Recursive Adaptive Computations Using Perobject Visitors

Ahmed Abdelmeged

Northeastern University
mohsen@ccs.neu.edu

Abstract

Adaptive Programming allows developers to write structure-
shy programs. However, in Adaptive Programming, recur-
sive computations are known to require a good deal of boiler
plate code to express. This paper describes Perobject Vis-
itors; a programming construct that allows developers to
write recursive adaptive computations at a higher level of
abstracton. This paper also describes a prototype implemen-
tation for perobject visitors.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: Modules and interfaces, Object-oriented
design methods; D.3.3 [Language Constructs and Fea-
tures): Patterns, Recursion

General Terms Design, languages

Keywords aspect-oriented programming, temporary inter-
type declaration, visitor pattern

1. Introduction

The well known visitor design pattern [4] provides a mech-
anism for attaching new functionality to existing class struc-
tures. While doing so, it achieves a clean separation of the
navigational code in all accept methods from the computa-
tional code in all visit methods.

Adaptive programming (AP) [8] takes the visitor design
pattern one step further; in AP, developers write a traversal
specification in a high level domain specific language. The
traversal specification then gets compiled against the class
structure of the application to generate all necessary accept
methods.

In the visitor pattern, the accept methods call the visit
methods. Therefore, a visit method does not invoke its suc-
cessors’ visit method directly. Instead, it returns to its calling
accept method which, in turn, invokes the next visit method.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Oopsla "07 October 21-25, 2007, Montreal.

Copyright © 2007 ACM [to be supplied]. .. $5.00

Karl Lieberherr

Northeastern University
lieber@ccs.neu.edu

Therefore, a visit method cannot postpone a pending op-
eration until the successor visit method finishes. As a re-
sult, writing a set of visit method to implement a non-tail-
recursive computation becomes hard.

AP provides the developer with two specialized types of
visit methods: before and after. Developers can use a before
method exactly as they use an old-fashioned visit method.
Every before method has a corresponding after method that
can be used to express the pending operations. At runtime,
an invocation of a visit method is associated with an object
that is passed as a parameter to the method. Visit methods
are typically bundled together in a visitor class.

A shortcoming of AP is that dual invocations of visit
methods have separate environments. A typical work around
is to use the visitor class as a blackboard for sharing envi-
ronments between visit methods. AP does not provide any
special support for sharing environments even between dual
invocations of visit methods.

In case of recursive object structures, it becomes nec-
essary to organize the blackboard using a stack. Using the
stack adds two unnecessary complications to the code: first,
code for initializing and managing the stack. Second, vari-
ables must be accessed and mutated while they are on the
stack.

This paper presents perobject visitors. Perobject visitors
are normal visitors that uses perobject variables. A perob-
ject variable is a boiler-plate-free programming construct for
sharing environments between a set of invocations of visit
methods. Perobject visitors are not tied to AP and can be
easily adapted to other situations, for example, to the gen-
eral visitor pattern.

The rest of this paper is organized as follows: section
1.1 presents a motivating example that shall be used also as
a running example. Section 2 presents perobject variables.
In section 3 we describe our implementation of perobject
variables. Section 4 discusses some of the related and future
work. Section 5 concludes this paper.

1.1 Motivating Example

In the capacity checking problem [2], containers are com-
posites that contain elements as well as other containers. El-
ements are primitives that have weight. Every container has
a capacity. Fig. 1 shows the UML class diagram of contain-

Item *
Element Container -items
-weight : int -capacity : int (@

Figure 1. Containers UML class diagram

ers. The weight of a container is the sum of the weights of
all elements that are inside it either directly or indirectly. A
container whose weight exceeds its capacity is said to be vi-
olating the capacity condition. Given a certain configuration
of containers, it is desired to count the total number of vio-
lations to the capacity condition.

