specification
Implementation using a global store variable
Mutable Variables (variable assignment)
Implicit-Reference Design
call by value
assignment to a variable
Mutable Pairs
Languages with Statements

5.1 Computational Effects

So far, we have only considered the value produced by a computation. But a
computation may have effects as well: it may read, print, or alter the state of
memory or a file system. In the real world, we are always interested in effects: if
a computation doesn’t print out its answer, it doesn’t do us any good!

What’s the difference between producing a value and producing an effect? An
effect is global: it is seen by the entire computation. We could say that it affects
the entire computation (pun intended).

We will be concerned primarily with a single effect: assignment to a location in
memory. How does assignment differ from binding? As we have seen, binding
is local, but variable assignment is potentially global. It is about the sharing of
values between otherwise unrelated portions of the computation. Two procedures
can share information if they both know about the same location in memory. A
single procedure can share information with a future invocation of itself by leaving
the information in a known location.

We model memory as a finite map from locations to a set of values called the
storable values. For historical reasons, we call this the store. The storable values
in a language are typically, but not always, the same as the expressed values of the
language. This choice is part of the design of a language.

A data structure that represents a location is called a reference. A location is a
place in memory where a value can be stored, and a reference is a data structure
that refers to that place. The distinction between locations and references may be
seen by analogy: a location is like a file and a reference is like a URL. The URL
refers to the file, and the file contains some data. Similarly, a reference denotes a
location, and the location contains some data.

References are sometimes called L-values. This name reflects the association of
such data structures with variables appearing on the left-hand side of assignment
statements. Analogously, expressed values, such as the values of the right-hand
side expressions of assignment statements, are known as R-values.

We consider two designs for a language with a store. We call these designs explicit
references and implicit references.

5.2 EXPLICIT-REFS: A language with explicit references

Add references as a new kind of expressed value.
ExpvVal = Int+ Bool + Proc+ Ref (ExpVal)
DenvVal = ExpVval
Ref (ExpVal) means the set of references to locations that contain expressed values.
3 new operations:
e newref — allocates a new location and returns a reference to it.

e deref — dereferences a reference: that is, it returns the contents of the
location that the reference represents.

e setref — changes the contents of the location that the reference represents.

5.2.1 Examples

Recall: Binding is about the association of names with values; assignment is about
the sharing of values between different procedures.

When a binding to a location is shared by multiple procedures, a change to the
location by one is seen by all.

Here are two procedures, even and odd, that both refer to a shared location, which
is bound to x.

They communicate not by passing data explicitly, but by changing the contents of
the variable they share.

let x = newref(0)
in letrec even(dummyl) % dummy arg because we don’t have
% O-argument procedures
= if zero?(deref(x))
then 1
else begin2 % begin2 evaluates its subexps in
% order and returns value of the last one.
setref(x, -(deref(x),1));
(odd 888)
end
odd (dummy1)
= if zero?(deref(x))
then 0
else begin2
setref (x, —-(deref(x),1));
(even 888)
end
in begin2 setref(x,13); (odd -888) end

This style of communication is convenient when two procedures might share
many quantities; one needs to assign only to the few quantities that change from
one call to the next. Similarly, one procedure might call another procedure not di-
rectly but through a long chain of procedure calls. They could communicate data
directly through a shared variable, without the intermediate procedures needing to
know about it. Thus communication through a shared variable can be a kind of
information hiding.

Another use of assignment is to create hidden state through the use of private
variables.

let g = let counter = newref(0)
in proc (dummy)
begin2
setref (counter, -(deref(counter),-1));
deref (counter)
end
in -((g 11),(g 11))

Here the procedure g keeps a private variable that stores the number of times g has
been called. In our language, the operands in a difference expression are evaluated
left-to-right. Hence the first call to g returns 1, the second call to g returns 2, and
the entire program has the value -1.

Here is a picture of the environment in which g is bound.

i

[g = [(proc-val (procedure d Tetd = ... N 1

‘gnfen’nce to location

|:| 5 location for count

We can think of this as the different invocations of g sharing information with

each other. In Scheme, this technique is used by the procedure gensym to create
unique symbols.

