CSG111
Dr. Wand

March 13-14, 2007
Readings: EOPL3, Chapter 5

Lecture6: Types

Key Concepts:

type analysis

type error

sound analysis, conservative analysis
value v is of type t, value v has type ¢
expression e is assigned type ¢

type checking

type environment

type inference

type variable

type equation

substitution

unification

no-occurrence invariant

occurrence check

6.1 Overview

Goal: analyze a program to predict whether evaluation of a program is safe, that
is whether the evaluation will proceed without certain kinds of errors.

For us: an evaluation is safe iff:

1. for every evaluation of a variable var, the variable is bound.

2. for every evaluation of a difference expression (diff-exp e; e;), the val-
ues of e; and e, are both num-vals.

3. For every evaluation of an expression of the form (zero?-exp e1), the
value of e; is a num-val.

4. For every evaluation of a conditional expression (if-exp e e; e3), the
value of e; isabool-val.

5. for every evaluation of a procedure call (proc-call e; ey), the value of
e1 iIsaproc-val.

We call violations of these conditions type errors.
Definition of what constitutes a type error may differ from language to language.

If we had multiple arguments, calling a procedure on the wrong number of argu-
ments would be a type error.

A safe evaluation may:

o fail for other reasons: division by zero, taking the car of an empty list, etc.
(too hard to analyze for these).

e run infinitely (too hard; undecidable in general).

Goal: write a procedure that looks at the program text and either accepts or rejects
it.

e If the analysis accepts the program, then we can be sure evaluation of the
program is safe. If the analysis cannot be sure that evaluation will be safe,
it must reject the program. In this case, we say that the analysis is sound (or
conservative).

e \We’d like the analysis to accept enough programs to be useful.

Examples:

if 3 then 88 else 99 reject: non-boolean test

proc (x) (3 x) reject: non-proc-val rator

proc (x) (x 3) accept

proc (f) proc (x) (f x) accept

let x = 4 in (x 3) reject: non-proc-val rator

(proc (x) (x 3) reject: same as preceding example
4)

let x = iszero?(0) reject: non-integer argument to a diff-exp
in -(3, x)

(proc (x) -(3,x) reject: same as preceding example

iszero?(0))

let £ =3
in proc (x) (f x) reject: non-proc-val rator

(proc (f) proc (x) (f x) reject: same as preceding example
3)

letrec f(x) = (f -(x,-1)) accept: non-terminating but safe
in (f 1)

6.2 Valuesand their types

Since the safety conditions only talk about num-val, bool-val, and proc-val,
one might think that it would be enough to keep track of these three types. But
that is not enough: if all we know is that £ is bound to a proc-val, then we cannot
draw any conclusions whatsoever about the value of (f 1). From this argument,
we learn that we need to keep track of finer information about procedures. This
finer information is called the type structure of the language.

Our languages will have a very simple type structure. For the moment, consider
the expressed values of LETREC. These values include only 1-argument proce-
dures, but dealing with multi-argument procedures requires some additional work
but does not require any new ideas.

Grammar for Types

Type ::= int
lint-type O]
Type ::=bool

'bool-type O]

Type ::= (Type -> Type)
‘proc—type (arg-type result—type)‘

The value of 3 hastype int.

The value of -(33,22) hastype int.

The value of zero?(11) has type bool.

The value of proc (x) -(x,11) hastype (int -> int).
When given an integer, it returns an integer.

The value of proc (x) let y = -(x,11) in -(x,y)
hastype (int -> int).
When given an integer, it returns an integer.

The value of proc (x) if x then 11 else 22
hastype (bool -> int).
When given a boolean, it returns an integer.

The value of proc (x) if x then 11 else zero?(11) has no type in our
type system.

When given a boolean it might return either an integer or a boolean, and we have
no type that describes this behavior.

The value of proc (x) proc (y) if y then x else 11
hastype (int -> (bool -> int)).
When given a boolean, it returns a procedure from booleans to integers.

The value of proc (f) if (f 3) then 11 else 22
hastype ((int -> bool) -> int).
When given a procedure from integers to booleans, it returns an integer.

The value of proc (£) (f 3)
has type ((int -> t) -> t) for any type ¢.
When given a procedure of type (int -> t), it returns a value of type ¢.

The value of proc(f) proc (x) (f (f x))

has type ((t —> t) —> (¢t —> t)) for any type ¢.

When given a procedure of type (¢t -> t), it returns another procedure which,
when given an argument of type t, returns a value of type t.

Let’s write down a definition that captures these examples. It will be defined by
induction on ¢. (See, we are following the Design Recipe!)

Definition 1 The property of an expressed value v being of type ¢ is defined by
induction on ¢:

e An expressed value is of type int iff it is a num-val.
e Itis of type bool iff it is a bool-val.

e ltisof type (t1—t,) iffitis a proc-val with the property that if it is given
an argument of type t1, then one of the following things happen:
1. it returns a value of type ¢,
2. it fails to terminate
3. it fails with an error other than a type error.

We occasionally say “v has type t” instead of “v is of type ¢.”

Puzzle: in this system can a value val have more than one type?

