
CSG111 March 27, 2007
Dr. Wand Readings: EOPL3, Chapter 6

Lecture 7: Modules

Key Concepts:

Module
Interface
Abstraction barrier or boundary
�������

scoping
Qualified Variable
Abstract Type
Type Abbreviation
Qualified Type
Parameterized module
Subtyping

contravariant, covariant

1

7.1 Introduction

The language features we have introduced so far are very powerful for building
systems of a few hundred lines of code. If we are to build larger systems, with
thousands of lines of code, we will need some more ingredients.

1. We will need a good way to separate the system into relatively self-contained
portions, and to document the dependencies between those portions.

2. We will need a better way to control the scope and binding of names. Lexi-
cal scoping is a powerful tool for name control, but it becomes awkward to
use when programs may be large or split up over many files.

3. We will need a way to enforce abstraction boundaries. In chapter 2, we
introduced the idea of an abstract data type. Inside the implementation of
the type, we can manipulate the values arbitrarily, but outside the imple-
mentation, the values of the type are to be created and manipulated only
by the procedures in the interface of that type. We call this an abstraction
boundary. If a program respects this boundary, we can easily change the
implementation of the data type. If, however, some piece of code breaks the
abstraction by relying on the details of the implementation, then we can no
longer change the implementation.

4. Last, we need a way to combine these units flexibly, so that a single unit
may be reused in different contexts.

2

Modules are connected using a module interconnection language. This language
is largely independent of the base language, and is our primary focus in this chap-
ter.

A program in the module interconnection language consists of a set of module
definitions. Each definition binds a name to a module value. A module value is
either a set of bindings, much like an environment, or a module procedure that
takes a module value and produces another module value.

Each module will have a module type. A module type can be an interface, which
is much like a type environment, or a procedure module type, which are analogous
to ordinary procedure types, except that they describe the argument and result of
a module procedure.

We would like to be able to check statically whether our programs respect their
abstraction boundaries. We therefore emphasize the types of our example pro-
grams, since their values are straightforward to compute. As we have seen before,
understanding the scoping and binding rules of the language will be the key to
both analyzing and evaluating programs in the language.

3

7.2 The Basic Module System

Example 1. The program

������� � � ���
	�
 � �
����������� ��� 	�
 ���
	 ��� � � � �
 ����� 	 �
 � ������� �

	 ����� ��� ���
��� � �!�"� ���$# � �

has type
	�
 �

and value 33.

The first three lines are a definition of a module named � . It has an interface� ��� 	�
 ���
and a implementation

� ���%��� � . We say that � is declared in the
interface and defined in the module implementation. Alternatively, we say that
the module ��� exports a value for � .

The last two lines constitute the program body, which imports the module ���

and evaluates the expression
��� �&�!��� ���$# � � . We adopt the convention that we

separate module definitions from the program body by a blank line, but that is not
required by our grammar.

The clause
	 ����� ��� ��� is like a

� ���
. It causes the value of the module �"� to be

computed. If there were effects in the definition of � , this is when they would
occur.

The expression
��� �&�!� ���
� � is called a qualified variable reference. In con-

ventional languages it might be written �(')� or �(�*� or �(���)� .

In the program body, � is bound to a module value that associates the name � with
the expressed value 3. The qualified variable reference

��� �&��� ���$# � � denotes
the binding of the name � in module � . Hence its type is

	�
 �
and its value is 33.

4

Example 2. The interface establishes an abstraction barrier between the module
and the program body. We sometimes say that the expressions in the implementa-
tion are inside the abstraction barrier, and everything else is outside the abstraction
barrier. A module body may supply bindings for names that are not in the inter-
face, but those bindings are not visible in the program body.

������� � � ���
	�
 � �
���������
� � � 	�
 ���

	 ��� � � � �
 ����� 	 �

� � ����� � ����� �

	 ����� ��� ���
��� � �!�"� ���$# � �

has type
	�
 �

and value 33, but

������� � � ���
	�
 � �
���������
� � � 	�
 ���

	 ��� � � � �
 ����� 	 �

� � ����� � ����� �

	 ����� ��� ���
��� � �!�"� ���$# � �

has no type, since the body of the program is checked against the interface of ��� ,
without crossing the abstraction boundary.

5

Example 3. The program

������� � � ���
	�
 � �
���������
� � ��� ��� �$�

	 ��� � � � �
 ����� 	 �

� � ����� �

���

has no type. The body of the module must associate each name in the interface
with a value of the appropriate type, even if those values are not used elsewhere
in the program.

Example 4. A module can produce a module value containing more than one
binding. For example, the program

�����
� � � ���
	�
 � �
������� ��� � � 	�
 � � � 	�
 ���
	 ��� � � � �
 ����� 	 �
 � ��� ��� � ����� �

	 ��� � ��� ���
��� ��� �&� � ���$# � ��� ��� � �!� ���$# � ���

has type
	�
 �

.

6

Example 5. The module body must supply bindings for all the declarations in the
interface. For example,

������� � � ���
	�
 � �
����������� ��� 	�
 �

� � 	�
 ���
	 ��� � � � �
 ����� 	 �
 � ������� �

	 ����� ��� ���
��� � �!�"� ���$# � �

has no type, because the implementation of ��� does not provide all of the values
that its interface advertises.

Example 6. To keep the implementation simple, our language requires that the
module produce the values in the same order as the interface. Hence

������� � � ���
	�
 � �
����������� ��� 	�
 �

� � 	�
 ���
	 ��� � � � �
 ����� 	 �
 � � �����

� � � � �

��� � �!�"� ���$# � �

has no type. This can be fixed.

7

Example 7. In our language, the body of the module has
�������

scoping, so in the
following program, the definition of � is in scope in the rest of the definitions.

������� � � ���
	�
 � �
���������
� � � 	�
 �
� � 	�
 ���

	 ��� � � � �
 ����� 	 �

� � � ���
� � ��� � � ��� � �

	 ����� ��� �
��� ��� �&� � ���$# � � � ��� �&�!� ���
� � �

has type
	�
 �

.

8

Example 8. In our language, module names are global. However, the values
exported by a module are computed only when that module is imported. In order
to use a value from a module, that module must be explicitly imported. This is
required even inside another module.

������� � � ���
	�
 � �
����������� ��� 	�
 ���
	 ��� � � � �
 ����� 	 �
 � ��� � � �

������� � � � �

	�
 � �
����������� � � 	�
 ���
	 ��� � � � �
 ����� 	 �

	 ��� � � � �"�
� � � ��� ��� �&� ��� ���$# � � � ��� � �

	 ����� ��� ���
	 ����� ��� � �

��� ��� �&� ��� ���$# � � � ��� �&�!� � ���$# � ���

has type
	�
 �

, as does

������� � � � �

	�
 � �
����������� � � 	�
 ���
	 ��� � � � �
 ����� 	 �

	 ��� � � � �"�
� � � ��� ��� �&� ��� ���$# � � � ��� � �

������� � � ���
	�
 � �
����������� ��� 	�
 ���
	 ��� � � � �
 ����� 	 �
 � ��� � � �

	 ����� ��� ���
	 ����� ��� � �

��� ��� �&� ��� ���$# � � � ��� �&�!� � ���$# � ���

If we had omitted any of the
	 ����� ��� clauses, these programs would both be ill-

typed.

9

Example 9. If a module tries to import itself, even indirectly, then an infinite
loop will result. For example,

������� � � ���
	�
 � �
����������� � � 	�
 ���
	 ��� � � � �
 ����� 	 �

	 ��� � � � � �

� � � ��� �

������� � � � �

	�
 � �
����������� � � 	�
 ���
	 ��� � � � �
 ����� 	 �

	 ��� � � � �"�
� � � � � �

	 ����� ��� ���
���

will cause an infinite loop, since the attempt to import ��� will attempt to import
� �

, which will attempt to import ��� again. In this program, of course, the imports
are completely unnecessary.

10

7.3 Implementing the Basic Module System

7.3.1 Syntax

A program consists of a sequence of module definitions, followed by an expres-
sion.

� � � ��� ��� �
� � �
� �
 � �����
� � � � � ��� 	�
 	 � 	 �
 �
� �
� �
 ��� 	 ����� ��� � 	 � �
 � 	 � 	 �
� �
��� � � ����� 	 �
 �

� � � � ��� ��� � �

A module definition consists of its name, its type, and its implementation, which
consists of an arbitrary number of import statements and a module body.

� � ���
� � � � � �
� 	&
 	 � 	 �

� � ���$�
� � � � 	 � �
 � 	 � 	 �
�
� 	&
 � �
��������� � � ���
� � � � �
	 � �
� 	 ��� � � � �
 ����� 	 �
 �
� �
� �
 ��� 	 ��� � � � � 	 � �
 � 	 � 	 �
� �
�����
� ��� � � ��� 	 �

� � ���$�
� � � � � �
� 	�
 	 � 	 �
 �

11

A module type for a simple module consists of an arbitrary number of declara-
tions. Each declaration declares a program variable and its type. We call these
value declarations, since the variable being declared will denote a value. In later
sections, we introduce more declarations and more module types.

� � ���
� � � � �
	 � �
� � � � � �
� �
 � � �������
����� 	 �
 � � � � �
�
 � � �����
� ��� � �
	 � � �

� � �����
�
����� 	 �

� 	 � �
 � 	 � 	 �
� � � � �
	 � � �
� � � � � �����
������� 	 �
 �

A module value has an
�
 � � �����
� ��� � �
	 � � if and only if it is an environment in

which each variable is bound to a value of the right type.

12

A module body consists of an arbitrary number of definitions. Each definition
associates a variable with the value of an expression.

� � ���
� � � � � ��� 	
� � � � � �
� �
 � � �
� 	&
 	 � 	 �
 � � � � �
� �
�
 � � ������� � � � ����� 	 �

� � �
� 	�
 	 � 	 �

� 	 � �
 � 	 � 	 �
� � � � ��� � � ����� 	 �
 �
� � � � � �
� 	�
 	 � 	 �
 �

Last, we have one new expression, a qualified variable reference.

� � � � � ���
� 	 �

� � ��� �&� � 	 � �
 � 	 � 	 ��� � ���$# � � 	 � �
 � 	 � 	 �
� �

�$� � � 	 � 	 � � � � �
� � � �
� �

13

7.3.2 The Interpreter

The value of a module will be an environment. To allow a module � to be bound
to a module value, we extend our notion of environments to allow bindings to
modules.

� � �
� 	�
 � � � ����� �
	 � � �����
� ��� � � � � � � �����
� � � � � � � � ���
� �
 � � �����
� � � � � � � � �
� � 	�
 � 	�
 � � �
 � 	 � �
 � �
 ��� � � �

Later, we will add another variant to handle the values of module procedures.