Exercise: What would have happened had the program been instead

counter = l 1

let g = proc (dummy)
let counter = newref(0)
in begin2
setref (counter, -(deref(counter),-1));
deref (counter)
end
in -((g 11),(g 11))

5.2.2 Store-Passing Specifications

In our language, any expression may have an effect. To specify these effects, we
need to describe how each evaluation can modify the store, and what store should
be used for each evaluation.

In our specifications, we use o to range over stores. We write [= v]o to mean
a store just like o, except that location [is mapped to v. When we refer to a
particular value of o, we sometimes call it the state of the store.

We use store-passing specfications. In a store-passing specification, the store is
passed as an explicit argument to value-of and is returned as an explicit result
from value-of.

So instead of saying
(value-of exp p)=v
we write
(value-of exp p og) = (v1,07)

This asserts that expression exp, evaluated in environment p and with the store in
state oy, returns the value v; and leaves the store in a possibly-different state 0.

Thus we can specify an effect-free operation like const-exp by writing

(value-of (const-exp n) p o) =n,o)

showing that the store is unchanged by evaluation of this expression.

(value-of exp; p o0g) = (v1,01)
(value-of expp p o01) = (v,07)

(value-of (diff-exp expy expy) p ogp) = (V1-0y,07)

(value-of exp; p o0g) = (v1,07)

(value-of (if-exp exp; expp exps) p og)
_ | (value-of exp, p o1) if (expval->bool vq) = #t
(value-of exps p o01) if (expval->boolv) = #£

5.2.3 Specifying Operations on Explicit References

(value-of exp p oy) = (v,07) | & dom(o)

(value-of (newref-exp exp) p og) = (I, [I=v]oq)

(value-of exp p og) = (I,071)

(value-of (deref-exp exp) p og) = (o1(),07)

(value-of exp; p og) = (l,01)
(value-of exp, p o1) = (v,07)

(value-of (setref-exp expi exppy) p op) = (23, [I=v]loy)

This rule says that a setref-exp evaluates its operands from left to right. The
value of the first operand must be a reference to a location . The setref-exp
then updates the resulting store by putting the value v of the second argument
in location /. What should a setref-exp return? It could return anything. To
emphasize the arbitrary nature of this choice, we have specified that it returns 23.

5.2.4 Implementation: lecture05/explicit-refs

The specification language we have used so far makes it easy to describe the de-
sired behavior of effectful computations, but it does not embody a key fact about
the store: a reference ultimately refers to a real location in a memory that exists
in the real world. Since we have only one real world, our program can only keep
track of one state o of the store.

In our implementations, we take advantage of this fact by modelling the store
using Scheme’s own store. Thus we model an effect as a Scheme effect.

We represent the state of the store as a Scheme value, but we do not explicitly pass
and return it, as the specification suggests. Instead, we keep the state in a single
Scheme global variable, to which all the procedures of the implementation have
access. This is much like even/odd example, where we used a shared location
instead of passing an explicit argument. By using a single Scheme global variable,
we also use as little as possible of our understanding of Scheme effects.

We still have to choose how to model the store as a Scheme value. We choose
the simplest possible model: we represent the store as a list of expressed values,
and a reference is a number that denotes a position in the list. A new reference is
allocated by appending a new value to the list; and updating the store is modelled
by copying over as much of the list as necessary.

This representation is extremely inefficient. Ordinary memory operations require
approximately constant time to execute, but in our representation these operations
require time proportional to the size of the store. No real implementation would
ever do this, of course, but it suffices for our purposes.

10

(module store (lib "eopl.ss" "eopl")
(require "drscheme-init.scm")
(provide initialize-store! reference? newref deref setref!)