Puzzle: For the language LETREC, is it decidable whether an expression e has a
value that is of type t?

6.3 Assigning atypeto an expression

Requirement: Write a procedure type-of which, given an expression (call it
exp) and a type environment (call it tenv) mapping each variable to a type, assigns
to exp a type t with the property that:

Specification of type-of

Whenever exp is evaluated in an environment in which each variable has the type
specified for it by tenv, one of the following happens:

e the resulting value has type t,
e the evaluation does not terminate, or

e the evaluation fails on an error other than a type error.

Another way of writing the permissible outcomes:

[1
The evaluation does not cause a type error, and if it terminates, its value is of type
t.

Our analysis will be based on the principle that if we can predict the types of the
values of each of the subexpressions in an expression, we can predict the type of
the value of the expression.

We’ll use this idea to write a specification for type-of. We will write this speci-
fication as a set of inference rules, as we have done elsewhere. Assume that tenv
is a type environment mapping each variable to its type. Then we should have:

Simple typing rules

(type-of (const-exp num) tenv) = int
(type-of (var-exp var) tenv) = ternv(var)

(type-of e tenv) = int

(type-of (zero?-exp e;) tenv) = bool

(type-of e tenv) = H
(type-of body [var=ti]ltenv) = t,
(type-of (let-exp wvar e; body) tenv) = ¢,

(type-of e tenv) = bool
(type-of e, tenv) =t
(type-of e3 tenv) =t

(type-of (if-exp e; ep e3) tenwv) = ¢

(type-of rator tenv) = (t; — tp)
(type-of rand tenv) = 4

(type-of (call-exp rator rand) tenv) = t,

What about procedures?

If proc (x) e has type (t; — t5), then it is intended to be called on an argument
of type t1. When its body e is evaluated, the variable x will be bound to a value of

type ;.
This suggests the following rule:

(type-of body [var = ti]1tenv) = t,
(type-of (proc-exp var body) terw) = (ty,, — t2)

There’s only one problem: if we are trying to compute the type of a proc expres-
sion, how are we going to find the type t; for the bound variable? It is nowhere to
be found.

There are two standard designs for rectifying this situation:

e Type Checking: In this approach the programmer is required to supply
the missing information about the types of bound variables, and the type-
checker deduces the types of the other expressions and checks them for
consistency.

e Type Inference: In this approach the type-checker attempts to infer the types
for the bound variables based on how the variables are used in the program.
If the language is carefully designed, the type-checker can infer all or most
of the types of the bound variables.

We will study each of these in turn.

6.4 CHECKED: A Type-Checked L anguage

New language will be the same as LETREC, except that we require the program-
mer to include the types of all bound variables (except for 1et). For letrec-
bound variables, we also require the programmer to specify the result type of the
procedure as well.

proc (x : int) -(x,1)

letrec
int double (x : int) = if zero?(x)
then 0
else -((double -(x,1)), -2)
in double

proc (f : (bool -> int)) proc (n : int) (f zero?(n))

The result type of double is int, but the type of double itself is (int—int).
In Java or C one might write something more like

proc (int x) -(x,1)
letrec

int double(int x) = if zero?(x)
in ...

This is confusing:

e itconfuses the result type of double (which is int), with the type of double
(whichis (int -> int).

e If the types are long, it’s hard to read, as in the 3rd example above:
proc ((bool -> int) f) proc (int n) (f zero?(n))

This is not much of a factor in Java, but it’s a problem in C, and we’ll see
even more complicated types when we get to chapter 6 (modules).

10

Changed productions for CHECKED

Expression ::= proc (ldentifier : Type) Expression
‘proc—exp (var ty body)‘

Expression ::= letrec
Type Identifier (ldentifier : Type) = Expression
in Expression

letrec-exp
(result-type proc-name bound-var bound-var-type
proc-body
letrec-body)

Rule for proc-exps:

(type-of body [var = ty;,ltenv) =t

(type_Of (pI‘OC—eXp oar t'yar bOdy) ter“/) = (tvar — tres)

11

What about 1etrec? A typical letrec looks like

letrec
tres p (var : tyg) = €proc-body
in ejerec-body

This expression declares a procedure named p, with formal parameter var of type
toar aNd bOAY eproc-hoay- HeNce the type of p should be tysr — tres.

Each of the expressions in the letrec, eprocbody @ ejerec-body, Must be checked
in a type environment where each variable is given its correct type. We can use
our scoping rules to determine what variables are in scope, and hence what types
should be associated with them.

IN ejerec-body, the procedure name p is in scope. As suggested above, p is declared
to have type tysr — tres. HeNCe ejerechogy Should be checked in the type environ-
ment

teNViegrecbody = [P = (fvar — tres)]tenv

What about eproc-body? 1N €proc-body, the variable p is in scope, with type tyq — tres,
and the variable var is in scope, with type t,,,. Hence the type environment for

teNVproc-body = [var = tvar]tenvletrec-body

Furthermore, in this type environment, eproc-nody Should have result type £,s.
Writing this down as a rule, we get:

(type_Of eproc-body [U(l1”=twr] [p=(tz)ar _> tres)]tenV) = tT’ES
(tYPe_Of €etrec-body [p=(tvar — treg)Jtenv) =t

(type-of (letrec-exp tres p (var : tuar) = €pocbody Clarechody) LENV)

12

6.4.1 Implementing the Checker

We will need to compare types for equality. We do this with the procedure
check-equal-type!, compares two types and reports an error unless they are
equal.