� � �
� 	�
 � � � ����� �
	 � � �
 � 	 � �
 � �
 � �
 � 	 � �
 � �
 ���
� � ��� �
	 � �
 ���
� ����� �
 � � �
 � '�'�' �
� ����� �
 � � �
 � � � ��� � � � 	 � � ��	 '�'�' �
� ����� �
 � � �
 � ��� 	 ��� � ���$�
� � �
� � �
 � � � ��	 � � � ��� �
� � � � � � � � �����
� ��� � � � � � ��� �
� �
� � � � � �
 � �
 � 	 � �
 � �
 ��� � � �

We modify
� ��� ��	 � �
 � to look only at

����� �
 � � �
 � and
����� �
 � � �
 � � � ��� � � � 	 � � ��	

bindings, and we add a procedure
� ��� # ��� � ���$�
� � � � 	�
 � �
 � to look up bind-

ings made by
��� � �
 � � �
 � ��� 	 ��� � � ���
� � � . In general, we will use the name

� ��� # ��� � X � 	�
 � Y for a procedure that looks up things of kind X in data struc-
tures of kind Y.

14

To evaluate a qualified reference, we first retrieve the module from the environ-
ment, and then we look up the variable in the environment exported by the module.

� � �
� 	�
 � � � � � � � � �
� �
� � ��� � � ��� � �
 � �
� �
������� ��� � � ����� 	 �
 ��� �
� �$� � � 	 � 	 � � � � �
� � � �
� � � �
 � � � � �
� �
 � � � �
� ����� � � � � � � � � � ��� # ��� � ���$�
� � � � 	�
 � �
 � � �
 � � � �
 � � � �
� �$��� ��� �����
� ��� � � � � � � � � � � �
� �
 � � � ���
� � � � � � � � � � �
 � �
� � ��� ��	 � �
 � �
 � � �
� �
 � � � � � � � �

'�'�' � � �

15

To evaluate a program, we evaluate its body in an initial environment built by
importing all the modules in its import specification.

��� � � � � � � � � � � � ��� ��� � � � � ��� ��� � ��� ��� � � � �

� � �
� 	�
 � � � � � � � � � � � � � � ��� �
� �
� � ��� � � � �$� �
� �
������� � � � � ��� � � �$�
� � � � � ��� ��� � � �����
� � ��� 	 ��� � ��� � � ��� 	 �
� ����� � � �
 � � 	�
 	 � 	 � � � �
 � 	 ��� � ��� � � ���
� � � � � � �
� � � � � � � � � ����� 	 �
 ��� � �

� � �

��� � � 	 � � � � ����	 � � � � � 	 � � � � � � ���
� � � � � �
� 	&
 	 � 	 �
 � ��� �
 � 	 � �
 � �
 �
� � �
� 	�
 � 	�
 	 � 	 � � � �
 �
� �
� � ��� � � 	 ����� ��� � ������� � ��� �
� 	 � �
 � � � � 	 ����� ��� � �
� � ��� �
	 � �
 ���
� ����� �
 � � �
 � ��� 	 ��� � ���$�
� � �
� �
�
� 	 ��� � � � � �
� � � � � � � � � � ���$�
� � �
� � ��� # ��� � � ���
� � � � 	�
 � � 	 � � � �$�
� 	 ��� � ��� � � ���$�
� � ��� �
�����
� � ��� �

� 	&
 	 � 	 � � � �
 � � � � � 	 ��� � ��� � � ���$�
� � ��� � � � � �

16

To import a module, we evaluate its body in an environment constructed by im-
porting all of its imports.

��� ������� � � � � �
� 	�
 	 � 	 �
 � ������� � � � � 	 � � ��� �����
� � � � � � � � �
� � �
� 	�
 � � � � � � � � � � ������� � �
� �
� � ��� � � � � � �
� �����
� ����� �
� �
������� ������� � � � � �
� 	�
 	 � 	 �
 � � � �
�
� � � � ���
� � � � � �
� 	&
 	 � 	 �
 �
 � � � � � �
	 � � 	 ��� � ��� � � � � ��� 	 �
� � � � � � � � � � ���$�
� � � � � ��� 	 � � � �$� 	
� 	�
 	 � 	 � � � �
 � 	 ����� ��� � ���$�
� � ��� � � � � � �

17

Last, to evaluate a module body, we build an environment, evaluating each ex-
pression in the appropriate environment to get

� �����
scoping.

��� � � � � � � � � � �����
� � � � � �$� 	 � �����
� � � � � �$� 	 � �
 � � � ���$�
� � � � � � � � �
� � �
� 	�
 � � � � � � � � � � ������� � � � ����� 	
� �
� � ��� � � � � ����� 	 �
 ���
� �
������� ������� � � � ����� 	 � � ����� 	
� � �
�
 � � ���$�
� � � � � ��� 	 � � �
�
 � �
� �
 � � ���$�
� � � � � � � � �
� � �
�
 � � � � � �
 � � �
�
 � �
 ��� � � � � �

��� � �
�
 � � � � � �
 � � � � 	 � � � � � � ��� 	�
 	 � 	 �
 � � �
 � ��� �
 �

� � �
� 	�
 � � ���
 � � � � � �
 �
� �
� � ��� � � � �
�
 � �
 ���
� 	 � �
 � � � � � �
�
 � �
�
 �
� �$��� ��� � �
� 	�
 	 � 	 �
 � �$�
� � �
�
 � �
� � � � � � ��� 	�
 	 � 	 �
 � � �
� ��� � �
� � ��� � � � � � � � � � � � � � � ��� � �
 ��� � �
� � �
�
 � � � � � �
 �
� � � � � �
�
 � �
� ����� �
 � � �
 � � �
� � � � �
 ��� � � � � � � �

18

7.3.3 The Checker

So far, our language is just a more complicated version of
� ����� ���

. So we check
a program in our language much as we checked a

������� ���
: first we assemble the

declared types of each module, then we check each module against its declared
type, and last we find the type of the program body.

If we think of each module as producing a data type, then the declared types are the
interface of each module, and the body of the module is the implementation of that
interface. The interfaces are public, but the implementations are private. When we
check any piece of code, we check it only against the public data: the interfaces.
When checking the code of a module, we do not look at the implementation of
any other module. When checking the body of the program, we do not look at the
implementation of any module at all.

As we did with the interpreter, our first step is to allow module bindings in the
type environment.

� � �
� 	�
 � � � ����� �
	 � � �
	 � � � �
 � 	 � �
 � �
 � �
	 � � � �
 � 	 � �
 � �
 ���
� � ��� �
	 � � �
 ���
� ����� �
 � � � �
 � '�'�' �
� ����� �
 � � � �
 � ��� 	 ��� � � ���
� � �
� � �
 � � � ��	 � � � ��� �
� � � �
	 � � � ���
� � � � �
	 � � � �
� �
� � � � � � �
 � � 	 � � � �
 � 	 � �
 � �
 � � � � �

19

The overall process of checking a program has three steps.

� The first step is to create a manifest consisting of the name and declared
type of each module in the program.

� In the second step, we check each module definition to see that it produces
a module value consistent with its declared type. Any cross-module refer-
ences are resolved using the manifest, without looking inside the implemen-
tation of the other module. Thus the manifest implements the abstraction
boundary around each module.

� Finally, we find the type of the body of the program.

��� �
	 � � � � � � � � ��� ��� � � � � ��� ��� � ��� � � � �
 � � � � �
	 � �
� � �
� 	�
 � �
	 � � � � � � � � ��� ��� �
� �
� � ��� � � � �$� �
� �
������� � � � � ��� � � �$�
� � � � � ��� ��� � � �����
� � ��� 	 ��� � ��� � � ��� 	 �
� � ��� � � � �
 	 � � � �

� ���$�
� � � � � �
� 	�
 	 � 	 �
 � ��� � �
 	 � � � � �����
� ����� � � �
� � � � � ����� �
� �
� � ��� � � � � � �
�
 �
� � � ��� # � �����
� � � � � ��� 	�
 	 � 	 �
��
� � � ���
 ��� � � � �
 	 � � � � � �

�����
� � ��� �
� ����� � � � �
 � � 	�
 	 � 	 � � � � �
 � 	 ��� � ��� � ��� � � � �
 	 � ��� � � � �
� ��� � �
 � � �
 � � �
�
� �
	 � � � � � � ��� 	 � �
 � � � ��� �
	 � � � � � � � � � � � � � �

Our expressions will be written in INFERRED, so we use the type inference ma-
chinery of the last lecture. In this system,

�
	 � � � � � returns a type and a substitu-
tion in which to interpret its type variables. We use

� � � �
 � � �
 � � �
� to eliminate
these type variables.

� � �
� 	�
 � ��� � �
 � � �
 � � ���
� �
� � ��� � � �
 � �
� �
�������%�
 � � �
���
 �
� �
 � �
 � � ��� � �
	 � � � � � �
� � ��� ��	 � � � � � � � � � � � 	 � � �
	 � � � � � � � � � �

20

To check a module definition, we compute the type of its body in a type environ-
ment consisting of the types of each of its imports. We then compare the actual
type to the expected type using the procedure � � � �����
� ��� � �
	 � � .

Like
� � ��� # � � �$� � � � �
	 � � � , the procedure

� � ��� # � ���$�
� � � � � �
� 	�
 	 � 	 �
 � is exe-
cuted for effect only.

��� � � � �
�
 � � �
 	 � � � � ��� �
 � � ��� 	 � 	 � �
� � �
� 	�
 � � � ��� # � � ���
� � � � � �
� 	&
 	 � 	 �
 �
� �
� � ��� � � � � � �
�
 � �
 	 � ��� � �
� �
������� ������� � � � � �
� 	�
 	 � 	 �
 � � � �
�

� � � � ���
� � � � � �
� 	&
 	 � 	 �
 � � �
 � � � ��� � ��� � � � � �
	 � � 	 ��� � � � � � � � ��� 	 �
� ����� � � � �
 � � � � � � � � � �$� 	

� 	�
 	 � 	 � � � � �
 � 	 ��� � ��� � � �
 	 � ��� � � � �
� � ��� � � ��� � � � � � �
	 � �

� �
	 � � � � � � �����
� ��� � � ��� 	 � � � ��� 	 � �
 � � � � � � � � � �$� 	 � � �
� 	 � �
 � � � � � � � ���
� � � � �
	 � �

��� � � � � � � 	 � �
��� � ��� � � � � �
	 � �
� �
 	 � ��� � � �

� ��� 	 ��� � � � � � ������� � � � � �
�
 � ����� � � � �
 � � �
� � � ��� � � � � �
	 � � ��� � � � � � �
	 � � � � � � � � � �

21

To find the type of a module body, we must create a module type that associates
each variable defined in the body with the type of its definition. Recall that a mod-
ule type contains a list of declarations. The procedure � �
�
 � � � � � � �����
� creates
such a list. At every step it also extends the local type environment, to follow the
correct

� �����
scoping. Each expression is evaluated in an empty substitution, so

type inference is possible only within a expression. We call
��� � �
 � � �
 � � �
� ,

as we did above, to expand the type variables in the substitution returned by
�
	 � � � � � .