"""""""" references and the store ;;;;;::55533353:3;

;5 world’s dumbest model of the store: +the store is a list and a

;;; reference is number which denotes a position in the list.

empty-store : () -> store
(define empty-store
(lambda O >(0))

usage. A Scheme variable containing the current state of the store.
Initially set to a dummy value. ~NOUT exported.
(define the-store ’uninitialized)

initialize-store! : () -> unspecified
usage: (initialize-store) sets the-store to the empty store
(define initialize-store!
(lambda ()
(set! the-store (empty-store))))

reference? : scheme-value -> boolean
(define reference? integer?)

11

newref : expval -> reference
(define newref
(lambda (val)
(let ((next-ref (length the-store)))
(set! the-store

(append the-store (list val)))
next-ref)))

(define deref
(lambda (ref) (list-ref the-store ref)))

usage: sets the-store to a state like the original, but with
position ref0 containing val.
(define setref!
(lambda (ref0 val)
(set! the-store
(letrec
((setref-inner
usage: returns a list like storel, except that
position ref contains val.
(lambda (storel ref)
(cond

((null? storel)

(eopl:error ’setref
"illegal reference s in store "s"
refQ the-store))

((zero? ref)

(cons val (cdr storel)))

(else
(cons

(car storel)
(setref-inner
(cdr storel) (- ref 1))))))))
(setref-inner the-store ref0)))))

12

We add a new variant, ref-val, to the datatype for expressed values, and we
modify value-of-program to initialize the store before each evaluation.

;55 1n interp.scm
(define value-of-program
(lambda (pgm)
(initialize-store!)
(cases program pgm
(a-program (e)
(value-of e (init-env))))))

Now we can write clauses in value—of for newref, deref, and setref.
;3 in value-of

(newref-exp (el)
(let ((v1 (value-of el env)))
(ref-val (newref v1))))

(deref-exp (el)
(let ((v1 (value-of el env)))
(let ((refil (expval->ref v1)))
(deref ref1))))

(setref-exp (el e2)
(let ((ref (expval->ref (value-of el env))))
(let ((v2 (value-of e2 env)))
(begin
(setref! ref v2)
(num-val 23)))))

13

5.2.5 Instrumentation

;; in store.scm:
(provide get-store)

get-store : () -> store
usage: exports the store as a list for instrumentation clients.
(define get-store

(lambda () the-store))

(provide instrument-newref)
(define instrument-newref (make-parameter #f))

;; say (instrument-newref #t) or (instrument-newref #f) to turn
;3 instrumentation on or off
(define newref
(lambda (val)
(let ((next-ref (length the-store)))
(set! the-store
(append the-store (list val)))
(if (instrument-newref)
(eopl:printf
"newref: allocating location s with initial contents ~s~)"
next-ref val))
next-ref)))

14

;5 1n interp.scm:
(provide instrument-let instrument-newref)

;; say (instrument-let #t) or (instrument-let #f) to turn
;3 instrumentation on or off
(let-exp (id rhs body)
(if (instrument-let)
(eopl:printf "entering let “s~%" id))
(let ((val (value-of rhs env)))
(let ((new-env (extend-env id val env)))
(if (instrument-let)
(begin
(eopl:printf "entering body of let “s with env =7%" id)
(pretty-print (env->list new-env))
(eopl:printf "store ="%")
(pretty-print (store->list (get-store-as-list)))
(eopl:printf "~%")
))

(value-of body new-env))))

(define apply-procedure
(lambda (procl arg)
(cases proc procl
(procedure (bvar body saved-env)
(let ((new-env (extend-env bvar arg saved-env)))
(if (instrument-let)
(begin
(eopl:printf
"entering body of proc “s with env =7}"
bvar)
(pretty-print (env->list new-env))
(eopl:printf "store ="%")
(pretty-print (store->list (get-store-as-list)))
(eopl:printf "~%")))
(value-of body new-env)))))))

15

5.2.6 Example

> (run "

let x = newref(22)

in let f = proc (z) let zz = newref(-(z,deref(x)))
in deref(zz)

in -((f 66), (f 55))")

entering let x

newref: allocating location 0O

entering body of let x with env

((x #(struct:
(i #(struct:
(v #(struct:
(x #(struct:

store =

((0 #(struct:

entering let

entering body of let f with env

((f
(procedure
V4

ref-val 0))
num-val 1))
num-val 5))
num-val 10)))

num-val 22)))

f

((x
(i
(v

(x

0))
1))
5))
10)))))