(define check-equal-type!
(lambda (tyl ty2 exp)
(if (not (equal? tyl ty2))

(eopl:error ’check-equal-type!
"Types didn’t match: “s != "s in™})~s"
(type-to-external-form tyl)
(type-to-external-form ty2)
exp))))

This uses type-to-external-form, which converts a type back into a list that
is easy to read.

(define type-to-external-form
(lambda (ty)
(cases type ty
(int-type () ’int)
(bool-type () ’bool)
(proc-type (arg-type result-type)
(list
(type-to-external-form arg-type)
’->
(type-to-external-form result-type))))))

Now we can transcribe the rules into a program, just as we’ve been doing all along.

13

(define type-of-program
(lambda (pgm)
(cases program pgm

(a-program (expl) (type-of expl (init-tenv))))))

(define type-of
(lambda (exp tenv)
(cases expression exp

(type-of num tenv) = int
(const-exp (num) (int-type))

(type-of wvar tenv) = tenv(var)
(var-exp (var) (apply-tenv tenv var))

(type-of e; tenv) = int (type-of e, tenv)
(type-of (diff-exp e; ep) tenv) = int
(diff-exp (expl exp2)
(let ((tyl (type-of expl tenv))
(ty2 (type-of exp2 tenv)))
(check-equal-type! tyl (int-type) expl)

(check-equal-type! ty2 (int-type) exp2)
(int-type)))

int

(type-of e; tenv) = int
(type-of (zero?-exp e;) tenv) = bool
(zero?-exp (expl)

(let ((tyl (type-of expl tenv)))

(check-equal-type! tyl (int-type) expl)
(bool-type)))

14

(type-of e; tenv) = bool
(type-of e, tenv) =t
(type-of ez tenv) =t

(type-of (if-exp ey e, e3) tenv) =t

(if-exp (expl exp2 exp3)
(let ((tyl (type-of-expression expl tenv))
(ty2 (type-of-expression exp2 tenv))
(ty3 (type-of-expression exp3 tenv)))
(check-equal-type! tyl (bool-type) expl)
(check-equal-type! ty2 ty3 exp)
ty2))

(type-of ey tenv) = t (type-of body [var=ti]ltenv) = t,
(type-of (let-exp var ey body) tenv) = t,

(let-exp (var expl body)
(let ((expl-type (type-of expl tenv)))
(type-of body
(extend-tenv var expl-type tenv))))

(type-of body [var = ty,Jtenv) = t..
(type_of (pI'OC—eXp oar tvar bOdy) tenV) = (t'z)ar — trgs)

(proc-exp (var-type var body)
(let ((result-type
(type-of body
(extend-tenv var var-type tenv))))
(proc-type var-type result-type)))

15

(type-of rator tenv) = (1 — tp) (type-of rand tenv) = t
(type-of (call-exp rator rand) tenv) = t,

(call-exp (rator rand)
(let ((rator-type (type-of-expression rator tenv))
(rand-type (type-of-expression rand tenv)))
(cases type rator-type
(proc-type (arg-type result-type)
(begin
(check-equal-type! arg-type rand-type rand)
result-type))
(else
(eopl:error ’type-of-expression
"Rator not a proc type:~%~s"%had rator type “s"
rator (type-to-external-form rator-type))))))

16

(type—of epochody L[var=tyel[p=(tvar — tres) JtENV) = e
(tYPe_Of eletrec—body [p=(tvar — tres)]tenV) =t

(type-of (letrec—exp tres p (var : tuar) = €procbody Cletrecbody) tENV) = t

(letrec-exp (proc-result-type proc-name
bound-var bound-var-type
proc-body
letrec-body)
(let ((tenv-for-letrec-body
(extend-tenv
proc-name
(proc-type
bound-var-type proc-result-type)
tenv)))
(let ((proc-body-type
(type-of proc-body
(extend-tenv
bound-var
bound-var-type
tenv-for-letrec-body))))
(check-equal-type!
proc-body-type proc-result-type proc-body)
(type-of letrec-body tenv-for-letrec-body)))))))

17

6.5 INFERRED: a Languagewith Type Inference

Writing down the types in the program may be helpful for design and documenta-
tion, but it can be time-consuming. Another design is to have the compiler figure
out the types of all the variables, based on observing how they are used, and uti-
lizing any hints the programmer might give. Surprisingly, for a carefully-designed
language, the compiler can always infer the types of the variables. This strategy
is called type inference. We can do it for languages like LETREC, and it scales up
to reasonably-sized languages.

For our case study in type inference, we start with the language of CHECKED. We
then change the language so that all the types are optional. In place of a missing
type expression, we use the marker ?. Hence a typical program looks like

letrec
? foo (x : ?7) = if zero?(x) then 1 else -(x, (foo -(x,1)))
in foo

Each question mark (except, of course, for the one in zero?) indicates a place
where a type must be inferred.