��� ������� � � � ����� 	 � � �
 � ��� �����
� ��� � �
	 � �
� � �
� 	�
 � �
	 � � � � � � �����
� � � � � �$� 	
� �
� � ��� � � � � ����� 	 � �
 � �
� �
������� ������� � � � ����� 	 � � ����� 	
� � �
�
 � � ���$�
� � � � � ��� 	 � � �
�
 � �
� �
 � � ���$�
� � � � �
	 � �
� � �
�
 � � � � � � ����� � � �
�
 � � �
 ��� � � � � �

��� � �
�
 � � � � � � ����� � � � �
�
 � � � �
 � ��� � �����
�
� � �
� 	�
 � � ���
 � � � � � � ��� �
�
� �
� � ��� � � � �
�
 � � �
 ���
� 	 � �
 � � � � � �
�
 � ��� � �
� �$��� ��� � �
� 	�
 	 � 	 �
 � �$�
� � �
�
 � �
� � � � � � ��� 	�
 	 � 	 �
 �
 � � � ��� � �
� � ��� � � � 	 � ��� � �
 � � �
 � � �
�

� �
	 � � � � � ��� � � �
 � � � ��� �
	 � � � � � � � � � � �
� � �
 �
� � � � � � �������
����� 	 �

 � � � � 	 �
� � �
�
 � � � � � � ����� � � � � � � ���
 � �
� ����� �
 � � � �
 �
 � � � �
	 � �
 ��� � � � � � � � �

22

All that’s left is to compare the actual and expected types of each module, using
the procedure � � � �����
� � � � �
	 � � . We think of � � as “subtype”. We will define
subtyping so that if type t1 is a subtype of a type t2 then every value of type t1 can
be used as a value of t2. This principle will apply not just to ordinary types, but to
module types as well. For example

� ��� 	�
 � � ��� 	�
 �
� � � ��� � � � � � 	�
 ���
� � 	�
 ���

since any module value satisfying the interface
� � � 	�
 � � � ����� � � � 	�
 ���

provides all the values that are advertised by the interface
� ��� 	�
 � � � 	�
 ���

.

For our simple module language, � � � �����
� � � � �
	 � � just calls � � � � �������
����� 	 �
 � ,
which compares declarations. These procedures take a

� �
 � argument that is not
used for the basic module system, but will be needed in section 4.

� � �
� 	�
 � � � � �����
� � � � �
	 � �
� �
� � ��� � � � � � 	 � � � � � � 	 � � � � �
 ���
� �
������� ������� � � � � 	 � � � � � 	 � � �
� 	�
 � �
������� � � ������� � � � � 	 � � � � ����� � � �
� �
������� ������� � � � � 	 � � � � �
	 � � �

� 	�
 � �
������� � � ������� � � � � 	 � � � � ����� � � �
� � � � � �����
�
��� � 	 �
 � � �����
� � � �����
� � � �
 ��� � � � � � �

23

The procedure � � � � �����
������� 	 �
 � does the main work of comparing two sets of
declarations. If �

�����
� � and � �����
� �
are two sets of declarations, we say � �����
� �

� � � �����
� �
if and only if any environment that supplies bindings for the decla-

rations of � �����
� � also supplies bindings for the declarations for � �����
� �
. This

can be assured if �
����� � � contains a matching declaration for every declaration in

� ����� � �
, as in the example above.

The procedure � � � � �����
������� 	 �
 � first checks � ��� �
� � and � �����
� �
. If � ����� � �

is empty, then it makes no demands on � ��� �
� � , so the answer is
���

. If � �����
� �

is non-empty, but �
�����
� � is empty, then � �����
� �

requires something, but �
�����
� �

has nothing. So the answer is
���

. Otherwise, we compare the names of the first
variables declared by � �����
� � and � ����� � �

. If they are the same, then their types
must match, and we recur on the rest of both lists of declarations. If they are not
the same, then we recur on the cdr of �

����� � � to look for something that matches
the first declaration of �

�����
� �
.

� � �
� 	�
 � � � � � �������
����� 	 �
 �
� �
� � ��� � � � ��� �
� � � ����� � � � �
 ���
� � �
 �
� �
 � � � � � ����� � � � ��� �
� �
 � � � � � ����� � � � ��� �
� � �
� �
� �
������� � ��� �
�
����� 	 �
 � �
�
� � �����
� � �
� � � � � � �������
����� 	 �
 �
 � � � � �
	 � �
� �$������� � ��� �
�
����� 	 �
 � �
�
� � �����
� � �
� � � � � � �������
����� 	 �
 �
 � � � � �
	 � �
� 	 � � � � � �
 � � � �
 � � � � �
� �
 �
� � � � �
	 � � �
	 � �
	 � � �
 ���
� � � � � �����
�
��� � 	 �
 �
� � � � � �����
� � � � � � � � �����
� � � � �
 ��� �

� � � � � �����
������� 	 �
 �
� � � � � �����
� � � � �����
� � � �
 ��� � � � � � � � � �

24

Last, we must write � � � �
	 � � . If we did not have type inference in our language,
this would be a simple equality test. However, since we do have type inference,
we must deal with the possibility that we may have type variables in our types.
For example, in

������� � � �
	�
 � �
����������� � � � 	�
 � � � 	�
 � � �
	 ��� � � � �
 ����� 	 �
 � � � � � � � � � � � � ���

the actual type for
�

reported by the type inference engine will be something like
� � � ������� ��� � � �
����� � , and we will need to conclude that � � � ������� ��� � � �
����� �

� � � 	�
 � ��� 	�
 � � . This is correct, since the polymorphic function can be used
as an � 	�
 � ��� 	�
 � � . On the other hand we should reject the assertion � � � �
�����
��� � � �
����� � � � � 	�
 � ��� ����� � � . To accomplish this task, � � � �
	 � � performs a
recursive traversal of the two types, much like the unifier does. As it walks through
the types, it collects information about the substitution of each type variable to
make sure that type variables are substituted consistently. This will allow it to
accept

� � � ������� ��� � � �
����� � � � � 	�
 � ��� 	&
 � �

but reject

� � � ������� ��� � � �
����� � � � � 	�
 � ��� ����� � �

as it should. We write � � ��	 � � � � � � � � for the result type of � � � �
	 � � to indicate
that it either returns a substitution or

���
. We wrap the first call to

� ��� � � in a
� � �
 � � � '�'�' � � � '�'�' � � because it might return

���
.

25

��� � � � �
	 � � � �
	 � � � � 	 � � � � �
 � � � � � ��	 � � � � � � � �

� � �
� 	�
 � � � � �
	 � �
� �
� � ��� � � �
	 � �
	 � � �
 ���
� ����� � ��� � �
� � �
	 � � 	 � �
� �
	 � � 	 � �
� � � � � � � � ��� �
	 � � � � � � � � �
� � �
 �
� � � �$� � ��� �
	 � �
	 � � � � � � � �
� � � � �
� � �
	 � ��� �
	 � �
� ����� �
 � � � � � � � �
	 � �
	 � � � � � � � �
� � � � �
� � �
	 � ��� �
	 � �
� � ��� � � � 	 � � 	 � � � � � � � �
� � �
 � � � � � � � �
	 � ��� �
	 � � � � � � � � � 	 � ��� �
	 � � �
� � �
 �
� � � ��� � �

� � � � � � �
	 � � ��� �
� � � �
	 � � �
	 � �
� � � � � � �
	 � � ��� �
� � � �
	 � � �
	 � �
� � � � � �

� �
� �
� � ��� � � � � � � � � �
� � ��� � �
� � � � � � �
	 � � � � � ��� � � � � �
	 � � � 	 � �
� � � � � � �
	 � � � � � ��� � � � � �
	 � � � 	 � �
� � � � � � � � �

� � � ��� ��� � � �
� � �
��� ��� � � � � �

26

7.4 Modules that declare types

So far, our interfaces have declared only ordinary variables and their types. In the
next module language, we allow interfaces to declare types as well. For example,
the interface

� � � � ������� � � �
	 � � �

� ��� � � �

� � ��� � � � ��� � �
� � � � � � � ��� � �
	 � � � �
� � � � � ��� ����� � � �

declares a type
�
, and some operations � �
� � ,

� � ��� , �
� � � ,

	 � � � ��� � that operate
on values of that type. This is the interface that might be associated with an
implementation of arithmetic.

We will introduce two kinds of type declarations: type abbreviations and abstract
types. Both are necessary for a good module system.

27

7.4.1 Type Abbreviations

We begin by discussing type abbreviations, or transparent types.

Example 10. The program

���$�
� � � ���
	�
 � �
��������� � �
	 � � � � � � � � � � � 	&
 �

� � ���
	 ��� � � � �
 ��� � 	 �
 � �
	 � � � � 	�
 �

��� �
�

	 ��� � ��� ���
��� ��� �&� ��� ���$# � � � � �

has type
	�
 �

. Here the declaration
�
	 � � � � � � � � � � � 	�
 �

in the interface binds
�

to the type
	&
 �

in the rest of the interface. The declaration
�
	 � � � � 	�
 �

in
the module body, on the third line of the program, binds

�
to the type

	&
 �
in the

rest of the module body. We say that
�

is bound transparently to
	�
 �

, or that
�

is
a transparent type.

Example 11. Of course, we can use any name we like for the type.

���$�
� � � ���
	�
 � �
��������� � �
	 � � � � � � � � � � � 	&
 �

� � � �
	 ��� � � � �
 ��� � 	 �
 � �
	 � � � � 	�
 �

��� �
�

	 ��� � ��� ���
��� ��� �&� ��� ���$# � � � � �

has type
	�
 �

. And of course we can declare more than one type. The type decla-
rations can appear anywhere in the interface, so long as each declaration precedes
all of its uses.

28

Example 12. If a module � exports a type named
�
, we can refer to that type

wherever � has been imported by writing
��� �&�!� ���$# � �

. We call this a qualified
type.

If
�

is a transparent type, then
��� �&�!� ���$# � �

is an abbreviation for the meaning
of

�
.

���$�
� � � ���
	�
 � �
��������� � �
	 � � � � � � � � � � � 	&
 �

� � ���
	 ��� � � � �
 ��� � 	 �
 � �
	 � � � � 	�
 �

��� �
�

	 ��� � ��� ���
� � � � � � � ��� �&�!��� ���$# � � � ��� � � � �

has type � 	�
 � ��� 	&
 � � . Since
�

has been exported transparently, we can use
��� �&�!��� ���$# � �

outside the module definition as an abbreviation for
	�
 �

. Here
we have used it to declare the type of the bound variable

�
.

Example 13. A type definition acts like a type abbreviation inside the module
body.

���$�
� � � ���
	�
 � �
��������� � �
	 � � � � � � � � � � � 	&
 �

� � � � ��� � � �
	 ��� � � � �
 ��� � 	 �
 � �
	 � � � � 	�
 �

� � � � � � � � � � � ��� � � � � �
	 ��� � ��� ���
� ��� �&� ��� ���$# �%�
��� �

has type
	�
 �

.

29

Example 14. In our language, types are public; they do not need to be imported.
For example, the program

���$�
� � � ���
	�
 � �
��������� � �
	 � � � � � � � � � � � 	&
 �

� � ���
	 ��� � � � �
 ��� � 	 �
 � �
	 � � � � 	�
 �

��� �
�
���$�
� � � � �

	�
 � �
���������
� � ��� � � ��� �&�!��� ���$# � � ��� 	&
 � � �

	 ��� � � � �
 ��� � 	 �

� � ��� � � � � � � � � ��� � �!�"� ���
� � � ���

	 ��� � ��� � �

��� �&� � � ���$# �%� ���

has type � 	�
 � ��� 	�
 � � , even though � �
does not import ���

30

7.4.2 Abstract Type Declarations

A module can also export abstract or opaque types by using an
� � � ������� � � �
	 � �

declaration.