#(struct:ref-val
#(struct:num-val
#(struct:num-val
#(struct:num-val

(x
(i
(v
(x

store =

((0 #(struct:

#(struct:
#(struct:
#(struct:
#(struct:

ref-val 0))
num-val 1))
num-val 5))
num-val 10)))

num-val 22)))

entering body of proc z with env =
((z #(struct:num-val 66))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)))

entering let zz
newref: allocating location 1
entering body of let zz with env =
((zz #(struct:ref-val 1))

(z #(struct:num-val 66))

(x #(struct:ref-val 0))

(i #(struct:num-val 1))

(v #(struct:num-val 5))

(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)) (1 #(struct:num-val 44)))

entering body of proc z with env =
((z #(struct:num-val 55))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)) (1 #(struct:num-val 44)))

17

entering let zz
newref: allocating location 2
entering body of let zz with env =
((zz #(struct:ref-val 2))

(z #(struct:num-val 55))

(x #(struct:ref-val 0))

(i #(struct:num-val 1))

(v #(struct:num-val 5))

(x #(struct:num-val 10)))
store =

((0 #(struct:num-val 22))

(1 #(struct:num-val 44))

(2 #(struct:num-val 33)))

#(struct:num-val 11)

This is show-allocation-1 in lecture05/explicit-refs/tests.scm.

18

5.3 IMPLICIT-REFS: a language with implicit references

The explicit reference design gives a clear account of allocation, dereferencing,
and mutation because all these operations are explicit in the programmer’s code.

Most programming languages take common patterns of allocation, dereferencing,
and mutation, and package them up as part of the language. Then the programmer
need not worry about when to perform these operations, because they are built
into the language.

In this design, every identifier denotes a reference. Denoted values are references
to locations that contain expressed values. References are no longer expressed
values. They exist only as the bindings of variables.

ExpVal = Int+ Bool + Proc
DenVal = Ref(ExpVval)

Locations are created with each binding operation: at each procedure call, 1et, or
letrec.

When an identifier appears in an expression, we first look up the identifier in the
environment to find the location to which it is bound, and then we look up in the
store to find the value at that location. Hence we have a “two-level” system for
var—exp.

Locations are changed by a set expression. We use the syntax

Expression ::= set ldentifier = Expression
‘set—exp (var rhs)

Here the Identifier is not part of an expression, so it does not get dereferenced. In
this design, we say that variables are mutable, meaning changeable.

This design for doing this is called call-by-value, or implicit references. Most
programming languages, including Scheme, use some variation on this design.

19

Let’s look at our two sample programs in this design:

let x =0
in letrec even(dummyl)
= if zero?(x)
then 1
else begin2
set x = -(x,1);
(odd 888)
end
odd (dummy1)
= if zero?(x)
then 0
else begin2
set x = -(x,1);
(even 888)
end
in begin2 set x = 13; (odd -888) end

let g = let count = 0
in proc (dummy)
begin2
set count = -(count,-1);
count
end
in -((g 11), (g 11))

20

5.3.1 Specification

We can write the rules for dereference and set easily. The environment now
always binds variables to locations, so when a variable appears as an expression,
we need to dereference it:

(value-of (var-exp var) p o) = (o(p(var)),o)

Assignment works as one might expect: we look up the left-hand side in the en-
vironment, getting a location, we evaluate the right-hand side in the environment,
and we modify the desired location. As with setref, the value returned by a set
expression is arbitrary. We choose to have it return 27. In the rule, we omit the
num-val constructor since it should be clear from the context.

(value-of exp p og) = (v,01)

(value-of (set-exp var exp) p og) = (27,[p(var) = v]oy)

We also need to rewrite the rules for procedure call and 1et to show the modified
store. For procedure call, the rule becomes

(apply-procedure (procedure var exp p) v o) =
(value-of exp [var =I]p [=v]o)

where [is a location not in the domain of o.

