
CSG111 February 13-14, 2007
Dr. Wand Readings: EOPL3, Secs. 3.6–3.8

Lecture 4: Lexical Addressing

Key Concepts:

variable reference, declaration
scope
lexical scoping
lexical depth, lexical address
shadowing
contour diagram
local, non-local, global variables
scope, binding, and extent
static analysis
lexical address analysis
static environment
nameless environment

1

4.1 Scope, Binding, and Extent

Variables may appear in two different ways: as references or as declarations.

A variable reference is a use of the variable. For example, in

���������

all the variables,
�
,
�
, and

�
, appear as references. However, in

�
	�����������������������

or

�
	����������������
�����������

the occurrence of
�

is a declaration: it introduces the variable as a name for some
value.

Corresponding to each declaration of a variable
�

is a region of the program in
which any use of the variable

�
refers to that declaration of

�
. This is called the

scope of the declaration. Scoping allows the same name to be reused for different
purposes in different parts of a program.

In Scheme, the scope of any declaration is determined by the lexical scope rule:

In
�
	�����������

x1
�����

xn
�

B
�

or
�
	��������

x1 E1
���������

xn En
���

B
�

the scope of x1, . . . , xn is the body B.

This is a static rule, meaning that one can compute the scopes without executing
the program.

2

To find which declaration corresponds to a given use of a variable, we search
outwards from the use until we find a declaration of the variable.

�
	������������ �
Call this

���
���������

Call this
���

�����
	���� ��� �
Call this

�	�
��� ��
 �����

��� �������
Here

�
refers to

��
�����

Here
�

refers to
���

Lexical depth tells us how far up we have to travel. In
��� �����

,

�
is bound at lexical depth 0�
is bound at lexical depth 1

Lexical scopes are nested: each scope lies entirely within another scope.

Scoping rules like this are called lexical scoping rules, and the variables declared
in this way are called lexical variables.

Under lexical scoping, we can create a hole in a scope by redeclaring a variable.
We say the inner declaration shadows the outer one. For instance, in the example
above, the inner

�
shadows the outer one in the multiplication

��� �����
.

3

We can illustrate lexical scoping with a contour diagram.

Contour diagram for our simple example:

�
	������������ �
���������

�����
	���� ��� �
��� ��
 �����

��� �������
�����

 x))

(let ((x 3)
 (y 4))

 (+ (let ((x
 (+ y 5)))

 (* x y))

4

A more complicated example

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

Here there are three occurrences of the expression
��� �������

, on lines 5, 7, and
8

At line 5, we are within the scope of the declarations
����� �

at depth 0�����
at depth 1����� �
at depth 2

So at line 5,
�

is bound at depth 0 and position 0, and refers to
��

�
is bound at depth 2 and position 1, and refers to

���
�

is bound at depth 0 and position 1, and refers to
��

5

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

At line 7, we are within the scope of the declarations
����� �

at depth 0����� �
at depth 1�����
at depth 2����� �
at depth 3

So at line 7,
�

is bound at depth 0 and position 0, and refers to
� �

�
is bound at depth 0 and position 1, and refers to

��
�

is bound at depth 1 and position 1, and refers to
��

6

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

At line 8, we are within the scope of the declarations
�����

at depth 0����� �
at depth 1�����
at depth 2����� �
at depth 3

So at line 8,
�

is bound at depth 0 and position 0, and refers to
� �

�
is bound at depth 3 and position 1, and refers to

���
�

is bound at depth 1 and position 1, and refers to
��

The combination of lexical depth and position is called a lexical address.

7

We can classify the variable uses in an expression by where they are bound:

� Local variables are those bound by the immediately enclosing binder (
	����

,	����������
, or

	 ��������
).

� Non-local variables are those bound somewhere else in the expression.

� Free or global variables are those that are not bound in the expression.

For example, in the last line of

�
	����������
 � ����� ���
�
	 ��� ��� ��� � � ��� ���
�
	�����������
	�� �
� �������������

	
and

�
are local,

�
,
�

,
�
, and

�
are non-local, and any other variables are free

(global).