Example 15. The program

�����
� � � ���
	�
 � �
������� ��� �
	 � � � � � � � � � � � 	�
 �

� � �

� � ��� # � � � ��� ����� � � �
	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �

� � �

� � ��� # � � � � � � � � � � � �
� � � � � � �

	 ��� � ��� ���
��� �&�!��� ���$# � �

has type
	�
 �

, but the program

�����
� � � ���
	�
 � �
����������� � � � ������� � � �
	 � � �

��� ���
	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	�
 �

�!� ���

	 ��� � ��� ���
��� �&�!��� ���$# � �

has type
��� �&� ��� ���$# � �

. The declaration
� � � ������� � � �
	 � � �

in the interface,
on the first line of the program, declares

��� � ����� ���$# � �
to be an abstract type,

meaning that outside the module, it is a new base type, like
	&
 �

or � ��� � . The
corresponding definition

�
	 � � � � 	&
 �
declares

�
to be an abbreviation for

	�
 �

inside the module body, but this information is hidden from the rest of the pro-
gram. This is the abstraction boundary.

The body of the module is the implementation of the interface, and is said to
be inside the abstraction boundary. The rest of the program is the client of the
interface and is said to be outside the abstraction boundary.

31

By enforcing this abstraction boundary, the type checker guarantees that no pro-
gram manipulates the values provided by the interface except through the pro-
cedures that the interface provides. This gives us a mechanism to enforce the
distinction between the users of a data type and its implementation.

Example 16. The program

�����
� � � ���
	�
 � �
������� ��� � � � ������� � � �
	 � � �

� � �

� � ��� # � � � ��� ����� � � �
	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �

� � �

� � ��� # � � � � � � � � � � � �
� � � � � � �
	 ��� � ��� ���
��� ��� �&� ��� ���$# � � � � �

has no type. The program outside the abstraction boundary cannot rely on the fact
that the value of

��� �&�!��� ���$# � � is an integer.

32

Example 17. A module can export an abstract type and some operations on that
abstract type. Then the only way that the rest of the program can operate on values
of the abstract type is through these operations. For example, the program

�����
� � � ���
	�
 � �
������� ��� � � � ������� � � �
	 � � �

� � �

� � ��� # � � � ��� ����� � � �
	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �

� � �

� � ��� # � � � � � � � � � � � �
� � � � � � �
	 ��� � ��� ���
� ��� � � ��� �&�!��� ���$# � � � ��� #
	�
 � ����� � ��� �&�!��� ���$# � �

	�
 � �!� �

has type � ��� � . The procedure
��� � ����� ���$# � � � ��� #

has type � ��� � �!�"� ���
�
� ��� � ��� � � . The value

��� �&� ��� ���$# � � has type
��� �&� ��� ���
� �

, so it is an
acceptable argument to the procedure.

33

Example 18. Here is a module to encapsulate a data type of booleans. The
booleans are represented as integers, but that fact is hidden from the rest of the
program.

������� � � � 	 � ��� �
	�
 � �
����������� � � � ������� � � �
	 � � �

��� � � � �

��� � ��� � �

�
 ��� � � � � � � ��� � � �

 � � � � � � � � �
� � � � ��� � � � � � � � ��� � � �

	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	�
 �
��� � � � �

��� �
��� � � �
�
 �!� � � � � � � � � �

� � � � � 	 � � �
	 � � ��� � � � � �
��� �
 	

� �
���%��� �
� �

 � � � � � � � � � � � �

	 � � �
� � � � � �
� � �
 ��� �
���
� �
��� ��� � �

� � � � ��� � � � � � � � � � � �
	 � � �
� � � � � �
� � �
 � �
� � � � � �
� �
��� � �
� � � � � � �

	 ����� ��� � 	 � ��� �
� ��� ��� � � � ��� �&�!� 	 ����� � ���$# � ��� � �
	�
 � ��� ��� �
� � � ��� �&� � 	 � ��� � ���$# ����� �
���
	�
 � �����
 � � ��� �&�!� 	 � ��� � ���$# �!�
 �
	�
 � � �
 � ��� � � � ��� �
� � �

has type
��� � ��� 	 � ��� � ���$# � �

, and has value 13.

34

Example 19. Here is a more elaborate that implements a simple abstraction of
tables. Our tables are like environments, except that instead of binding sym-
bols to Scheme values, they binds integers to integers. The interface provides
a value that represents an empty table and two procedures

� ��� � � � � ��� � � � and
� ��� # ��� � 	�
 � ��� � ��� , that are analogous to

����� �
 � � �
 � and
� ��� � 	 � �
 � . Since

our language has only one-argument procedures, we get the equivalent of multi-
argument procedures by using Currying.

�����
� � � ��� � � � �
	�
 � �
������� ��� � � � ������� � � �
	 � � ��� � � �

� ��� � 	 � ��� � ���
� ��� � � � � ��� � � � � � 	�
 � ���

� 	�
 � ���
� ��� � � � ��� ��� � � � � � �

� ��� # ��� � 	�
 � ��� � ��� � � 	�
 � ���
� ��� � ��� � � 	�
 � � � �

	 ��� � � � �
 ����� 	 �

� � 	 � � ��� � ��� � � 	�
 � ��� 	�
 � �
�
	 � � # ��	�� 	 � � � 	&
 �
�
	 � � � � � � 	 � � � 	&
 �
� ��� �
	 � � � � � �
 � 	�
 � � �

� ��� � � � � ��� � � �
� � � � � � # ��	 � # ��	��
	 � � �

� � � � � � � � � � � � �
	 � � �
� � � � � �$� � � � � ��� � � � � ��� � ��� �
� � � � � �����
� � � � # ��	 � # ��	�� 	 � � �
	 � � �
� � � � ��� # ��	 � � ���
� � � � # ��	 � �
��� �
 � � �
� �
��� � �$� � � � � ��� � � �������
� � � � # ��	 �

� ��� # ��� � 	�
 � ��� � ���
� � � � � � ������� � � � # ��	 � # ��	��
	 � � �

� � � � � ��� � � � � ��� � � � �
� ��� � � � �����
� � � � # � 	 � �

35

	 ��� � ��� ��� � � ���
� � � � ��� �
	 � ��� �&� ��� � � � � ���$# � � ��� �
	
	�
 � ����� ��� � � 	�
 � 	�
 � � ��� �&� ��� � ����� ���$# � � ��� � � � � ��� � � �
	�
 � ��� � ��� # ��� � ��� �&� ��� � � � � ���$# � � ��� # ��� � 	�
 � ��� � � �
	�
 � ��� ��� � � � � � � � � � ��� � � 	�
 � 	�
 � � � � ��� � � ��� �
	 �
	�
 � ��� ��� � � � � � � � � � ��� � � 	�
 � 	�
 � � � � ��� � ��� � � � � �
	�
 � ��� ��� � � � � � � � � � ��� � � 	�
 � 	�
 � � � � � � � ��� � � � � �
	�
 ��� � � � ��� # ��� � � ��� � ��� � � �

� � � ��� # ��� � � ��� � ��� � � �

This program has type
	�
 �

. The table
��� � ��� � binds 4 to 400 and 3 to 301, so the

value of the program is 99.

36

7.4.3 Implementation

We now need to extend our system to model type abbreviations, abstract types,
and qualified type references.

7.4.3.1 Syntax

We add two new kinds of types: named types (like
�
) and qualified types (like

��� �&�!��� ���$# � �
).

� � 	 � �
� 	 � �
 � 	 � 	 �
� �

 � � � � � �
	 � � �

� � 	 � �
� � ��� �&� � 	 � �
 � 	 � 	 ��� � ���$# � � 	 � �
 � 	 � 	 �
� �

�$� � � 	 � 	 � � � �
	 � � �

We add two new kinds of declarations, for type abbreviations and for abstract
types.

� � �����
�
����� 	 �

� � � � � ������� � � �
	 � � � 	 � �
 � 	 � 	 �
� �
� � � ������� � � �
	 � � � � �����
������� 	 �
 �

� � �����
�
����� 	 �

� � �
	 � � � � � � � � � � 	 � �
 � 	 � 	 �
� ��� � � 	 � � �
�
	 � � � � � � � � � � � �����
�
��� � 	 �
 �

We also add a new kind of definition: a type definition:

� � �
� 	�
 	 � 	 �

� � �
	 � � � 	 � �
 � 	 � 	 ��� � � � �
	 � � �
�
	 � � � � �
� 	&
 	 � 	 �
 �

37

7.4.3.2 The Interpreter

The interpreter doesn’t look at types or declarations, so the only change to the
interpreter is to make it ignore type definitions.

� � �
� 	�
 � � ���
 � � � � � �
 �
� �
� � ��� � � � �
�
 � �
 ���
� 	 � �
 � � � � � �
�
 � �
� � ��� �
	 � �
 ���
� �$��� ��� � �
� 	�
 	 � 	 �
 � �$�
� � �
�
 � �
� � � � � � ��� 	�
 	 � 	 �
 � � �
� ��� � � '�'�' �
� � 	 � � � � �
� 	�
 	 � 	 �
 � � �
� �
	 �
� � �
�
 � � � � � �
 � � � � � � �
�
 � � �
 ��� � � � � �

38

7.4.3.3 The Checker

The changes to the checker are more substantial, since many portions of the
checker deal with types, and they must all be extended to handle the new types.

First, we extend type environments to handle new types. We will have two new
kinds of bindings: for abstract types and for type abbreviations.

� � �
� 	�
 � � � ����� �
	 � � �
	 � � � �
 � 	 � �
 � �
 � �
	 � � � �
 � 	 � �
 � �
 ���
� � ��� �
	 � � �
 ���
� ����� �
 � � � �
 � '�'�' �
� ����� �
 � � � �
 � ��� 	 ��� � � ���
� � � '�'�' �
� ����� �
 � � � �
 � ��� 	 ��� � � � � �
	 � �
� � �
 � � � ��	 � � � ��� �
� �
� � � � � � �
 � � 	 � � � �
 � 	 � �
 � �
 � � � �

� ����� �
 � � � �
 � ��� 	 ��� � � 	 � � � � � � � � �
� � �
 � � � ��	 � � � ��� �
� � � �
	 � � � 	 � ��� �
� �
� � � � � � �
 � � 	 � � � �
 � 	 � �
 � �
 � � � �

�

As we did in the previous checker, we will construct a global type environment in
which each module is bound to its type.

39

Next, we introduce a systematic way of handling abstract types and type abbbre-
viations. We have said that an abstract type behaves like a primitive type, such as	�
 �

or ����� � . Type abbreviations, on the other hand, are transparent: they behave
exactly like their expansions. So every type is equivalent to one that is given by
the grammar

Type :: �
	�
 �

Type :: �
� ��� �

Type :: � t1
Type :: �

� Type ��� Type �
Type :: �

��� �&� m
���$# � t2

where t1 is bound as an abstract type in the current type environment, or where t2
is declared as an abstract type in m. We call a type of this form an expanded type.