Since types are optional, we may also fill in some of the ?’s with types, as in

letrec
? even (x : int)
bool odd (x : ?)
in (odd 13)

if zero?(x) then 1 else (odd -(x,1))
if zero?(x) then 0 else (even -(x,1))

18

To specify this syntax, we add a new non-terminal, Optional-type, and we modify
the productions for proc and letrec to use optional types instead of types.

Optional-type ::= 7
Optional-type ::= Type
la-type (ty)]

Expression ::=proc (ldentifier : Optional-type) Expression
‘proc—exp (var otype body)‘

Expression = 1letrec
Optional-type ldentifier (ldentifier : Optional-type) = Expression
in Expression

letrec-exp
(proc-result-otype proc-name
bound-var bound-var-otype proc-body
letrec-body)

The omitted types will be treated as unknowns that we need to find. We do this by
traversing the abstract syntax tree and generating equations between these types,
possibly including these unknowns. We then solve the equations for the unknown

types.

To see how this works, we need names for the unknown types. For each expression
e or bound variable var, let t, or t,,, denote the type of the expression or bound
variable.

For each node in the abstract syntax tree of the expression, the type rules dictate
some equations that must hold between these types.

19

For our PROC language, the equations are:

= int
= int

(diff—exp €1 62) : tel
te,
t(diff—exp eq e9) — int

= int

(zero?-exp e1) Dty

t(zero?—exp e) — bool
(pI‘OC—eXp oar bOdy) . t(proc-exp var body) = (t'z)ar _> tbody)
(call-exp rator rand) : fraor = (frand — f(call-exp rator rand))

(if-exp e; ey e3) : te; =bool
tez = t(if-exp eq ep e3)
t63 = t(if—exp eq ep e3)

e The first rule says that the arguments and the result of a diff-exp must all
be of type int.

e The second rule says that the argument of a zero?-exp must be an int,
and its result is a bool.

e The third rule says that the type of a proc expression is that of a procedure
whose argument type is given by the type of its bound variable, and whose
result type is given by the type of its body.

e The fourth rule says that in a procedure call, the operator must have the
type of a procedure that accepts arguments of the same type as that of the
operand, and that produces results of the same type as that of the calling
expression.

e The last rule says that in an if expression, the test must be of type bool,
and that the types of the two alternatives must be the same as the type of the
entire if expression.

20

If we had multiargument procedures and abstractions, the equations for proce-
dures and procedure calls would be

(proc (vary ... varp)e) . ar, ... vary)e = (Fvary * -« - * toar,) = Le

(call-exp €y €1 ... €y) : teg="_(te;*...%te,) = tcarr-exp e ep - en)

21

To infer the type of an expression, we’ll introduce a type variable for every subex-
pression and every bound variable, generate the constraints for each subexpres-
sion, and then solve the resulting equations. To see how this works, we will infer
the types of several sample expressions.

Let us start with the expression proc (f)proc (x)-((f 3),(f x)). We begin by
making a table of all the bound variables and applications in this expression, and
assigning a type variable to each one.

Expression Type Variable
f tf
X ty
proc(f)proc(x)-((f 3),(f x)) to
proc(x)-((f 3),(f x)) t
-((f 3),(f x)))
(f 3) ts
(f x) t4

Now, for each compound expression, we can write down a type equation according
to the rules above.

Expression Equations
proc (f)proc(x)-((f 3),(f x)) 1. tp =t > h
proc(x)-((f 3),(f x)) 2. =ty > b
-((f 3),(f x)) 3. t3 = int

4, ty = int

5 tr = int
(f 3) 6 tf = int — t3
(f X) 7 tf = tx — t4

e Equation 1 says that the entire expression produces a procedure that takes
an argument of type ¢, and produces a value of the same type as that of
proc(x)-((f 3),(f x)).

e Equation 2 says that proc (x)-((f 3),(f x)) produces a procedure that
takes an argument of type t, and produces a value of the same type as that
of -((f 3),(f x)).

e Equations 3-5 say that the arguments and the result of the subtraction in
-((f 3),(f x)) are all integers.

22

e Equation 6 says that £ expects an argument of type int and returns a value
of the same type as that of (f 3)

e Similarly equation 7 says that £ expects an argument of the same type as
that of x and returns a value of the same type as that of (f x).

We can fillin t¢, ty, to, t1, t2, t3, and £4 in any way we like, so long as they satisfy
the equations

toztf—> 1
ti=ty— b
t3 =1int

ty =1int

tr = int
tf:int—> t3
tfztx—) ty

Our goal is to find values for the variables that make all the equations true. We
can express such a solution as a set of equations where the left-hand sides are all
variables. We call such a set of equations a substitution. The variables that occur
on the left-hand side of some equation in the substitution are said to be bound in
the substitution.

23

We can solve such equations systematically. This process is called unification.

We separate the state of our calculation into the set of equations still to be solved
and the substitution found so far. Initially, all of the equations are to be solved,
and the substitution found is empty.

Equations Substitution
to = tf —

th=ty— b

t3 = int

ty = int

tr = int

tf =int — f3

tf =t Iy

We consider each equation in turn. If the equation’s left-hand side is a variable,
we add it to the substitution.