8

The binding of a variable is the value associated with it. Bindings are created
by
� � � �������������

, so you can look at the specification to see how the binding is
created. Formal parameters are bound when the procedure is applied:

A variable declared by a � ����� is bound when the procedure is applied.

�	��
�
������
���������������� ��
���������� �����
x e !#" v "$ �&%���'��������(

e) x $ v *+!#"
A
	����

-variable is bound to the value of its right-hand side.

�&%,�+'�����+��(�-���.��+��/�

x e1 e2 "0!#" $

�1���. ���
v

�&%,�+'�����+��(
e1 !#"+"�"�&%,�+2�3���+��(

e2) x $ v *�!#"+"�"
A variable declared by a

	����������
is bound using its right-hand side as well.

�&%,�+'�����+��(�-���.+���+������/�

p x e1 e2 "0!#"$ �4%���'�3�+����(

e2
�-��/+.��25����+�25�%,�������'���36�7'%��+2�

p x e1 !#"+"

9

The extent of a binding is the time interval during which the binding is maintained.

In our little language (as in Scheme), all bindings have semi-infinite extent, mean-
ing that once a variable gets bound, that binding must be maintained indefinitely
(at least potentially). This is because the binding might be hidden inside a closure
that is returned.

In languages with semi-infinite extent, the garbage collector collects bindings
when they are no longer reachable. This is only determinable at run-time, so
we say that this is a dynamic property.

If we didn’t allow � ����� ’s to appear as the body (or value) of a
	����

, then the
let-bindings would expire at the end of the evaluation of the

	����
body. This is

called dynamic extent, and it is a static property. Because the extent is a static
property, you can predict exactly when a binding can be discarded. (“Dynamic”
sometimes means “during the evaluation of an expression” and sometimes means
“not calculable in advance.” Sorry– I didn’t make this up.)

10

4.2 Lexical Address Analysis

We’ve seen how we can use interpreters to model the run-time behavior of pro-
grams. We now introduce a new theme to the course: how to use the same tech-
nology to analyze or predict the behavior of programs without running them.

We will do three kinds of predictions:

1. First, we will do a lexical address analysis. This analysis will predict, at
analysis time, where in the environment each identifier will be found at run
time. We will see that the analyzer looks like an interpreter, except that
instead of passing around an environment, we pass around a static envi-
ronment, which associates with each identifier whatever we know statically
about it.

As a result of the lexical address analysis, we will be able to translate our
programs into a variable-free form, in which every variable reference is re-
placed by an address in the environment, and we can replace our interpreter
by one that uses these addresses instead of identifiers.

2. In Lecture 6 we will do type analysis. Most languages divide up their ex-
pressed values into types. The type of a value determines what operations
are appropriate on that value. We will analyze our programs to ensure that
no operation is ever performed on inappropriate data.

This analysis will enable us to reject programs that are “dangerous,” that is,
those programs that might perform an inappropriate operation.

3. Then in lecture 7, we will use the same kind of analysis to establish ab-
straction boundaries in programs and reject those programs that violate the
abstraction boundaries.

11

4.2.1 Eliminating Variable Names

Execution of the scoping algorithm may then be viewed as a journey outward from
a variable reference to its matching declaration

We could, therefore, get rid of variable names entirely, and replace variables with
their lexical depths.

For example, we could replace the Scheme expression

�
	���������������
��� 	������� � � � �
��� � ���

�����

by something like:

� � �����	�� ��� ��	����� ���
��� � �� ��	 � ��� ��	 ��������
��������� ���

��� ���

Each
� �� � 	�� ��� � 	������� � declares a new anonymous variable, and each variable

reference is replaced by its lexical depth; this number uniquely identifies the dec-
laration to which it refers. These numbers are called lexical addresses or deBruijn
indices.

12

This way of recording the information is useful because the lexical address pre-
dicts just where in the environment any particular variable will be found.

Consider the expression

	���� ���
e1� � 	���� ���

e2� � � � ��� ���

in our language. In the difference expression, the lexical depths of
�

and
�

are 0
and 1, respectively.