We write a procedure,
��� � �
 � � �
	 � � � 	�
 � � �
 � , that takes a type and expands it to

get a type of this form. For example, if
� �
 � contains a declaration for a module

���$�
� � � ���
	�
 � �
���������
� � � � ������� � � �
	 � � �

�
	 � � � � � � � � � ��� 	�
 �
�
	 � � � � � � � � � ����� � � ��� � � �

'�'�'

then calling
��� � �
 � � �
	 � � � 	�
 � � �
 � on

��� � ����� ���$# � � should return
	&
 �

, and
calling it on

��� �&�!��� ���$# � ��� should return

� ��� � ����� ���$# � � ��� 	�
 � �

since
��� �&� ��� ���$# � �

is an abstract type.

40

We perform this expansion by examining the type. If the type
�
	

is a � � � � type,
we recur on the type of the argument and the type of the result. If the type is a
named type, then we call

�
	 � � � � � � � � � � � � ��	 � � � � 	�
 � 	�
 � � 	�
 � � �
 � to see if it
is bound transparently. If it is, then we recur on its definition. If it is a qualified
type, we call

��� � �
 � � �$� � � 	 � 	 � � � �
	 � � � 	�
 � � �
 � to handle the job. If none of
these cases apply, then the type must be

	�
 �
or ����� � or a named type that is bound

as an abstract type in the type environment. In any of these situations, the type is
already expanded.

� � �
� 	�
 � ��� � �
 � � �
	 � � � 	�
 � � �
 �
� �
� � ��� � � �
	 � �
 � �
� �
������� �
	 � � � 	

� � � � � � �
	 � � � �
� � � �
	 � �!� � � � � � � �
	 � � �
� � � � � � � 	 � �
� ��� � �
 � � � 	 � � � 	&
 � � �
 � �
� � � �
	 � � � �
 ���
� ��� � �
 � � � 	 � � � 	&
 � � �
 � � � � � � � � �
	 � � � �
 ��� � �

�
 � � � � � �
	 � � �
 � � � �
� � �
 �
� � �
	 � � � � � � � � � � � � ��	 � � � � 	�
 � 	�
 � � 	�
 � � �
 �
 � � � � �
 ���
� � � �
� � ��� � � �
	 � � � ��� � �
 � � �
	 � � � 	�
 � � �
 � �
	 � � �
 ��� � �
� � �
� � � 	 � � �

� �$� � � 	 � 	 � � � �
	 � � � � �
 � � � � �
 � � � �
� � � � �
 � � �$� � � 	 � 	 � � � �
	 � � � 	�
 � � �
 � � �
 � � � � �
 � � � � �
 ��� �

� � �
� � � 	 � ��� ��� 	 �!� � � ��� � 	�
 � � � ��� � � �
 � � � �
� � � 	 � ��� '
� � �

41

To expand a qualified type
��� �&� m1

���$# � t1, first we find the type of m1 in the
current type environment. If the type of m1 declares t1 as a type abbreviation, its
definition is returned, with m1 wrapped around any named types in the definition.
For example, if ��� is bound as in the example above, applying this process to

��� � �
��� ���$# � ��� will get

� ��� � ����� ���$# � � ��� ��� �&�!��� ���$# � � �

This type is not completely expanded, of course, so we then call
��� � �
 � � �
	 � � � 	�
 � � �
 �

to finish the job, expanding it to

� ��� � ����� ���$# � � ��� 	�
 � �

as desired.

� � �
� 	�
 � ��� � �
 � � �$� � � 	 � 	 � � � �
	 � � � 	&
 � � �
 �
� �
� � ��� � � � �
 � � � � �
 � � � � �
 ���
� ����� � � �
	 � �$� � � 	 � 	 � � � �
	 � � � �
 � � � � �
 � � � � � �
� � �
 �
� � �����
� ��� �
 � � � ��� � � 	 � � � � 	&
 � 	&
 � � 	&
 � � �
 � � �
 � � �
 � � � �
� � � �
� � ��� � � � � �
	 � � �

� �$��� ��� �����
� ��� � �
	 � � � � �
	 � �
� �
 � � � ���
� � � � �
	 � � � � ����� � �
� � �
 �
� � �
	 � � � � � � � � � ��� � ��	 � � � � 	�
 � 	
 � � 	
 � � � ���
� � �
 � � � � ����� � �
� �
��� 	 ��� � � ��� � �
 	
 � � � � � 	 � ��� 	�

��� �
� � � 	 � 	 � � � � 	 � � � �
 � � � �
 � �
 � 	&
 � � � � ��� � �
 �
� �
� � ��� � � �
	 �
� ��� � �
 � � �
	 � � � 	�
 � � �
 �
� � ��� � �
 � � � � � �
	 � ��� ��� 	 ��� � � �
 � � � �
	 � �
 � � � �
� �
 ��� � �

� � �
��� �
	 � � � � � �
� � �
��� �
	 � � � � �

The procedure � ��� � �
 � � � � � �
	 � ��� ��� 	 ��� � � �
 � � � recurs on the type, wrapping
any named types in the module name.

42

� � �
� 	�
 � � ��� � �
 � � � � � � 	 � ��� � � 	 ��� � � �
 � � �
� �
� � ��� � � �
	 � �
 � � � �
� ����� � ��� � � � � � 	 � 	 � �
� �$��� ��� �
	 � � �
	

� 	&
 � � �
	 � � � � �
	 �
� ����� � � � 	 � � � � �
	 �
� � � � � � � 	 � � � �
� � � �
	 � �!� ��� � � � � �
	 � � �
� � � � � � �
	 � � � � ��� � � ��� � � �
	 � � � � � ��� � � � ��� � � � � �
	 � � � � �

�
 � � � � � �
	 � � � �
	 �
 � � � � � �$� � � 	 � 	 � � � �
	 � � � �
 � � � �
	 �
 � � � � �
� �
� � � 	 � 	 � � � � 	 � � � �����
 � � � � �
�
 � � � � �
	 �
� � � �
� � � 	 � � � ����� 	 � � �
 ��� � ��� �
� � � � � � �
��� � � � � ��� � �
 � � � � � �
	 � ��� ��� 	 ��� � � �
 � � �
� �$�
 � � ��� � �
 � � � � �
� �
	 � ��� � �
� 	 � �

� � � �

43

We can now go through the checker, making modifications to handle the new
types.

For our new checker, we make sure that all types in the manifest are already ex-
panded, so we don’t have to call

��� � �
 � � �
	 � � � 	�
 � � �
 � every time we see a type.
To do this, we build the manifest in two stages. First we build a type environment
consisting of all the module definitions. Then we build a second type environ-
ment just like the first, except that all the types are expanded. Here the procedure
��� � �
 � � ���$�
� � � � �
	 � � � 	�
 � � �
 � walks through a module type, expanding all the
types it finds.

� � �
� 	�
 � ���$�
� � � � � �
� 	�
 	 � 	 �
 � ��� � �
 	 � � � �
� �
� � ��� � � � �
�
 � �
� ��� 	 � � � ��� � �
 � � � � � �
 	 � � � � � �
�
 �
� ��� 	 � � � � � 	 � 	 � 	 � � � � �
 	 � ��� � � �
�
 � � � � �

� � �
� 	�
 � ��� 	 � � � � � 	 � 	 � 	 � � � � �
 	 � � � �
� �
� � ��� � � � �
�
 � �
� 	 � �
 � � � � � �
�
 � �
� � ��� �
	 � � �
 ���
� ����� �
 � � � �
 � ��� 	 ��� � � ���
� � �
� � ���
� � � � � �
� 	&
 	 � 	 �
 ���
 � � � � �$�
� � �
�
 � � �
� � ���
� � � � � �
� 	&
 	 � 	 �
 ��� ���$��� � � � �
	 � � � �$�
� � �
�
 � � �
� ��� 	 � � � � � 	 � 	 � 	 � � � � �
 	 � � � � � � � � � ���
 � � � � � � �

� � �
� 	�
 � ��� 	 � � � � � � �
 � � � � � �
 	 � ��� �
� �
� � ��� � � � �
�
 � � �
 ���
� ����� � ��� � � � � � �
�
 � � �
�
 � � �
� 	 � �
 � � � � � �
�
 � �
� � ��� �
	 � � �
 ���
� � ��� �
 � � � �
 � ��� 	 ��� � �����
� ���
� ������� � � � � �
� 	�
 	 � 	 �
 � �
 � � � � �
�
� � �
�
 � � �
� ��� � �
 � � � ���
� � � � �
	 � � � 	�
 � � �
 �
� �����
� ��� � � �
� 	�
 	 � 	 �
 ��� � ���
� � � � �
	 � � � �$�
� � �
�
 � � �
� �
 ���

� � ��� � � � � � � � �
�
 � � � � � � � �

44

When we process a set of definitions, we must check each expression in the type
environment established by the type definitions. For example in the module body
from example 13.,

� � 	 � � � � 	�
 �
� � � � � � � � � � � ��� � � � � �

we must check the definition of
�

in a type environment in which
�

is bound to
the type

	�
 �
. To accomplish this, we modify � �
�
 � � � � � � �����
� to recur with a

bigger type environment when it sees a type definition. We make sure to expand
the type before we record it in the type environment, so that all types in the type
environment are expanded.

� � �
� 	�
 � � ���
 � � � � � � ��� �
�
� �
� � ��� � � � �
�
 � � �
 ���
� 	 � �
 � � � � � �
�
 � �
� � �
� �$��� ��� � �
� 	�
 	 � 	 �
 � �$�
� � �
�
 � �
� � � � � � ��� 	�
 	 � 	 �
 �
 � � � ��� � �
� � ��� � � � 	 � ��� � �
 � � �
 � � �
�

� �
	 � � � � � ��� � � �
 � � � ��� �
	 � � � � � � � � � � �
� � �
 �
� � � � � � �������
����� 	 �

 � � � � 	 �
� � �
�
 � � � � � � ����� �
� � � � � �
�
 � �
� ����� �
 � � � �
 �
 � � � �
	 � �
 ��� � � � �

� � 	 � � � � �
� 	�
 	 � 	 �
 �
 � � � �
	 �
� � �
 �
� �
	 � � � � � � � � � � � ��� �
�
����� 	 �

 � � � �
	 �
� � �
�
 � � � � � � �����
�
� � � � � �
�
 � �
� ����� �
 � � � �
 � ��� 	 ��� � � 	 � � � � � � � � �
 � � �
� ��� � �
 � � �
	 � � � 	�
 � � �
 � �
	 � �
 ���
� �
 ��� � � � � � � �

45

Next, we need to modify � � � � ��� �
�
����� 	 �
 � to handle the two new kinds of dec-
larations. The first difference we must deal with is that there are now scoping
relations inside a set of declarations. For example, if we are comparing

� � 	 � � � � 	�
 � � � � ��� � 	 � ���
� � � 	 � ���

when we get to the declaration of
	
, we need to know that

�
refers to the type

	�
 �
.