Equations Substitution
th=ty— b t():tf—) 121
t3 = int

ty = int

tp = int

tf =int — f3

tf =t iy

However, doing this may change the substitution. For example, our next equation
gives a value for t;. We need to propagate that information into the value for ¢,
which contains ¢1 on its right-hand side. So we substitute the right-hand side for
each occurrence of 7 in the substitution. This gets us:

24

Equations Substitution

t3 = int t():tf—) (tx—> tz)
ty = int H=ty— t

tp = int

tf =int— t3

tf =t iy

If the right-hand side were a variable, we’d switch the sides and do the same thing.
We can continue in this manner for the next three equations.

Equations Substitution
ty = int t():tf—) (tx — t)
tzzint tlztx—) tz
tf:int—> t3 t3:int
tf =t iy
Equations Substitution
t2:int t():tf—) (tx—> tz)
tf:int—>t3 hh=ty— b
tf:tx_> ty t3 = int

t4 = int
Equations Substitution
tf=int—> t3 t():tf—) (tx—> int)
tf:tx—>t4 t1 =ty — int

t3 =int
t4 = int
tz = int

25

Now, the next equation to be considered contains t3, which is already bound to
int in the substitution. So we substitute int for t5 in the equation. We would do
the same thing for any other type variables in the equation. We call this applying
the substitution to the equation.

Equations Substitution
thint—) int tOItf—) (ty — int)
tf:tx—>t4 t1 =ty — int

t3 = int
ty = int
tr = int

We move the resulting equation into the substitution and update the substitution
as necessary; this time no updating takes place since ¢ does not occur in the

substitution.

Equations

Substitution

tf:tx—> ty

The next equation, £ ¢

to = (int — int) — (txy — int)

t3 = int
ty = int
tp = int

tf = int — int

= t, —ty4, cONtains tr and t4, which are bound in the sub-

stitution, so we apply the substitution to this equation. This gets

26

Equations Substitution
int — int =f,— int f{j = (int — int) — ({y — int)

t3 =int
ty = int
tz = int

tf = int — int

If neither side of the equation is a variable, we can simplify, yielding two new
equations.

Equations Substitution
int =ty to = (int — int) — (ty — int)
int =int t1 =ty — int

t3 = int

ty = int

tz =int

tf = int — int

We can process these as usual: We switch the sides of the first equation, add it to
the substitution, and update the substitution, as we did before.

Equations Substitution
int = int tp = (int — int) — (int — int)
t{ = int — int
t3 =int
t4 =int
tr = int
tf = int — int
ty = int

The final equation, int = int, is always true, so we can discard it.

27

Equations Substitution
tp = (int — int) — (int — int)
t{ = int — int

t3 = int
ty = int
tr = int
tf =int — int
ty = int

We have no more equations, so we are done. We conclude from this calcula-
tion that our original expression proc (f)proc(x)-((f 3),(f x)) should be
assigned the type

(int — int) — (int — int)

This is reasonable: The first argument £ must take an int argument because it is
given 3 as an argument. It must produce an int, because its value is used as an
argument to the subtraction operator. And x must be an int, because it is also
supplied as an argument to f.

28

Let us consider another example: proc(£f) (f 11). Again, we start by assigning
type variables:

Expression Type Variable
f tf
proc(f) (f 11) to
(f 11) t

Next we write down the equations

Expression Equations
proc(f) (f 11) to =ty =t
(f 11) ty = int—t

And next we solve:

Equations Substitution

to = tf — 1

tf =int—H

Equations Substitution

tfzint—>t1 tOItf—> 121
Equations Substitution

to=(int — t)— t
tf:int—> 5]

This means that we can assign proc(f) (f 11) thetype (int — t1) — tq, for
any choice of #;. Again, this is reasonable: we can infer that £ must be capable
of taking an int argument, but we have no information about the result type of £,
and indeed for any ¢4, this code will work for any f that takes an int argument
and returns a value of type t;. We say it is polymorphic in ¢4.

29

Let’s try a third example. Consider if x then -(x,1) else 0. Again, let’s
assign type variables to each subexpression that is not a constant.

Expression Type Variable
X ty
if x then -(x,1) else 0 to
—(X,l) tl

We then generate the equations

Expression Equations

if x then -(x,1) else 0 ty = bool
t =ty
int = fy

-(x,1) ty = int
ft1 = int

Processing these equations as we did before, we get

Equations Substitution
ty = bool

= to

int = to

ty, = int

t1 = int

Equations Substitution
tl = to tx =Dbool
int ={

ty = int

tl = int

30

Equations Substitution

int ={y ty =bool
ty =1int 1 =1y
f1 = int
Equations Substitution
top = int ty =bool
ty =1int 1 =1y
tl =int
Equations Substitution
t, = int ty =bool
tl =int tl =int
to = int

Since ¢, is already bound in the substitution, we apply the current substitution to
the next equation, getting

Equations Substitution
bool = int ty = bool
1 = int t1 = int

top = int

Oops! We have inferred from these equations that bool = int. So inany solution
of these equations, bool = int. But bool and int cannot be equal. Therefore
there is no solution to these equations. Therefore it is impossible to assign a type
to this expression. This is reasonable, since the expression if x then -(x,1)
else 0 usesx asbothaboolean and an integer, which is illegal in our type system.