21

5.3.2 Implementation: lecture05/implicit-refs
We modify the interpreter for LETREC.
;5 in value-of:

(var-exp (var) (deref (apply-env env var)))

;3 add:

(set-exp (var rhs)
(begin
(setref!
(apply-env env var)
(value-of rhs env))
(num-val 27)))

22

What about creating references? New locations are supposed to be allocated at
every new binding. There are exactly three places in the language where new
bindings are created: in a let, in a procedure call, and in a letrec.

;; 1n interp.scm:
;3 in value-of:

(let-exp (id rhs body)
(let ((val (value-of rhs env)))
(value-of body
(extend-env id (newref val) env))))

;5 1in apply-procedure:

(define apply-procedure
(lambda (procl arg)
(cases proc procl
(procedure (bvar body saved-env)
(value-of body
(extend-env bvar (newref arg) saved-env))))))

Last, to handle letrec, we replace the extend-env-recursively clause in
apply-env to return a reference to a location containing the appropriate closure:

;5 in apply-env

(extend-env-recursively (p x e saved-env)
(if (eqv? search-sym p)
(newref
(proc-val
(procedure p x e env)))
(apply-env saved-env search-sym)))

23

> (run "
let £ = proc (x) proc (y)
begin
set x = —(x,-1);
-(x,y)
end
in ((f 44) 33)")
newref: allocating location 0
newref: allocating location 1
newref: allocating location 2
entering let £
newref: allocating location 3
entering body of let f with env =
(3 G0 (v (x2)
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2)))))

newref: allocating location 4
entering body of proc x with env =
(x4 10 (v1) (x2)
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 #(struct:num-val 44)))

24

newref: allocating location 5
entering body of proc y with env =
((y B) (x4) (1 0) (v1) (x2)
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((1 0) (v 1) (x 2))))
(4 #(struct:num-val 44))
(5 #(struct:num-val 33)))

#(struct:num-val 12)
>

Thisis example-for-book-1 ininterps/lecture05/implicit-refs/tests.scm.

25

5.4 MUTABLE-PAIRS: a language with mutable pairs

Want to add mutable aggregates (like arrays, vectors, etc.).

For simplicity, we’ll just do mutable pairs.

We’ll extend IMPLICIT-REFS.

Pairs will be expressed values, and will have the following operations:
newpair :expval * expval -> mutpair

left : mutpair -> expval
right ‘mutpair -> expval
setleft :mutpair * expval -> unspecified

setright : mutpair * expval -> unspecified
A pair consists of two locations, each of which is independently assignable. This
gives us the domain equations:

Expval = Int+ Bool 4+ Proc+ MutPair
DenvVal = Ref(ExpVal)
MutPair = Ref(ExpVal) x Ref(ExpVal)

26

We can implement this literally using the reference data type from our preceding
examples.

(module pairvall (lib "eopl.ss" "eopl")
(require "store.scm")
(provide (all-defined))

(define-datatype mutpair mutpair?
(a-pair
(left-loc reference?)
(right-loc reference?)))

make-pair : expval * expval -> mutpair
(define make-pair
(lambda (vall val2)
(a-pair
(newref vall)
(newref val2))))

left : mutpair -> expval
(define left
(lambda (p)
(cases mutpair p
(a-pair (left-loc right-loc)
(deref left-loc)))))

setleft : mutpair * expval -> unspecified
(define setleft
(lambda (p val)
(cases mutpair p
(a-pair (left-loc right-loc)
(setref! left-loc val)))))

and similarly for right and setright

27

Once we’ve done this, it is straightforward to add these to the language. We add
a mutpair-val variant to our datatype of expressed values, and five new lines
to value-of. We arbitrarily choose to make setleft return 82 and setright
return 83.