So when we recur down the list of declarations, we need to extend the type envi-
ronment as we go. We do this by calling

����� �
 � � � �
 � ��� 	 ��� � � �����
�
��� � 	 �
 ,
which takes a declaration and translates it to an appropriate extension of the
type environment. We always use � �����
� � for the extension, because anything
in � ��� �
� �

must be in � �����
� � as well.

� � �
� 	�
 � � � � � �������
����� 	 �
 �
� �
� � ��� � � � ��� �
� � � ����� � � � �
 ���
� � �
 �
� �
 � � � � � ����� � � � ��� �
� �
 � � � � � ����� � � � ��� �
� � �
� �
� ����� � �
 � � � � � � ����� ���
 � � � � �$�
� � ����� � � � � �

�
 � � � � � � ����� ���
 � � � � �$�
� � ����� � � � � � �
� 	 � � � � � �
 � � � �
 � � � � �
� 	 � � � � � � �����
�
��� � 	 �
 � �$�
� � �����
� � � � �$�
� � ��� �
� � � � �
 ���
� � � � � �����
������� 	 �
 � � � � � � �����
� � � � � � � � �����
� � �
� ����� �
 � � � �
 � ��� 	 � � � � ��� �
�
����� 	 �

� �$�
� � ��� �
� � � � �
 ��� �

��� �
� � � � � �����
�
��� � 	 �
 � � � � � � ����� � � � � ����� � �

� ����� �
 � � � �
 � ��� 	 ��� � � �����
�
��� � 	 �

� �$�
� � �����
� � � � �
 ��� � � � � � � �

46

� � �
� 	�
 � ��� � �
 � � � �
 � � � 	 ��� � � �����
������� 	 �

� �
� � ��� � � � ��� � � �
 ���
� �
������� � ��� �
�
����� 	 �
 � ��� �
� �
	 � � � � � � � � � � � �����
�
����� 	 �
 �
 � � � �
	 �
� � ��� �
 � � � �
 � ��� 	 ��� � �
	 � � � � � � � � �
 � � � �
	 � �
 ��� �

� � � � � � �������
����� 	 �
 �
 � � � �
	 �
� � ��� �
 � � � �
 �
 � � � �
	 � �
 ��� �

� � � � ������� � � �
	 � � � � �������
����� 	 �
 �
 � � � �
� � ��� �
 � � � �
 � ��� 	 ��� � � � � � 	 � �
 � � � � �
 ��� � � � �

47

Now we get to the key question: how do we compare declarations?

There are four ways in which a pair of declarations can match:

� :-VAL-VAL

ty1
� : ty2

(var � ty1) � : (var � ty2)

� :-ABS-ABS

(� � � ������� � � �
	 � � t) � : (� � � ������� � � �
	 � � t)

� :-ABBREV-ABS

(
� 	 � � � � � � � � � t � ty) � : (

� � � ������� � � �
	 � � t)

� :-ABBREV-ABBREV

ty1 � ty2

(�
	 � � � � � � � � � t � ty1) � : (�
	 � � � � � � � � � t � ty2)

Two value declarations are related if and only if they declare the same variable
and the same type. Two abstract-type declarations are related if and only if they
declare the same variable. An type abbreviation always matches an abstract-type
declaration of the same name. This tells us that something with a known type
is always usable as a thing with an unknown type. But the reverse is false. For
example,

(� � � ������� � � � 	 � � t) NOT � : (�
	 � � � � � � � � � t � ty)

because the value with an abstract type may have some type other than
	�
 �

, and
we are not allowed to know.

Two type abbreviations match if they define the same type name and the two
definitions have equal expansions. Finally, a type declaration of any kind cannot
match a value declaration.

48

This gives us the following code.

� � �
� 	�
 � � � � � �������
����� 	 �

� �
� � ��� � � � ��� � � � ����� � � �
 ���
� � �
 �
� � �
 � � � � � � � ����� � � ��� � � � � � � � � � ������� � ����� � � �
� � � � �
	 � � � � ����� � � �
	 � � � ����� � � � � ����� ��� �
	 � � � ����� � � � �
 ��� �
� � �
 � � � � � �
	 � � � � ����� � � ����� � � � � � � �
	 � � � � ����� � � ����� � � �

��� �
� � �
 � � �
	 � � � � � � � � � � � ��� � � � ����� � � � �
	 � � � � � � � � � � � ����� � � ����� � � �
� � �
� 	 � � � 	 � ��� � � ����� � � �
	 � � � ����� � � � � ����� ��� �
	 � � � ����� � � � �
 ��� �
� � �
 � � �
	 � � � � � � � � � � � ��� � � � ����� � � � � � � �
	 � � � � ����� � � ����� � � �

��� �
� � �
� � ��� � � � �

� � �
� 	�
 � � �
� 	 � � � 	 � ���
� �
� � ��� � � �
	 � �
	 � � �
 ���
� � �$� � � �
� ��� � �
 � � � 	 � � � 	&
 � � �
 � �
	 � � �
 ���
� ��� � �
 � � � 	 � � � 	&
 � � �
 � �
	 � � �
 ��� � � �

49

In � � � �
	 � � we expand the types before comparing them; otherwise we proceed
as before.

� � �
� 	�
 � � � � � 	 � �
� ��� � ��� � � �
	 � �
	 � � �
 ���
� � ��� � ��� � � � � �
	 � � ��� � �
 � � �
	 � � � 	�
 � � �
 � � 	 � � �
 ��� �

� �
	 � � ��� � �
 � � �
	 � � � 	�
 � � �
 � � 	 � � �
 ��� �
� � � � � � � � ��� � 	 � � � � � � � � �

� � �
 �
'�'�' � � � �

50

Similarly, in the unifier, we add a call to
��� � �
 � � � 	 � � � 	&
 � � �
 � , so that types

that come from the program text (for example, from a bound-variable or
� ����� ���

declaration) are appropriately expanded. The main portion of the unifier is un-
changed, except that we introduce a local procedure to avoid re-expanding the
types at every recursive call.

unifier � �
	 � � � �
	 � � � � �
 � � � � � � � � ��� � ��� � � � � �
usage:

� 	�
 � � ��� � � � � � � ��� � ��� � �
 � 	 �
 � � � � � � �
����� � �
 	 � 	 ��� � � � � � � �
 � 	 �
 � � � �
	 � � � � � � ��� �
 � �
	 � � � � � � ��� '
��� 	 �����%�
 �
��� � � 	 � ��� �
� � 	 �
 � � � � � �
 	 � 	 �
� '

� � �
� 	�
 � �
 	 � 	 �
�
� �
� � ��� � � �
	 � �
	 � � �
 � � � � � � ��� � �
� ����� � ��� � �
� � �
	 � � ��� � �
 � � �
	 � � � 	�
 � � �
 � � � ��� � 	 � � � � � � � � � � � � 	 � � � �
 ��� �
� �
	 � � ��� � �
 � � �
	 � � � 	�
 � � �
 � � � ��� � 	 � � � � � � � � � � � � 	 � � � �
 ��� �
� � � � � ��� � � � � � �

'�'�' � � �

51

Last, we need to modify
� 	 � � � � � to handle qualified variable references. This

modification was straightforward in section 2, so we did not discuss it there. Now,
however, it is more interesting.

Given a qualified variable reference
��� �&� m ���$# �

var, we first find the type of
m in the current type environment. If m is an ordinary module, then we look to see
if var is bound by value declaration in the set of declarations exported by m � If so,
we wrap its named types with m � as we did in

� � � �
 � � �$� � � 	 � 	 � � � �
	 � � � 	�
 � � �
 � .
For example, if ��� is declared by

� � � � ������� � � �
	 � � �

�
	 � � � � � � � � � � � � � � � � �
� � � � � � � � � � � �

then
��� �&� ��� ���$# ���

should have type

� ��� �&� ��� ���$# � � � � � ��� �&� ��� ���$# � � ��� ��� �&� ��� ���$# � � � �

Here’s the code.

� � �
� 	�
 � �
	 � � � � �
� �
� � ��� � � ��� � � �
 � � � � � � �
� �
������� ��� � � ����� 	 �
 ��� �
� �$� � � 	 � 	 � � � � �
� � � �
� � � �
 � � � � �&��� �
 � � � �
� ����� � � � � � 	 � �

� ��� � �
 � � ������� � � � � 	 � � � 	&
 � � �
 �
� � ��� # ��� � � ���
� � � �
 � � � � 	�
 � � �
 � � �
 � � �
 � � � �
� �
 � � � �

� �$��� ��� �����
� ��� � �
	 � � � � �
	 � �
� �
 � � � ���
� � � � �
	 � � � � ����� � �
� �
 � �
 � � ���
� � ��� � �
 � � � � � �
	 � � � ��� 	 � � � � �
 � � �
� � ��� # ��� � � � � � � ����� � 	�
 � � ����� � � �&��� �
 � � � � ��� �
� �
� �
 � � � �

� � � � � � �
� � �

'�'�' � � �

52

7.5 Parameterized Modules and Explicit Dependencies

So far, all of the programs in MODULES have had a fixed set of modules. Some-
times we say the dependencies are hard-coded.

In general, such hard-coded dependencies are poor software-engineering prac-
tice. Sometimes we may want to experiment with different implementations of
the same interface. For example, in our interpreters we might want to be able to
use different implementations of environments, or different implementations of
the store or of mutable pairs. Or we might want to build a database application
and use it with different database backends.

To allow this, we would like to write a module transformer that takes, say, a mod-
ule that implements the mutable pairs interface, and produces a module that im-
plements the interpreter interface. We call such a module transformer a parame-
terized module. A parameterized module is much like a procedure, except that it
works with module values, rather than with expressed values.

We next present a sequence of examples showing parameterized modules in ac-
tion. We will use implementations of arithmetic, as in section 2, as a running
example, but in a richer language, we would use modules for larger bundles of
functionality, e.g. environments, hash tables, etc. We start with two implementa-
tions of arithmetic.

53

Example 20. The program

�����
� � � 	�
 � �
	�
 � �
������� ��� � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � � � � �
� � � ��� � � � � � �
	 � � � �
� � � � � ��� � ��� � � �

	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �
� �
� � � �

� � ��� � � � � � � � � � � ��� � � ��� �
� � � � � � � � � � � � � � ��� � � � �
	 � � � �
� ��� � � � � � � � � � � �
� � � � � � �

	 ����� ��� 	�
 � �
� ��� � �
� � � ��� �&� 	�
 � � ���$# � � �
� �
	�
 � ����� � ��� � ��� �&� 	�
 � � ���
� � � ���
	�
 � � � ��� � � � ��� � �
� � � �

has type
��� � � 	�
 � � ���$# � �

. It has value 10, but we can manipulate this value
only through the procedures that are exported from

	�
 � � . This module represents
the integer k by the expressed value 5 � k. So

�
k � � 5 � k.

54

Example 21. In this module,
�
k � ��� 3 � k.