31

Let us do one more example. Consider proc(f)zero?((f £))

before.
Expression Type Variable
proc (f) zero?((f £)) to
f tf
zero? ((f £)) 5]
(f £) tr
Expression Equations
proc (f) zero?((f f)) to =ty = h
zero?((f £)) t; = bool
tr = int
(f £) tf = tf — b

And we solve as usual:

Equations
t():tf—) tq
t1 =bool
tp = int
tfztf—) tr
Equations
t1 = bool
tr = int
tf:tf_> tz
Equations
tp = int
tfztf—> tr

Substitution

Substitution

t():tf—) tl

Substitution

to = tf—> bool
t1 = bool

32

. We proceed as

Equations Substitution

tf:tf—) tz t():tf—> bool
t1 =bool
tz =int
Equations Substitution
tfztf—) int t():tf—> bool
t1 =bool
tz = int

Now we have a problem. We’ve now inferred that ¢, = ¢, — Int. But there is
no type with this property, because the right-hand side of this equation is always
larger than the left: If the syntax tree for tr contains k nodes, then the right hand
side will always contain k 4 2 nodes.

So if we ever deduce an equation of the form tv = t where the type variable tv
occurs in the type t, we must again conclude that there is no solution to the original
equations. This extra condition is called the occurrence check.

This condition also means that the substitutions we build will satisfy the following
invariant:

The no-occurrence invariant

[1
No variable bound in the substitution occurs in any of the right-hand sides of the
substitution.

Our code for solving equations will depend critically on this invariant.

33

6.5.1 Substitutions

We will build the implementation in a bottom-up fashion. We first consider sub-
stitutions.

We represent unknown types (sometimes called type variables) as an additional
variant of the type datatype. We do this using the same technique that we to
add lexical addresses to our SLLGEN grammars. We add to the grammar the
additional production

Type ::=Ytvar-type Number
‘tvar—type (serial—number)‘

We call these extended types type expressions. A basic operation on type expres-
sions is substitution of a type for a type variable, defined by

apply-one-subst : type * tvar * type -> type

usage: (apply-one-subst ty0 tvar tyl) returns the type obtained by
substituting tyl for every occurrence of tvar in ty0. This is
sometimes written tyO[tvar=ty1]

(define apply-one-subst
(lambda (ty0 tvar ty1)
(cases type ty0
(proc-type (arg-type result-type)
(proc-type
(apply-one-subst arg-type tvar tyl)
(apply-one-subst result-type tvar ty1)))
(tvar-type (sn)
(if (equal? ty0 tvar) tyl ty0))
(else ty0))))

This procedure deals with substituting for a single type variable. It doesn’t deal
with full-fledged substitutions like those we had in the preceding section.

34

A substitution is a list of equations between type variables and types. Equivalently,
we can think of this list as a function from type variables to types. We say a type
variable is bound in the substitution if and only if it occurs on the left-hand side
of one of the equations in the substitution.

We represent a substitution as a list of (type variable, type) pairs. The basic ob-
server for substitutions is apply-subst-to-type. This walks through the type,
replacing each type variable by its binding in the substitution. If a variable is not
bound in the substitution, then it is left unchanged. The implementation uses the
Scheme procedure assoc to look up the type variable in the substitution. assoc
returns either the matching (type variable, type) pair or #£ if the given type vari-
able is not the car of any pair in the list.

apply-subst-to-type : type * subst -> type

(define apply-subst-to-type
(lambda (ty subst)
(cases type ty
(int-type O (int-type))
(bool-type () (bool-type))
(proc-type (t1 t2)
(proc-type
(apply-subst-to-type tl subst)
(apply-subst-to-type t2 subst)))
(tvar-type (sn)
(let ((tmp (assoc ty subst)))
(if tmp
(cdr tmp)
ty))))))

35

The constructors for substitutions are empty-subst and extend-subst. (empty-subst)
produces a representation of the empty substitution. (extend-subst o tv t)

takes the substitution o and adds the equation tv =t to it, as we did in the pre-

ceding section. We write o[tv = t] for the resulting substitution. This was a
two-step operation: first we substituted ¢ for tv in each of the right-hand sides of

the equations in the substitution, and then we added the equation tv =t to the list.
Pictorially,

tUl = tl tUl = tl[tv = t]
' [tv=t] = '
tv, = t, to, = ty[to = t]
tv =t

This definition has the property that for any type ¢,

t(o[to =1']) = (to)[tv = 1]

The implementation of extend-subst follows the picture above. It substitutes ¢
for tvy in all of the existing bindings in o, and then adds the binding for ¢.

(define empty-subst (lambda () ’()))

extend-subst : subst * tvar * type -> subst
usage: tvar not already bound in subst.