Now assume that the values of e1 and e2, in the appropriate environments, are v1
and v2. Then the value of this expression is

� � ��	 	 �1� � �
��� 	���� ���

e1� � 	���� ���
e2� � � � ��� �����	�

 ��
� � ��	 	 �1� � �
��� 	���� ���

e2� � � ����� � �����
� �	�

v1 �
 ��
� � ��	 	 �1� � �
��� � ����� � ������ ��

v2 � � �	� v1 �
 �

so that when the difference expression is evaluated,
�

is at depth 0 and
�

is at depth
1, just as predicted by their lexical depths.

13

If we use a data-structure representation of environments like we did for LET, then
the environment will look like

x v1

saved−env

v2y

so that the values of
�

and
�

will be found by taking either 1 cdr or 0 cdrs in the
environment, regardless of the values v1 and v2.

14

Same thing works for procedure bodies. Consider

	���� � ��

� � � ����� ����� � ����� � �

In the body of the procedure,
�

is at lexical depth 0 and
�

is at lexical depth 1.

The value of this expression is

� � ��	 	 �1� � �
��� 	���� � ��

� � � ����� ����� � ����� � �����

 ��

� � ��	 	 �1� � �
��� � ����������� � ��� � � �����
� � � � ������������� �

 ����

� � ��� ����� 	 � ��� ��� � ����� � � ��� � � �
 �
 �

The body of this procedure can only be evaluated by
� �1� 	 � � � ������� � 	 ��� , say

� � �1� 	 � � � �'������� 	 ���� � ��������� 	 ����� ��� � ��� � � ����� ��� �
 �
 �� �
�
� � ��	 	 �1� � �
��� � ����� � ������ �� � � � ���
 �
 �

So again every variable is found in the environment at the place predicted by its
lexical depth. If we had multiple arguments, then we’d have to keep track of the
position, too, but that’s also static.

15

4.2.2 Implementing Lexical Addressing

We now implement the lexical-address analysis we sketched above. We write
a procedure

��� ��� � 	���� � �4����� � � � �'� � ���� that takes a program and removes all
the identifiers from the declarations, and replaces every variable reference by its
lexical depth.

For example, the program

	���� ����� �

� � � ����� �����	���� ��� � ���������
� � � ����� � �

is translated to

� � � � � 	 � �����1� � ��� � ����
� � � ��� 	 ����� � �����	�� ��� ��	���������� �
� � � � � 	 � ��� 	 � ����� � � � � �
� � � � � 	 � ��� � �� ��	 � ��� � � ����� ��� � �
� � � ��� 	 ����� � �����	�� ��� ��	�������� � �
� � � � � 	 � ��� � � ��� ����� �

� � � ��� 	 � ��� � �� ��	�� ��� � � � � ����� � � �
� � � ��� 	 � ��� � �� ��	�� ��� � � � � ����� � �����

� � � � � 	 � ��� � � ��� ����� �
� � � ��� 	 � ��� � �� ��	�� ��� � � � � ����� � � �
� � � ��� 	 � ��� � �� ��	�� ��� � � � � ����� � �������������

Will then write a new version of
� ��	 	 � � � � � � ��� � ��� that will find the value of

such a nameless program, without putting identifiers in the environment.

Implementation is at
� ��� � � � ��� 	���� � 	 ��� � � � 	�� ������� ��� 	���� �

16

interps/lecture04/lexaddr-lang

4.2.3 The Translator

We are writing a translator, so we need to know the source language and the
target language. The target language will have things like

� �����	�� ��� � � � � ����� �
and

� �� ��	 � ��� ��	 ��������� � that were not in the source language, and it will lose
the things in the source language that these constructs replace, like

� � � ����� � and	���������� � .

Add to the SLLGEN grammar:

� � � � ��� � � � �4� ����� 	������������ � 	��� � ��� � � ��	�� � � � � � ������� � �� � � � ��� � � � �4������ 	 ����� ��� � � � ��� � � ��� � ��� ��� � � � ��� � � � �� �� � 	�� ��� � 	�������� � � �� � � � ��� � � � �4������ 	 ��� � ��� �	� ��� � � � ��� � � � �� �� � 	�� ��� � � ����� ����� � �

We use names starting with
�

for these new constructs because that is normally
the comment character in our language.