�����
� � � 	�
 � �

	�
 � �
������� ��� � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � � � � �
� � � ��� � � � � � �
	 � � � �
� � � � � ��� � ��� � � �

	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �
� �
� � � �

� � ��� � � � � � � � � � � ��� � � � �
� � � � � � � � � � � � � � ��� � � � � �
	 � � � �
� ��� � � � � � � � � � � �
� � � � � � �

	 ����� ��� 	�
 � �

� ��� � � ��� � � 	&
 � � ���$# � � �
� �
	�
 � ����� � ��� �&� 	�
 � � ���$# � � � ���
	�
 � � � � � � �

has type
��� � � 	�
 � � ���$# � �

and has value -6.

55

Example 22. In the preceeding examples, we couldn’t manipulate the values di-
rectly, but we could manipulate them using the procedures exported by the mod-
ule. As we did in chapter 2, we can compose these procedures to do useful work.
Here we combine them to write a procedure

� � � 	�
 � that converts a value from
the module back to a value of type

	�
 �
.

�����
� � � 	�
 � �
	�
 � �
������� ��� � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � � � � �
� � � ��� � � � � � �
	 � � � �
� � � � � ��� � ��� � � �

	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �
� �
� � � �

� � ��� � � � � � � � � � � ��� � � ��� �
� � � � � � � � � � � � � � ��� � � � �
	 � � � �
� ��� � � � � � � � � � � �
� � � � � �
�

	 ��� � ��� 	�
 � �
� ��� �!� ��� �&� 	�
 � � ���$# � � �
� �
	�
 � ����� � ��� �&� 	�
 � � ���
� � � ���
	�
 � ��� � � ��� �&� 	�
 � � ���
� � � � �
	�
 � ��� � � � ��� �&� 	�
 � � ���$# � 	 � � � ��� �
	�
 � ����� ��� 	&
 � � � � 	�
 � � � � ��� �&� 	�
 � � ���$# � � � �

	 � � � � � � ��� �
 �

� �
� � � � � � � � 	�
 � � � � � � � � � �
	�
 � � � � 	&
 � � � � � � � � �

has type
	�
 �

and has value 2.

56

Example 23. Here is the same technique used with the implementation
	�
 � �

:
arithmetic,

�����
� � � 	�
 � �

	�
 � �
������� ��� � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � � � � �
� � � ��� � � � � � �
	 � � � �
� � � � � ��� � ��� � � �

	 ��� � � � �
 ����� 	 �
 � �
	 � � � � 	&
 �
� �
� � � �

� � ��� � � � � � � � � � � ��� � � � �
� � � � � � � � � � � � � � ��� � � � � �
	 � � � �
� ��� � � � � � � � � � � �
� � � � � �
�

	 ����� ��� 	�
 � �

� ��� � � ��� � � 	&
 � � ���$# � � �
� �
	�
 � ����� � ��� �&� 	�
 � � ���$# � � � ���
	�
 � ��� � � ��� �&� 	�
 � � ���$# � � � � �
	�
 � ��� � � � ��� � � 	&
 � � ���$# � 	 � � � �
� �
	�
 � ����� ��� 	�
 � � � � 	�
 � � � � ��� �&� 	�
 � � ���
� � � �

	 � � � � � � ��� �
 �

� �
��� ��� � � � � 	�
 � � � � � � � � � �
	�
 � � � � 	�
 � � � � � � � � �

also has type
	�
 �

and has value 2.

57

We’ve used the same client
� � � 	&
 � on two different implementations of arith-

metic. So let’s write
� � � 	�
 � as our first parameterized module.

Example 24. The declaration

�����
� � � � � � 	�
 � � � �$# �
�
	�
 � �
������� �
� � ��� � � � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � ��� � �
� � � ��� � � ��� � �
	 � � � �
� � � � � ��� ����� � � � �

� � � � � � 	&
 � � � ��� �&� ��� ���$# � � ��� 	�
 � � � �
	 ��� � � � �
 ����� 	 �

���$�
� � � � � � � �
� ��� � � � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � ��� � �
� � � ��� � � ��� � �
	 � � � �
� � � � � ��� ����� � � � �

� � � � 	&
 �
� � ��� � � � ��� �&� ��� ���$# � 	 � � � �
� �

	�
 ����� � � ��� �&�!��� ���$# � � � � �
	�
 ������� ��� 	�
 � � � � 	�
 � � � � ��� �&���"� ���
� � �

� 	 � � � � � �
��� �
 �

� �
��� ��� � � � � 	�
 � � � � � � � � � �
	�
 � � � 	�
 ���

defines a parameterized module. The interface says that this module takes as an
module ��� that implements the interface of arithmetic, and produces another mod-
ule that exports a

� � � 	�
 � procedure that converts ��� ’s type
�

to an integer. The
resulting

� � � 	�
 � procedure cannot depend on the implementation of arithmetic,
since here we don’t know what that implementation is!

58

Next, let’s look at a few examples of
� � � 	&
 � in action:

Example 25.

�����
� � � � � � 	�
 � � � �$# �
� ����� �������
	���
�� �����

�����
� � � 	�
 � � ����� �������
	���
�� �����

�����
� � � 	�
 � � � � � � 	�
 �
	�
 � �
������� ��� � � � 	&
 � � � ��� �&� 	�
 � � ���$# � � ��� 	&
 � � �
	 ��� � � � �
 ����� 	 �

	 ��� � ��� � � � 	�
 � � � �$# �
�
	 ��� � ��� 	�
 � �
� � � � 	�
 � � � �$# ��� 	�
 � � �

	 ��� � ��� 	�
 � �
	 ��� � ��� 	�
 � � � � � � 	�
 �
� ��� � � ��� � � ��� �&� 	�
 � � ���$# � � � ���

� ��� � � 	&
 � � ���$# � � � ���
��� � � 	&
 � � ���$# � � �
� � � �

	�
 � ��� �&� 	�
 � � � � � � 	�
 � ���
# � � � � 	�
 �
� � ��� �

has type
	�
 �

and value 2. Here we first define the modules
� � � 	�
 � � � �$# ��� , and	�
 � � . Then we apply

� � � 	�
 � � � �$# ��� to
	�
 � � , getting the module

	�
 � � � � � � 	�
 � ,
which exports the value

� � � 	�
 � .

59

Example 26.

�����
� � � � � � 	�
 � � � �$# �
� ����� �������
	���
�� �����
�����
� � � 	�
 � � ����� �������
	���
�� �����
�����
� � � 	�
 � � ����� �������
	���
�� �����

�����
� � � 	�
 � � � � � � 	�
 �
	�
 � �
������� ��� � � � 	&
 � � � ��� �&� 	�
 � � ���$# � � ��� 	&
 � � �
	 ��� � � � �
 ����� 	 �

	 ��� � ��� 	�
 � �
	 ��� � ��� � � � 	�
 � � � �$# �
�
� � � � 	�
 � � � �$# ��� 	�
 � � �

�����
� � � 	�
 � � � � � � 	�
 �
	�
 � �
������� ��� � � � 	&
 � � � ��� �&� 	�
 � � ���$# � � ��� 	&
 � � �
	 ��� � � � �
 ����� 	 �

	 ��� � ��� 	�
 � �

	 ��� � ��� � � � 	�
 � � � �$# �
�
� � � � 	�
 � � � �$# ��� 	�
 � � �

	 ��� � ��� 	�
 � �
	 ��� � ��� 	�
 � � � � � � 	�
 �
	 ��� � ��� 	�
 � �

	 ��� � ��� 	�
 � � � � � � 	�
 �

� ����� � � ��� � � 	&
 � � ���$# � � � ���
	�
 � ��� � � � ��� �&� 	�
 � � ���$# � � �
� �
	�
 � ��� � � � 	�
 � � � ��� � � 	&
 � � � � � � 	�
 � ���$# � � � � 	�
 �
	�
 � ����� � � ��� �&� 	�
 � � ���$# � � � ���
	�
 � ��� � � � ��� �&� 	�
 � � ���$# � � �
� �
	�
 � ��� � � � 	�
 � � � ��� � � 	&
 � � � � � � 	�
 � ���$# � � � � 	�
 �

	�
 � ��� � � ��� � � � � � � � � � � �
	�
 � ��� � � � � � � � � � � � � � � �
	�
 ��� � � � � 	�
 � � � � ��� � � � � � � 	�
 � � � � � � � �

has type
	�
 �

and value 0.

60

If we had replaced � � � � 	&
 � � � � � � � by � � � � 	�
 � � � � ��� � , the program would
not be well-typed, because

� � � 	�
 � �
expects an argument from the

	�
 � �
rep-

resentation of arithmetic, and
� � � � is a value from the

	&
 � � representation of
arithmetic.

61

7.5.1 Implementation

7.5.1.1 Syntax

Adding parameterized modules to our language is much like adding procedures.
A parameterized module has a module type that is much like a � � � � type.

� � ���
� � � � �
	 � �
� � � � � � � 	 � �
 � 	 � 	 �
� � � � �����
� � � � �
	 � � � � � � � � � ���$�
� � � � �
	 � � � � � �
� � � � � �����
� � � � �
	 � � �

These types are different from the types of ordinary procedures, not only because
they denote functions from module values to module values, but also because they
give a name to the input to the function. This is necessary, because the type of the
output may depend on the type of the input, as in the type of

� � � 	�
 � � � �$# �
� :

� � �"� � � � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � ��� � �
� � � ��� � � ��� � �
	 � � � �
� � � � � ��� ����� � � � �

� � � � � � 	�
 � � � ��� � �!�"� ���
# � � ��� 	�
 � � � �

� � � 	&
 � � � �
�
� takes a module �"� and produces a module whose type depends
not just on the type of ��� , which is fixed, but on its value. Types such as this are
called dependent types.

62

We will need new kinds of module bodies to create a module procedure, to refer
to the bound variable of a module procedure, and to apply such a procedure.

� � ���
� � � � � ��� 	
� � ���$�
� � � � � � � � �
� � � 	 � �
 � 	 � 	 �
� � � � ���$�
� � � � �
	 � � � � �
���$�
� � � � � ��� 	 �

� � � � � �����
� � � � � �$� 	 �

� � ���
� � � � � ��� 	
� 	 � �
 � 	 � 	 �
� �
� �
� � �����
� ��� � � ��� 	 �

� � ���
� � � � � ��� 	
� � � � 	 � �
 � 	 � 	 �
� 	 � �
 � 	 � 	 ��� � � � �
� ��� � �����
� ��� � � ��� 	 �

63

7.5.1.2 The Interpreter

For the interpreter, we add a new kind of module value, analogous to a procedure.

� � �
� 	�
 � � � ����� �
	 � � �����
� ��� � � � � � � �����
� � � � � � � � ���
� �
 � � �����
� � � � � � � � �
� � 	�
 � 	�
 � � �
 � 	 � �
 � �
 ��� � �

� � � � � � ������� � � � � � � � �
� � � �
��� 	 � ��� � � �
� ����� 	 �����
� � � � � �$� 	 � �
� �
� � � � � �
 � �
 � 	 � �
 � �
 ��� � � �

We extend �
� � � � � � � � ������� � � � ����� 	 to handle the new possibilities for a module

body. This code is much like that for variable references and procedure calls in
expressions.