(define extend-subst
(lambda (subst tvar ty)
(cons
(cons tvar ty)
(map
(lambda (p)
(let ((oldlhs (car p))
(oldrhs (cdr p)))
(cons
oldlhs
(apply-one-subst oldrhs tvar ty))))
subst))))

36

This implementation does not depend on, nor does it attempt to enforce, the no-
occurrence invariant. That is the job of the unifier, in the next section.

37

6.5.2 TheUnifi er

The main procedure of the unifier is unifier. The unifier performs one step
of the inference procedure outlined above: It takes two types, tyl and ty2, a
substitution subst that satisfies the no-occurrence invariant, and an expression
exp. It returns the substitution that results from adding tyl = ty2 to subst.
This substitution will also satisfy the no-occurrence invariant. If adding tyl =
ty2 yields an inconsistency, then it reports an error, and blames the expression
exp. This is typically the expression that gave rise to the equation tyl = ty2.

Think of the substitution as a store, and an unknown type is a reference into that
store. unifier produces the new store that is obtained by adding tyl = ty2 to
the store.

This is an algorithm for which cases gives awkward code, so we use simple
predicates and extractors on types instead.

38

unifier : type * type * subst * exp -> subst

usage: finds the smallest extension of subst
that unifies tyl[subst] and ty2[subst].
Raises an error if there is no such unifier.

(define unifier
(lambda (tyl ty2 subst exp)
(let ((tyl (apply-subst-to-type tyl subst))
(ty2 (apply-subst-to-type ty2 subst)))
(cond
((equal? tyl ty2) subst)
((tvar-type? tyl)

(if (no-occurrence? tyl ty2)
(extend-subst subst tyl ty2)
(raise-occurrence-check! tyl ty2 exp)))

((tvar-type? ty2)

(if (no-occurrence? ty2 tyl)
(extend-subst subst ty2 tyl)
(raise-occurrence-check! ty2 tyl exp)))

((and (proc-type? tyl) (proc-type? ty2))

(let ((subst (unifier

(proc-type->arg-type tyl)
(proc-type->arg-type ty2)
subst exp)))

(let ((subst (unifier
(proc-type->result-type tyl)
(proc-type->result-type ty2)
subst exp)))

subst)))
(else (raise-type-error! tyl ty2 exp))))))

39

First, as we did above, we apply the substitution to each of the types ty1
and ty2.

If the resulting types are the same, we return immediately. This corresponds
to the step of deleting a trivial equation above.

If ty1 is an unknown type, then the no-occurrence invariant tells us that it is
not bound in the substitution. Hence it must be unbound, so we propose to
add tyl = ty2 to the substitution. But we need to perform the occurrence
check, so that the no-occurrence invariant is preserved.

If ty2 is an unknown type, we do the same thing, reversing the roles of ty1
and ty2.
If neither ty1 nor ty2 is a type variable, then we can analyze further.

If they are both proc types, then we simplify by equating the argument
types, and then equating the result types in the resulting substitution.

Otherwise, either one of ty1 and ty2 is int and the other is bool, or one is
a proc type and the other is int or bool. In any of these cases, there is no
solution to the equation, so an error is reported.

40

Last, we must implement the occurrence check. This is a straightforward recur-
sion on the type

no-occurrence? : tvar * type -> bool
usage: Returns #t iff is there no occurrence of tvar in ty.
(define no-occurrence?
(lambda (tvar ty)
(cases type ty
(proc-type (arg-type result-type)
(and
(no-occurrence? tvar arg-type)
(no-occurrence? tvar result-type)))
(tvar-type (serial-number) (not (equal? tvar ty)))
(else #t))))

41

6.5.3 Building the Type Inferencer

We convert optional types to types with unknowns by creating a fresh type variable
for each 7, using otype->type.

(define otype->type
(lambda (otype)
(cases optional-type otype
(no-type () (fresh-tvar-type))
(a-type (ty) ty))))

(define fresh-tvar-type
(let ((sn 0))
(lambda ()

(set! sn (+ sn 1))

(tvar-type sn))))

When we convert to external form, we represent a type variable by a symbol
containing its serial number.

(define type-to-external-form
(lambda (ty)
(cases type ty
(int-type () ’int)
(bool-type () ’bool)
(proc-type (arg-type result-type)
(list
(type-to-external-form arg-type)
1->
(type-to-external-form result-type)))
(tvar-type (serial-number)
(string->symbol
(string-append
ll-tyll
(number->string serial-number)))))))

42

Now we can write type-of. It takes an expression, a type environment map-
ping program variables to type expressions, and a substitution satisfying the no-
occurrence invariant, and it returns a type and a new no-occurrence substitution.

The type environment associates a type expression with each program variable.
The substitution explains the meaning of each type variable in the type expres-
sions. It is useful to think of the substitution as a store, and a type variable as
reference into that store. Therefore, type-of returns two values: a type expres-
sion, and a substitution in which to interpret the type variables in that expression.

We implement this by creating a new datatype that contains the two values, and
using that as the return value.

For each kind of expression, we recur on the subexpressions, passing along the
solution so far in the substitution argument. Then we generate the equations for
the current expression, according to the specification, and record these in the sub-
stitution by calling unifier.