;5 add to value-of:

(newpair-exp (el e2)
(let ((v1 (value-of el env))
(v2 (value-of e2 env)))
(mutpair-val (make-pair vi v2))))

(left-exp (el)
(let ((vi (value-of el env)))
(let ((pl (expval->mutpair v1)))
(left p1))))

(setleft-exp (el e2)
(let ((vl (value-of el env))
(v2 (value-of e2 env)))
(let ((p (expval->mutpair vi1)))
(begin
(setleft p v2)
(num-val 82)))))

. similarly for right and setright

28

5.4.1 Worked Example

Thisis example-for-mutable-pairs-section in interps/lecture05/mutable-
-pairs/tests.scm.

> (run "let glo = pair(11,22)
in let f = proc (loc)
let d1 = setright(loc, left(loc))
in let d2 = setleft(glo, 99)
in -(left(loc),right(loc))
in (f glo)")
;; allocating cells for init-env
newref: allocating location 0
newref: allocating location 1
newref: allocating location 2
entering let glo
;; allocating cells for the pair
newref: allocating location 3
newref: allocating location 4
;5 allocating cell for glo
newref: allocating location 5
entering body of let glo with env =
((glo 5) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(6 #(struct:mutpair-val #(struct:a-pair 3 4))))

29

entering let f
;; allocating cell for f
newref: allocating location 6
entering body of let f with env =
((f 6) (glo 5) (1 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(6 #(struct:mutpair-val #(struct:a-pair 3 4)))
(6 (procedure loc ... ((glo 5) (i 0) (v 1) (x 2)))))

;5 allocating cell for loc
newref: allocating location 7
entering body of proc loc with env =
((loc 7) (glo 5) (1 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(6 #(struct:mutpair-val #(struct:a-pair 3 4)))
(6 (procedure loc ... ((glo 5) (i 0) (v 1) (x 2))))
(7 #(struct:mutpair-val #(struct:a-pair 3 4))))

#(struct:num-val 88)
>

30

5.4.2 Another representation: pairval2.scm

The representation of a mutable pair as two references does not take advantage
of all we know about MutPair . The two locations in a pair are independently
assignable, but they are not independently allocated. We know that they will be
allocated together: if the left part of a pair is one location, then the right part is in
the next location. So we can instead represent the pair by a reference to its left.

(module pairval2 (1lib "eopl.ss" '"eopl")

(define mutpair? reference?) ; inaccurate, but good enough

(define make-pair
(lambda (valil val2)
(let ((refl (newref vall)))
(let ((ref2 (newref val2))) ; guaranteed to be refl + 1
refl))))

(define left
(lambda (p)
(deref p)))

(define right
(lambda (p)
(deref (+ 1 p))))

(define setleft
(lambda (p val)
(setref! p val)))

(define setright

(lambda (p val)
(setref! (+ 1 p) val)))

31

Similarly, one could implement aggregate objects as a contiguous range of lo-
cations, and then represent that object in the language by a pointer to its first
location.

This used to be the standard practice:

e In Lisp or Scheme, a cons pair is represented by a single pointer [, repre-
senting the two locations / and [4+ 1 (or [4+ 4 or something else if you’re
counting in bytes).

e This is also how arrays are represented in C, where a reference to a[i] can
be written as *(a+1i)). This leads to pointer arithmetic: in C, pointer
objects are normalized so that “if pa points to a particular element of an
array, then by definition pa+1 points to the next element?.

However, a pointer does not by itself identify an area of memory unless it is sup-
plemented by information about the length of the area. The lack of length infor-
mation is a source of classic security errors, such as out-of-bounds array writes.

Therefore, modern safe languages such as Java or Scheme, include the size of
each aggregate structure (such as a Java vector or a Scheme array) as part of the
representation and always check array references to make sure they are in-bounds.

IKernighan and Richie, The C Programming Language, Second Edition, Section 5.3
2ipid.

32

5.5 Languages with Statements

So far our languages have been expression-oriented: the primary syntactic cat-
egory of interest has been expressions and we have primarily been interested in
their values. Now extend our interpreter to model a simple statement-oriented
language.

As in IMPLICIT-REFS, expressed values are integers, booleans, and procedures,
and the denoted values are references to locations containing expressed values.