� � �
� 	�
 � � � � � � � � � � ������� � � � ����� 	
� �
� � ��� � � � � ����� 	 �
 ���
� �
������� ������� � � � ����� 	 � � ����� 	
� � �
�
 � � ���$�
� � � � � ��� 	 � � �
�
 � � '�'�' �
� � �
� � �����
� � � � � �$� 	 � � ��� �
� � ��� # ��� � �����
� � � � 	�
 � �
 � � �
� �
 ��� �

� � � � � � ������� � � � ����� 	 � � � � �
� � � �
	 � � � � � �$� 	 �
� � � � � � � ���
� � � � � � � � � � � � �
� � � � ��� 	 �
 ��� �

� � ��� � �����
� � � � � �$� 	 � ��� � � � ���
 � �
� ����� � � ����� � � � � � � � � ��� # ��� � ���$�
� � � � 	�
 � �
 � ��� � � � �
 ��� �

� ���
 � � � � � � � ��� # ��� � ������� � � � 	&
 � �
 � ���
 � �
 ��� � �
� �$��� ��� �����
� ��� � � � � � �!����� � � � � � �
� � � � � � �����
� ��� � � � � � � � � � � �
� � � � �$� 	 �
 ���
� � � � � � � � � � �����
� � � � � �$� 	 � � � ��� 	
� ����� �
 � � �
 � ��� 	 ��� � �����
� � � � � � �
� ���
 � � � � � �
 ��� � �

� � �
��� � � � � � � �
��� � � � � � � � � � � � � �����
� � � � � �$� 	
� �$�
 � � � ��� ��	
 �
 � � � � � �����
� ��� � � � � � � � � �
����� � � � � � � � � � � � � � �

64

7.5.1.3 The Checker

We can write down rules like the ones in the last lecture for our new kinds of mod-
ule bodies. We write (� tenv body � � ty instead of (�
	 � � � � � � � ���
� � � � � ��� 	 tenv body � � ty
in order to make the rules fit on the page.

(� m tenv � � tenv � m �

(� body
� m � ty1

�
tenv � � ty2

(� � � � � � � � � m � ty1
� body tenv � � � � m � ty1

� � � ty2
�

A module variable reference gets its type from the type environment, as one might
expect. A ���$�
� � � � � � � � gets its type from the type of its parameter and the type
of its body, just like the procedures in CHECKED.

65

The rule for application of a parameterized module is

tenv(m1) �
� � m � ty2

� � � � ty3
� tenv(m2) � ty2 ty2

� : ty
�

2

(� � m1 m2
� tenv � � ty3

� m2
�
m �

An application of a parameterized module is treated much like a procedure call in
CHECKED. But there are two important differences.

First, the type of the operand (ty2 in the rule below) need not be exactly the same
as the parameter type (ty

�

2). We require only that ty2
� : ty

�

2. This is sufficient,
since ty2

� : ty
�

2 implies that any module that satisfies the interface ty2 also sat-
isfies the interface ty

�

2, and is therefore an acceptable argument to the module
procedure.

Second, we substitute the operand m2 for m in the result type ty3. This is where
we use the dependent types in our type system. For example, consider

� � � 	�
 � � � �$# �
� ,
which has type

� � �"� � � � � � ������� � � �
	 � � �

� �
� � � �

� � ��� � � � ��� � �
� � � ��� � � ��� � �
	 � � � �
� � � � � ��� ����� � � � �

� � � � � � 	�
 � � � ��� � �!�"� ���
# � � ��� 	�
 � � � �

When we apply
� � � 	�
 � � � �$# �
� to

	�
 � � , as we did in example 26., we get a mod-
ule with type

� � � � 	�
 � � � ��� � � 	&
 � � ���$# � � � � 	�
 � � �

When we apply it to
	&
 � �

, we get a module with type

� � � � 	�
 � � � ��� � � 	&
 � � ���$# � � � � 	�
 � � �

From these rules, it is easy to write down the code for
�
	 � � � � � � � ���
� � � � � ��� 	 .

66

��� ������� � � � ����� 	 � � �
 � ��� �����
� ��� � �
	 � �
� � �
� 	�
 � �
	 � � � � � � �����
� � � � � �$� 	
� �
� � ��� � � � � ����� 	 � �
 � �
� �
������� ������� � � � ����� 	 � � ����� 	
� � �
� � �����
� � � � � �$� 	 � � �
 � � � �
� � ��� # ��� � �����
� � � �
 � � � � 	�
 � � �
 � � �
 � � �
 � � � � �

� � �
�
 � � ���$�
� � � � � ��� 	 � � �
�
 � �
� �
 � � ���$�
� � � � �
	 � �
� � �
�
 � � � � � � ����� � � �
�
 � � �
 ��� � �

� � ��� � �����
� � � � � �$� 	 � ��� � � � � 	 � ���
 � � 	 � �
� ����� � � ����� � � � �
	 � �

� � ��� # ��� � ������� � � �
 � � � � 	&
 � � �
 � � �
 � ����� � � � 	 � � �
� ���
 � � �
	 � �
� � ��� # ��� � ������� � � �
 � � � � 	&
 � � �
 � � �
 � ���
 � � 	 � � � �

� �$��� ��� �����
� ��� � �
	 � �!����� � � � �
	 � �
� �
 � � � ���
� � � � �
	 � � � �
	 � � � �
 ���
� � � � � � �
��� � � � �
	 � � � � � � �����
� ��� � � ��� 	
� ��� � � ��� � � � � ��� ��	
 �
 � � �
��� � ��� �
� 	 � � � � ���
� � � � � �
����� � � � 	 � � �

� � � � � � �����
� ��� � �
	 � � � � �
��� � �
 � � � ��� � ��� � � � � �
	 � �
� ��� � � � � �
	 � � �

� 	 � �
 � � � � � � �����
� � � � �
	 � �
���
 � � �
	 � � ��� � ��� � � � � �
	 � � � �
 ��� �

� ��� 	 ��� � � � � � �����
� ��� � � ��� � 	 �$��� 	 �
 � �
��� � �
��� � ��� � � � � �
	 � � ���
 � � � 	 � � � � � �$� 	 � �

� � �
 � � � � 	&
 � ������� � � � � 	 � �
� ��� � � � � �
	 � � � �
��� � �
 � � �!���
 � � 	 � � �

� � �
��� � � � � � � �
��� � � � �
	 � � � � � � �����
� ��� � � ��� 	
� �
 #
 � �
 �����
� ��� � 	 � ��� � �
����� � � � �
	 � � � � � � �

� � � � � � ������� � � � ����� 	 � � �
 � � � � � �
	 � � � � � ��� 	 �
� ����� � � � ��� 	 � �
	 � �

� �
	 � � � � � � ���$�
� � � � � ��� 	 � � � ��� 	
� ����� �
 � � � �
 � ��� 	 ��� � � ���
� � � � �
 � � � � � � 	 � � � �
 ��� � � �

� � � � � � ������� � � � � 	 � � � �
 � � � � � �
	 � � � ��� 	 � �
	 � � � � � � � �

This code uses the procedure
� �
 � � � � 	�
 � ���$�
� � � � �
	 � � to perform the substitu-

tion in the result type.

67

Last, we extend � � � � ���
� � � � �
	 � � to handle the new types. The rule for function
module types is

ty
�

1
� : ty1 ty2[m

� � �
m

�
] � : ty

�

2[m
� � �

m]
� � m � ty1

� � � ty2
� � : � � m

� � ty
�

1
� � � ty

�

2
�

For � � m � ty1
� � � ty2

� to be a subtype of � � m
� � ty1
� � � � ty2

� � , it must be the
case that any module m1 of the first type can be used in place of a module m2 of
the second type. That means that any argument to m2 can be passed to m1, and
any module value that m1 produces can be used in place of a value of m2.

For the first requirement, we insist that ty
�

1
� : ty1 Note the reversal: we say that

subtyping is contravariant in the parameter type.

What about the result types? We might ask that ty2
� : ty

�

2, but that is not quite
right. ty2 may have instances of the module variable m in it, and ty

�

2 may have
instances of m

�
in it. So to compare them, we rename both m and m

�
to some fresh

module variable m
� �
. Once we do that, we can compare them sensibly. This leads

to the requirement ty2[m
� � �

m
�
] � : ty2[m

� � �
m].

68

The code to decide this relation is relatively straightforward.

We call
��� � �
 � � �����
� ��� � �
	 � � � 	�
 � � �
 � to make sure all of the types are ex-

panded, and when deciding ty2[m
� � �

m
�
] � : ty2[m

� � �
m] we extend the type envi-

ronment with the appropriate type for m
� �
.

� � �
� 	�
 � � � � �����
� � � � �
	 � �
� �
� � ��� � � � � � 	 � � � � � � 	 � � � � �
 ���
� ����� � � � � � 	 � � �

� ��� � �
 � � ������� � � � � 	 � � � 	&
 � � �
 � � � �
	 � � � � �
 ��� �
� � � � 	 � � �

� ��� � �
 � � ������� � � � � 	 � � � 	&
 � � �
 � � � �
	 � � � � �
 ��� � �
� �
������� ������� � � � � 	 � � � � � 	 � � �
� �
 � � �����
� � � � �
	 � � � � �����
� � �
� �
������� ������� � � � � 	 � � � � �
	 � � �

� �
 � � �����
� � � � �
	 � � � � �����
� � �
� � � � � �����
�
��� � 	 �
 � � �����
� � � �����
� � � �
 ��� �

� � �
� � ��� � � �
� � � � � � ������� � � � � 	 � � � � �
��� � �
 � � � � � �
��� � � �
	 � � � � � �
	 � � � �
� �
������� ������� � � � � 	 � � � � �
	 � � �

� � � � � � ������� � � � � 	 � � � � �
��� � �
 � � � � � �
��� � � �
	 � � � � � �
	 � � � �
� � ��� � �
 � � �
 � � � � ��� ��� � � �����
� � � �
 � � � � ����� � �
 � � � � � � �
� � ��� � � � � �
	 � � �

� � �
 � � � � 	&
 � ������� � � � � 	 � �
� � �
	 � � � � �
��� � �
 � � � �
 � � �
 � � � � �

� � � �
	 � � �

� � �
 � � � � 	&
 � ������� � � � � 	 � �
� � �
	 � � � � �
��� � �
 � � � �%
 � � �
 � � � � � �

� �
 �
� � � � �����
� ��� � �
	 � � � �
��� � � �
	 � � � � �
��� � � �
	 � � � � �
 ���
� � � � �����
� ��� � �
	 � � � � �
	 � � � � � �
	 � � �

� ����� �
 � � � �
 � ��� 	 � � � ������� � �

 � � �
 � � � � ����� � � � 	 � � � � �
 ��� � � � � �

� � �
� � ��� � � � � � � �

And now we’re done. Go have a hot fudge sundae, with ice cream, fudge, and
nuts, all from different containers. Don’t worry about how any of the pieces are
constructed, so long as they taste good!

69

	Introduction
	The Basic Module System
	Implementing the Basic Module System
	Syntax
	The Interpreter
	The Checker

	Modules that declare types
	Type Abbreviations
	Abstract Type Declarations
	Implementation
	Syntax
	The Interpreter
	The Checker

	Parameterized Modules and Explicit Dependencies
	Implementation
	Syntax
	The Interpreter
	The Checker