;; answer = type * subst

(define-datatype answer answer?
(an-answer
(ty type?)
(subst substitution?)))

type-of-program : program -> type

(define type-of-program
(lambda (pgm)
(cases program pgm
(a-program (expl)
(cases answer (type-of expl
(init-tenv) (empty-subst))
(an-answer (ty subst)
(apply-subst-to-type subst ty)))))))

43

type-of : exp * tenv * subst -> answer
(define type-of
(lambda (exp tenv subst)
(cases expression exp

(const-exp (num) (an-answer (int-type) subst))

(zero?-exp e;) : t,, =int

t(zero?-exp e)) = bool

(zero?-exp (expl)
(cases answer (type-of expl tenv subst)
(an-answer (tyl substl)
(let ((subst2
(unifier tyl (int-type) substl exp)))
(an-answer (bool-type) subst2)))))

= int
= int

(diff-exp e; e) @t
t(ditf-exp e; ey) = iDL

(diff-exp (expl exp2)
(cases answer (type-of expl tenv subst)
(an-answer (tyl substl)
(let ((substl
(unifier tyl (int-type) substl expl)))
(cases answer (type-of exp2 tenv substl)
(an-answer (ty2 subst2)
(let ((subst2
(unifier ty2 (int-type)
subst2 exp2)))
(an-answer (int-type) subst2))))))))

44

(if-exp ey e e3) : fe; =bool
t@z == t(if-exp eq e 83)
t63 = t(if—exp eq ep e3)

(if-exp (expl exp2 exp3)
(cases answer (type-of expl tenv subst)
(an-answer (tyl subst)
(let ((subst

(unifier tyl (bool-type) subst expl)))

(cases answer (type-of exp2 tenv subst)

(an-answer (ty2 subst)
(cases answer (type-of exp3 tenv subst)
(an-answer (ty3 subst)
(let ((subst
(unifier ty2 ty3 subst exp)))
(an-answer ty2 subst))))))))))

(var-exp (var)
(an-answer (apply-tenv tenv var) subst))

(let-exp (var expl body)
(cases answer (type-of expl tenv subst)
(an-answer (expl-type subst)
(type-of body
(extend-tenv var expl-type tenv)
subst))))

45

(proc-exp var body) : t(proc-exp var body) = (fvar —* toody)

(proc-exp (otype var body)
(let ((var-type (otype->type otype)))
(cases answer (type-of body
(extend-tenv var var-type tenv)
subst)
(an-answer (result-type subst)
(an-answer
(proc-type var-type result-type)
subst)))))

(call-exp rator rand) : traor = (frand — f(call-exp rator rand))

(call-exp (rator rand)
(let ((result-type (fresh-tvar-type)))
(cases answer (type-of rator tenv subst)
(an-answer (rator-type subst)
(cases answer (type-of rand tenv subst)
(an-answer (rand-type subst)
(let ((subst
(unifier
rator-type
(proc-type
rand-type result-type)
subst
exp)))
(an-answer result-type subst))))))))

46

(letrec-exp P (var) = epocbody Cletrec-body)
tP = toar —* teproc-body

teletrec-body = t(letrec'exP P (var) = eproc-body €letrec-body?

(letrec-exp (proc-result-otype proc-name
bound-var bound-var-otype
proc-body
letrec-body)

(let ((proc-result-type
(otype->type proc-result-otype))
(proc-var-type
(otype->type bound-var-otype)))
(let ((tenv-for-letrec-body
(extend-tenv
proc-name
(proc-type
proc-var-type proc-result-type)
tenv)))
(cases answer (type-of proc-body
(extend-tenv
bound-var proc-var-type
tenv-for-letrec-body)
subst)
(an-answer (proc-body-type subst)
(let ((subst
(unifier
proc-body-type
proc-result-type
subst
proc-body)))
(type-of letrec-body
tenv-for-letrec-body

subst)))))))

)))

47

Testing the inferencer is somewhat more subtle than testing our previous inter-
preters, because of the possibility of polymorphism. For example, if the inferencer
is given proc (x) x, it might generate any of the external forms (ty1 -> ty1)
or (ty2 -> ty2) or (ty3 -> ty3), and so on. These may be different every
time through the inferencer, so we won’t be able to anticipate them when we write
our test items. So when we compare the produced type to the correct type, we’ll
fail. We need to accept all of the alternatives above, but reject (ty3 -> ty4) or
(int -> tyl7).

The inferencer produces its output in external form, so our solution must use that
representation. To compare two types in external form, we standardize the names
of the unknown types, by walking through each external form, renumbering all the
type variables so that they are numbered starting with ty1. We can then compare
the renumbered types with equal?.

To systematically rename each unknown type, we construct a substitution with
canonical-subst. This is a straightforward recursion, with table playing the
role of an accumulator. The length of table tells us how many distinct unknown
types we have found, so we can use its length to give the number of the “next”
ty symbol. This is similar to the way we used length in our “world’s dumbest”
store model.

Details are in the book.

48

	Overview
	Values and their types
	Assigning a type to an expression
	CHECKED: A Type-Checked Language
	Implementing the Checker

	INFERRED: a Language with Type Inference
	Substitutions
	The Unifier
	Building the Type Inferencer