2. Perobject Variables

The code in Fig. 2 shows a solution to the container checking
problem using visitors. There are two points about this code
that are worth making: First, a new integer is allocated and
pushed on top of the stack whenever a container object
is encountered during the traversal. This is done by the
before method associated with that container object. There
is no other place where anything is pushed on top of the
stack. Therefore, every element in the stack has an associated
container object. Whenever an after method is executed for
a certain container object, the integer on top of the stack at
that time is the integer associated with its container object
which has been pushed by its corresponding before method.

Second, whenever an after method is executed for a con-
tainer object c¢. The second integer on top of the stack is as-
sociated with the container object that encloses c.

Perobject visitors simplify this code by using a perob-
ject variable myWeight (Fig. 3) whose scope is a set of
classes.. The scope of myWeight is the entire traversal of
Container while the extent of a value of myWeight either
reaches down to an Element-object or another Container-
object without traversing into that Container-object. Instead
of using a stack, the developer declares a normal integer field
in the visitor class and annotates it to be a perobject vari-
able. In this case, a new integer field with the same name
will be added to the every container object. Since, the same
container object is passed as a parameter to the two corre-
sponding visit methods associated with it, the newly added
field becomes automatically shared between the two dual
visit methods.

Moreover, during the execution of any visit method, the
integer field that is declared in the visitor class and has the
perobject annotation becomes an alias of the newly added
field to the innermost enclosing container. We call this the

public class CheckerVisitor extends Visitor{
int totalViolations = 0;
Stack < MutableInteger > myWeight =
new Stack < MutableInteger > ();
public CheckerVisitor ()
{ myWeight.push(new Mutablelnteger (0)); }
public MutableInteger currentMyWeight ()
{ return myWeight.peek(); }
public MutableInteger previousMyWeight ()
{ return myWeight.elementAt(myWeight.size ()—2); }
public void before(Container c)
{ myWeight.push(new Mutablelnteger (0)); }
public void after(Container c¢){
previousMyWeight () . setl (previousMyWeight (). getl ()
+ currentMyWeight (). getl());
if (c.capacity < currentMyWeight().getl())
totalViolations ++;
myWeight. pop () ;

public void before(Element e){

currentMyWeight () . setl (currentMyWeight (). getl ()
+ e.weight);

}

Figure 2. Solving the container checking problem using DJ
visitors

aliasing invariant. The code shown in Fig. 3 uses perobject
variables to implement exactly the same thing as the code in
Fig. 2.

public class CheckerV isitor extends Visitor{

int totalViolations = 0;
@PerObject (
className = ”Container”;
initializer = 707

) int myWeight;
public void before(Element e){
myWeight = myWeight + e.weight;

public void after(Container c¢){
myWeight = myWeight + c.myWeight;
boolean vio = c.capacity < c.myWeight;
if (vio){
totalViolations ++;
¥

}

Figure 3. Solving the container checking problem using
visitors

A perobject variable defined at class C' is accessible in
all beforelafter methods of classes that are reachable from
C without visiting C' again or by visiting C' and stopping at
C. If traversal strategies are used to define traversals (this is
a special application of the general perobject visitor pattern)
then we can be more precise about the scope and extent of a
perobject variable.

A traversal strategy is a general graph sg with source s
and target ¢ [7]. When applied to a class graph cg, a traversal
graph tg (basically the cross product of sg and cg) defines
the scope of the strategy. We assume the special case where
the perobject variable is at the source of the strategy: The
scope of the perobject variable is the set of all classes in the
traversal graph for sg and cg. The extent of a specific value

of the perobject variable is the union of the following set of
objects:

e The objects selected by the strategy sg2 which is like sg
but "bypassing s” has been added to every edge of sg.
sg2 visits all objects that are not contained in another s
object.

e The objects selected by strategy sg that are also selected
by the strategy from ”s to-stop s”. This selects all top-
level s-objects.