Our translator will reject any program that has one of these new nameless con-
structs (

� �� � 	�� ��� � � � � ��� � � ,
� �� � 	�� ��� � 	�������� � � , or

� �����	�� ��� � � �����	����� �), and
our interpreter will reject any program that has one of the old nameful constructs
(
� � � ����� � ,

	���������� � , or � ��� � ����� �) that are supposed to be replaced.

17

To calculate the lexical address of any variable reference, we need to know the
scopes in which it is enclosed. This is a context argument.

So
������� � 	���� � � ��� � � ����� � ��� ��� � ��� will take two arguments: an expression and a

static environment. The static environment will be a list of identifiers, representing
the scopes within which the current expression lies. The variable declared in the
innermost scope will be the first element of the list.

For example, when we translate the last line of the example above, the static en-
vironment should be ��� �����

So looking up an identifier in the static environment means finding its position in
the static environment, which gives a lexical address: looking up

�
will give 2,

looking up
�

will give 1, and looking up
�

will give 0.

Entering a new scope will mean adding a new element to the static environment.
We introduce a procedure

��� � ����� � � ����� to do this.

[Puzzle: how would this change if we had multiple arguments or multiple decla-
rations?]

18

Since the static environment is just a list of identifiers, these procedures are easy
to implement:

senv
���
	 � � ��� � � � ����2��	��

lexaddr
�

N

empty-senv
� � � ��� � �����

��� ��� � � � �� � ��� � � ������
	����������� �
� � �����

extend-senv
� � �� � � ����� ��� � �����

��� ��� � � � ����� ����� � � �����
�
	������������� � ����� �
� �1�4� � � � ����� �����

apply-senv
� � ����� � � �� �	��	���� ����� �

��� ��� � � � � � � 	 � � � ������
	����������� � ��� � � �
� �1�4���
��� � 	 	�	�� � ����� �
� � � � 	 � � ����� � � ��� ��� � 	���� � �4����� �
� 	1���2� 	1����� � � � � ��	�� � � �-� ��� ��� � � � ���

��� ��� ��� ��� ��� � � ����� ���
� �
� ��	 � �
��� � � � �1� 	�� � � ��� ��� ��� � � ����� � � �����������

19

For the translator, we have two procedures,
��� ��� � 	���� � �4����� � , which handles ex-

pressions, and
������� � 	���� � � ��� � � � � ��� � � �� , which handles programs.

We are trying to translate an expression
�

which is sitting inside the declarations
represented by � ����� . To do this, we recursively copy the tree, except that

1. Every
� � � ����� � is replaced by a

� � ��	�� � � � � � ������� � with the right lexical
address, which we compute by calling

� �1� 	 � � � ����� .

2. Every � ��� � ����� � is replaced by a
� �� � 	�� ��� � � ����� ����� � , with the body trans-

lated with respect to the new scope, represented by the static environment� ��� � � ��� � � � ��� x � ����� � .
3. Every

	���������� � is replaced by a
� �� ��	 � ��� ��	 ��������� � .

The two subexpressions are each translated in an appropriate scope.

20

translation-of
� ��� � ��� ��� � �4� � � � ��� � � ��� ��� � ��� � �������� � �� � 	�� ��� ����� � ��� ��� � �4���� ��� � � ����� ��� � 	���� � �4����� �

�
	����������� ��� � � ��� � �
� ��� � � � ��� � ��� ��� � �4� ��� �
� � � ������� � � � � ���
� � �� ��	�� ��� � � � � ����� �� � �1� 	 � � � � ��� � ������� � �������

� � ��� � ����� � � � � ���2� �����
� � �� ��	�� ��� � � �'��� ����� �� ����� � � 	���� � �4��� ��� �2� ���

����� � ��� � � � ��� � � � � � ����� �������
�
	���������� � � � � ����� � ��� �����
� � �� ��	�� ��� ��	���������� �� ����� � � 	���� � �4��� ��� ��� � � ����� �
� ����� � � 	���� � �4��� ��� �2� ���
����� � ��� � � � ��� � � � � � ����� �������

� �-�4� � ������� � � � 	 � � �-� � � ����� � � � 	 ���
��� � ��� ����� � ����� � � ��� � � ���� � ��� ��� � �� ����� � � 	���� � �4��� ��� ��� � � � � ��� �

� ����� � � 	���� � �4��� ��� ��� � � � � ��� �����
�����������
	��������	��������������
�	�������������� 	!����	"�
#%$&#������

� ��	 � ����� � � 	 ��� � ��� � � ������� � 	���� � � ��� � �
��'�	�	 � � ��	 � � 	 � ��� ��� � � � ��� � � � � � � ��� � ��������

21

The procedure
����� � � 	���� � �4��� ��� � � ��� � ���� simply runs

��� ��� � 	���� � �4����� � in a
suitable initial static environment.

translation-of-program
� � ��� � � �� ��� � �� ��	�� ��� � � �'� � ������� ��� � � ����� ��� � 	���� � �4����� � � � �'� � �����
	����������� � � �� ��� � � � � ��� � ���� � � � �1� � ��� � ��� � � �

� � � � ��� � ����� ����� � � 	���� � �4��� ��� ��� � � � ��� � ����� �������������

init-senv
��� � ��� � � ��� � �	������� � ���4� � ���

��� ��� � � � � � � ��� � � ���
�
	����������� �
� � � � ������� � ����� � �
� ��� � ����� � � ����� � �

� � � � ������� � ����� � �
� �� � ��� � � � ��� �����������

22

4.2.4 The nameless interpreter

Our interpreter takes advantage of the predictions of the lexical-address analyzer
to avoid explicitly searching for variables at run time.

Since there are no more identifiers in our programs, we won’t be able to put iden-
tifiers in our environments, but since we know exactly where to look in each en-
vironment, we don’t need them!

Our top-level procedure will be
� 	1�

:

������� � � � � 	1�
�
	 ���������� � ��� � � � �
� � ��	 	 �1� � ��� � ��� � ����� � ����� � 	 ��� � �4�'� � � � � ��� � ��� � � ��� ��� � � � � � � ��� � � � ���������

23

Instead of having full-fledged environments, we will have nameless environments,
with the following interface:

nameless-environment? :
� ��	 ��� ���1��	

empty-nameless-env :
� � ��� � �� ��	�� ��� ����� �

empty-nameless-env? :
� �� ��	 � ��� ��� ��� ��� �2�1��	

extend-nameless-env :
��� � � � 	�� � �����	�� ��� ������� ��� � �����	�� ��� �������

apply-nameless-env :
� �� � 	�� ��� ������� ��	���������� � ��� � � � � ��	

We can implement a nameless environment as a list of expressed values, so that� �1� 	�� ��� �����	�� ��� ������� is simply a call to
	 � � ��� ����� .

For example, at the last line of our example

	���� ����� �

� � � ����� �����	���� ��� � ���������
� � � ����� � �

the nameless environment will look like

value of z value of y value of x

saved−env

24

nameless-environment?
� � ��� �� � � � ��	 	 � ��� ���1��	

��� ��� � � � � � ��	�� � � ������� � ���4� �������� �
	 � � ��� � � ��� � � ��	�� ���

empty-nameless-env
� � � ��� � �� ��	 � ��� ��� ���

��� ��� � � � �� � ��� ��� �� ��	�� ��� ����� ��
	����������� �
� � �����

empty-nameless-env?
� � �� � 	�� ��� ������� ��� �2�1��	

��� ��� � � � �� � ��� ��� �� ��	�� ��� ����� ��� ��	�	�	����

extend-nameless-env
� ��� � � ��	 � � �� ��	�� ��� ����� � ��� � �� ��	 � ��� ��� ���

��� ��� � � � ����� ����� � � �� ��	 � ��� ��� ��� �1�4� � �

apply-nameless-env
� � �� ��	 � ��� ��� ��� ��	 ����������� �	� ��� � � ��	��� ��� � � � � � � 	 � ��� �� ��	�� ��� ����� ��
	����������� � �����	�� ��� ������� � �

�
	 � � ��� � ��� � �� � 	�� ��� ������� � �����

25

Having changed the environment interface, we need to look at all the code that
depends on that interface. There are only two things in our interpreter that use
environments: procedures and

� � 	 	 �1� ���
.