Syntax:

program ::= statement
‘a—program (stmt)‘

statement ::=id = expression
‘assign—statement (id exp)‘

nm=print (expression)
‘print—statement (exp)‘

= {{statement}*G) 3
\compound-statement (stmts) |

n=1if expression statement statement
‘if—statement (exp true-stmt false—stmt)‘

z=var {id}*) ; statement
‘block—statement (ids body)‘

The non-terminal expression refers to the language of expressions of IMPLICIT-
REFS.

A program is a statement. A program does not return a value, but works by print-
ing.

Assignment statements work in the usual way. A print statement evaluates its
actual parameter and prints the result. The if statement works in the usual way. A

block statement binds each of the declared identifiers to an uninitialized reference
and then executes the body of the block. The scope of these bindings is the body.

33

5.5.1 Examples

--> var x,y; {x = 3; y = 4; print(+(x,y))} % Example 1

--> var x,y,z; {x =3; y=4; z =0; % Example 2
while x {z = +(z,y); x = subl(x)};
print(z)}

12

--> var x; {x = 3; print(x); % Example 3

var x; {x = 4; print(x)};
print(x)}

3

4

3

--> var f,x; {f = proc(x,y) *(x,y); % Example 4

x = 3;
print ((f 4 x))}
12

Example 3 illustrates the scoping of the block statement.

Example 4 illustrates the interaction between statements and expressions. A pro-
cedure value is created and stored in the variable £. In the last line, this procedure
is applied to the actual parameters 4 and x; since x is bound to a reference, it is
dereferenced to obtain 3. Our syntax requires the two sets of parentheses here: the
outer set are from the print-statement production and the inner ones are from
the app production for expressions.

34

5.5.2 Specifying Statements

We can still use a store-passing specification, but for statements there is no return
value, so a typical formula will look like

(execute-statement s p o0p) = 04

meaning that if we execute statement s in environment p and store o, then after-
wards the store will be left in state o7;.

For assignment statements:

p(var) =1 (value-of exp p og) = (v1,071)

(execute-statement (assign-statement var exp) p op) = [I=v1]oy

For compound statement, we’ll show just the 2-statement version:

(execute-statement s; p op) = 03
(execute-statement s, p 01) = 07

(execute-statement (compound-statement s Sp) p 0g) = 07

[Exercise: what if we wanted to model output, as well? How would the state o
change?]

35

5.5.3 Implementation

We’ll implement this using the same implicit-store strategy we’ve used for all our
other interpreters in this lecture. So in place of a 3-argument execute-statement
procedure, we’ll have a procedure called execute-statement! that will take 2
arguments, side-effect the Scheme store, and return an unspecified value. (We say
it is executed for effect only).

(define execute-program!
(lambda (pgm)
(cases program pgm
(initialize-store!)
(a-program (statement)
(execute-statement! statement (init-env))))))

(define execute-statement!
(lambda (stmt env)
(cases statement stmt
(assign-statement (id exp)
(setref!
(apply-env env id)
(value-of exp env)))
(compound-statement (statements)

(for-each ;5 guaranteed to work from left to right
(lambda (statement) (execute-statement! statement env))
statements))

(print-statement (exp)
(begin (eopl:printf "“s" (value-of exp env)) (newline)))
(if-statement (exp true-statement false-statement)

(if (true-value? (value-of exp env))
(execute-statement! true-statement env)
(execute-statement! false-statement env)))

(block-statement (ids statement)

(execute-statement! statement

(extend-env ids
(map (lambda (d) ’*uninitialized*) ids)
env)))

)))

36

	Computational Effects
	EXPLICIT-REFS: A language with explicit references
	Examples
	Store-Passing Specifications
	Specifying Operations on Explicit References
	Implementation: lecture05/explicit-refs
	Instrumentation
	Example

	IMPLICIT-REFS: a language with implicit references
	Specification
	Implementation: lecture05/implicit-refs

	MUTABLE-PAIRS: a language with mutable pairs
	Worked Example
	Another representation: pairval2.scm

	Languages with Statements
	Examples
	Specifying Statements
	Implementation