3. Implementation

As a prototype, we developed an annotation processor for
Java source files containing perobject annotations[1]. We
build our implementation on top of DJ which is a Java li-
brary for AP [9]. Fig. 4 shows the perobject annotation type.
Perobject annotations annotate local variables. A perobject
annotation has two elements: className and initializer. The
className element specifies a class that will be extended to
store a copy of the annotated local variable. The initializer
specifies the initial value of the newly introduced store.

public @interface PerObject{
String className () ;
String initializer();

Figure 4. Perobject annotation type

The annotation processor generates an aspect that handles
three tasks:

1. Introduce necessary fields to the classes specified in an-
notations.

2. Initialize the introduced fields.
3. Maintain the aliasing invariant mentioned in section 2.

The first task is achieved via Aspect] intertype declarations.
The second task is achieved by advising the constructor. Fig.
5 shows a snippet of the Aspec] code that is responsible for
maintaining the aliasing invariant in the code shown in Fig.
3. The two situations where the aliasing invariant breaks are
when the visitor nests down into the structure and when it
backs up. The two events that signal these two situations are:
the end of a before method, and the beginning of an after
method. The two pointcuts in Fig. 5 trap these two events.
To illustrate how the aliasing invariant is maintained at these
two situations consider the the following example: suppose
that there are three nested container objects C'1, C2, C3,
where C?2 is nested inside C'1 and C'3 is nested inside C2.
Suppose that there is a visitor class V' that has a perob-
ject variable p at container objects. Suppose that the before
method invocation at C'2 has just ended and it’s time to move
on to C'3. At this time, V.p holds the latest value of C'1.p. We
swap V.p and C2.p. By doing so, we hit two birds: first, V.p
has the value of C'2.p and that is needed to keep the aliasing
invariant when moving on to C'3. Second, C2.p saves the

latest value of C'l.p till the visitor comes back to C'2.p. At
this point, V.p will be holding the latest value of C2.p and
C2.p will be holding the latest value of C'l.p. Now, we do
another swap and the aliasing invariant is met.

pointcut beforeContainer (CheckerVisitor v, Container c):
target(v) && args(c) && within(CheckerVisitor)
&& execution (public void before(Container));

after (CheckerVisitor v, Container c):
beforeContainer(v,c){
int tmp = c.myWeight;
c.myWeight v.myWeight;
v.myWeight tmp ;

}

pointcut afterContainer (CheckerVisitor v, Container c):
target (v) && args(c) && within(CheckerVisitor)
&& execution (public void after(Container));

before(CheckerVisitor v, container.Container c):
afterContainer (v,c){

int tmp = c.myWeight;

c.myWeight = v.myWeight;

v.myWeight = tmp;

}

Figure 5. Aspect] code for keeping the perobject invariane

4. Related and Future Work

Ovlinger and Wand [10] propose a domain specific language
as a means to specify recursive traversals of object struc-
tures used with the visitor pattern. The domain specific lan-
guage provides traversal flexibility at a higher level than
hand-coded traversals, but is not robust with respect to data
structure changes, unlike AP. With perobject variables we
achieve an important goal: We can express complex recur-
sive traversals in a structure-shy way which was not possible
before.

The idea of environmental acquisition [5] is related to
perobject variables. According to Lorenz[3], environmental
acquisition was invented in the context of the visitor pat-
tern. While with environmental acquisition information is
acquired through the (reversed) containment structure us-
ing explicit declarations, perobject variables are generously
broadcast through the containment structure specified by
some traversal.

Perobject visitors are a special kind of aspect; perobject
visitors define temporary intertype declarations (or introduc-
tions) [6], extending the class hierarchy for the duration of
a traversal. While Aspect] has intertype declarations that are
all permanent, the programmer can create aspects with point-
cuts that allow access only during a traversal.

As for normal visitors, the visitor method signatures de-
fine pointcuts on the traversal and the visitor method bod-
ies define advice. Perobject visitors also provide additional
pointcuts and advice to maintain access to the enclosing ob-
ject of a perobject variable.