The revised specification for procedures is just the old one with the variable name
removed.

�	��
�
������
���������������� ��
���������� �����
e !#" v "$ �&%���'��������(

e
�	��/+.���5�����53�����+��+6�6 ���'5�%

v !#"�"
We can implement this by defining

procedure
� � � ��	�� � � ����� � ��� ��� � �4� � � �� � 	�� ��� ������� ��� � �������� ��� � � � ������� ����� � � � ����� � �������� � ��� ����� 	 � �� ��� ��� ��� � � � ��� � � � ���� � �� ��	�� ��� ����� � � �� � 	�� ��� ������� � �'�4� �������������

apply-procedure
� � �'��� � ��� � � ��	 ����� � � � ��	��� ��� � � � � � � 	 � � � ��������� 	 ����
	����������� � ��� �	� � �� ��� � � � � ��� � � �����	�� � ��� ����� 	 � � � � � � � ��� � � �� ��	 � ��� ��� ��� �

� � ��	 	 �1��� � �
� ��� � ����� ��� �� ��	�� ��� ����� � � � � � ������� �� � 	�� ��� ������� �����������

26

� ��	 	 �1� � �
will be like before, except

� we omit the cases for
� � � ����� � ,

	 ��������� � , and � ����� ��� � �
� replace them with new cases for

� �����	�� ��� � � � � ����� � ,
� �� ��	�� ��� ��	���������� � ,

and
� �����	�� ��� � � �����	����� �

A
� � ��	�� � � � � � ������� � gets looked up in the environment.

A
� � ��	�� � � ��	���������� � evaluates its right-hand side e1, and then evalutes its body

e2 in an environment extended by the value of the right-hand side. This is just
what an ordinary

	����
does, but without the identifiers.

A
� � ��	�� � � � � ��� � ����� � produces a

� �����	�� ��� � � ����� , which is then applied by� �1� 	�� � � ��� ����� 	 � � .

27

value-of
� � �����	�� ��� ����� � � � ��� � � � � � �� ��	 � ��� ��� ��� � ��� � ������������ � � ��	��� ��� � � � � � 	 	 �1� ���

�
	����������� ��� � � �����	�� ��� ������� �
� ��� � � � ��� � ��� ��� � �4� ��� �
� �-�4� � ������� � � � 	 �

...as before...
�

��� � ��� ����� � ��� � � � �
...as before...

�
����� �'���	����� � � � ���

...as before...
�

� � � ����� � � � � � ��� � �
...as before...

�
� ����	�		����� � ��� � � � �

...as before...
�

� � �����	�� ��� � � � � ����� � � � �
� � �1� 	 � � � �� ��	 � ��� ��� ��� � �� ��	�� ��� ����� � � ���

� � �����	�� ��� ��	���������� � ��� � � � �
�
	 ��� ��� � ��	�� � � 	 	 �1� ��� � � � �� ��	�� ��� ����� � �����
� � ��	 	 �1� � � � �
����� � ��� � ��� �����	�� ��� ������� � ��	 � �� ��	 � ��� ��� ��� �������

� � �����	�� ��� � � �����	����� � � � �
� � ����� � � ��	� � ��� ����� 	 � � � � �����	�� ��� ������� �����

� ��	 � �
� ��� � 	 � � � ��� � � � ��	 	 � � � �
��'�	�	 � � ��	 ��� � ��� ��� � �4� � � ������� � 	���� ��� �1� ��� � � � � ��� � ���

�����

28

Last, here’s the new
� ��	 	 �1��� � � � �'� � ���� :

��� ��� � � � � � 	 	 �1� ��� � � ��� � �����
	����������� � � �� ��� � � � � ��� � ���� � � � �1� � ��� � ��� � � �
� � ��	 	 �1��� � ����� � ��� ��� � �4� ��� � � � ����� �� ��	�� ��� ����� � �����������

And we’re done.

29

	Scope, Binding, and Extent
	Lexical Address Analysis
	Eliminating Variable Names
	Implementing Lexical Addressing
	The Translator
	The nameless interpreter