Perobject visitors were inspired by functional visitors [2].
Functional visitors also support structure-shy expression of

complex recursive traversals as well as powerful composi-
tion of visitors; but the the communication between visitor
methods introduced by perobject variables makes many pro-
gramming tasks easier.

Regarding future work we have at least two items on the
agenda:

e We want to study composition of perobject visitors. It
appears that normal inheritance is quite powerful in this
respect, although it is not perfect. For example, we have
decomposed the tangled code in Figure 3 in a sequence of
4 inheriting visitors: CounterAccumulator inherits from
Updater which inherits from VioVisitor which inher-
its from WeightVisitor. WeightVisitor is responsible for
summing the weights, VioVisitor for computing whether
we have a violation, Updater is responsible for invoking
an accumulator if there is a violation and finally Counter-
Accumulator is a specific accumulator that counts. The
VioVisitor and the Updater communicate through a per-
object variable. Such a composition has the advantage
that we can easily replace parts. For example, instead of
counting the violations, we may want to collect the vio-
lating containers into a list. This is achieved by replacing
the CounterAccumulator by a ListAccumulator.

® Our current implementation builds on a heavily reflective
implementation [9]. For example, fig. 6 shows the entry
point for the CheckerVisitor class from fig. 3: Currently,

ClassGraph cg = new ClassGraph(true, false);
cg.traverse (myContainer ,
”from Container to Element”,
new CheckerVisitor());

Figure 6. Entry point for CheckerVisitor

the traverse method is executed using reflection even
when the necessary information is known statically. We
would like to analyze the way the visitor uses both the
traversal and perobject variables and generate more effi-
cient code. For example, when a perobject variable is al-
ways used for the current object and not for the enclosing
object, there is no need to activate the before/after advice
that maintains the aliasing invariant.

5. Conclusions

In this paper we discussed the problem of expressing recur-
sive adaptive computations. We presented perobject visitors
as a pattern for writing boiler-plate-free recursive adaptive
computations. We also presented a prototype implementa-
tion based on Java annotations and Aspect] code generation.
We have applied perobject visitors to both query tasks (like
the container example we used in this paper) and translation
tasks (like reducing a CNF formula in a SAT solver). Per-
object variables are a useful addition to the general Visitor
design pattern as well as to the more specialized Adaptive
Programming.

Acknowledgments

We would like to thank Therapon Skotiniotis and Bryan
Chadwick for their useful feedback during the preparation
of this research.

References

[1] Ahmed Abdelmeged. Perobject Visitors. http://www.ccs.
neu.edu/home/mohsen/perobject/, 2007.

[2] Bryan Chadwick and Therapon Skotiniotis and Karl Lieber-
herr. Functional Visitors Revisited. Technical Report NU-
CCIS-06-03, Northeastern University, Boston, May 2006.

[3] David H. Lorenz. private communication, 2007.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] Joseph Gil and David H. Lorenz. Environmental Acquisition—
A new inheritance-like abstraction mechanism. In Proceed-
ings of the 11'™ Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
214-231, San Jose, California, October 6-10 1996. OOP-
SLA’96, Acm SIGPLAN Notices 31(10) October 1996.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold. An Overview of
Aspect]. In Jorgen Knudsen, editor, European Conference
on Object-Oriented Programming, Budapest, 2001. Springer
Verlag.

[7

—

Karl Lieberherr, Boaz Patt-Shamir, and Doug Orleans.
Traversals of object structures: Specification and efficient im-
plementation. ACM Trans. Program. Lang. Syst., 26(2):370—
412, 2004.

[8] Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao.
Adaptive object-oriented programming using graph-based
customization. Communications of the ACM, 37(5):94-101,
May 1994.

[9] Doug Orleans and Karl J. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns,
Kyoto, Japan, September 2001. Springer Verlag. 8 pages.

[10] Johan Ovlinger and Mitchell Wand. A language for
specifying recursive traversals of object structures. In
Proceeings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 99), pages 70-81, 1999.

