
Language support for AOP
AspectJ and beyond

Mario Südholt

www.emn.fr/sudholt

INRIA and École des Mines de Nantes

OBASCO project, Nantes, France

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.1/30

Plan

• AOP and AspectJ

• AspectJ: end of story?

• Beyond AspectJ

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.2/30

I. AOP and AspectJ

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.3/30

Defining characteristics of AOP?

• Quantification : modularization of crosscutting
concerns

• Obliviousness : non-anticipation; incremental
development

⇒ Tackle crosscutting in large-scale applications
throughout the software life cycle

More probably later from Bob . . .

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.4/30

What’s new? (1)

• What about computational reflection ?
• 3-Lisp, CLOS, Reflex [Tanter et al.,

OOPSLA’03], . . .
• General enough reflective system can

“emulate” AOP systems
• Difficult to understand
• Performance issues
• Semantics issues, lack of correctness

guarantees

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.5/30

What’s new? (2)

• What about transformation systems ?
• General enough transformation system can

“emulate” AOP systems
• SOOT, Recoder, CIL, . . .
• Difficult to understand
• Correctness properties difficult to handle

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.6/30

Yes, it is! (in a sense)

Goals for AOP

• Provide abstractions general enough to
modularize (some or all) concerns.

• Be specific enough to make such modularization
understandable, tractable and amenable to
testing, analysis, verification of properties.

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.7/30

AspectJ in one slide

Base program: critical, access

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.8/30

AspectJ in one slide

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.8/30

AspectJ in one slide

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.8/30

AspectJ in one slide

aspect ProfBar pertarget call(void Base.acc(int)) {

int calls = 0;

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}

}

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.8/30

AspectJ in one slide

aspect ProfBar pertarget call(void Base.acc(int)) {

int calls = 0;

static int Base.calls = 0;

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}

}

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.8/30

Characteristics of AspectJ

+ Join points

+ Pointcuts

+ Advice

+ Aspects

+ Inter-type declarations

+– Aspect instantiation (coarse-grained)

+– Aspect activation (on/off)

+– Aspect composition (dominate)

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.9/30

II. AspectJ: end of story?

• Other characteristics of aspect languages

• Other base languages, execution environments

• More expressive pointcut languages

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.10/30

Other characteristics of aspect
languages

• Aspect instantiation
E.g., runtime instances, Kevin’s talk

• Aspect activation
E.g., enable/disable aspects at runtime

• Aspects of aspects
E.g., layered aspects, Kevin’s talk

• Aspect composition
E.g. for conflict resolution

• Weaver semantics
E.g., no aspects of aspects

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.11/30

A world outside Java?

• Crosscutting concerns in large (legacy) C
applications

• Ex.: optimization of web caches without cache
flushes

• New aspect languages for expression of complex
context conditions

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.12/30

A principled view on AO for
programming

• Matthias F.:

1. “CS = reconcile hacking with Math”
• Hacking: property-free programming
• Math: freewheeling property proving

2. “AOP currently has no valid foundation, is
nothing but hacking”

3. “AOP cannot be firmly grounded and
reasonably used because of destruction of
encapsulation properties”

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.13/30

One (my) not-so principled
answer

1. “CS = reconcile hacking with Math”
Ok.

2. “AOP currently has no valid foundation”
Essentially ok, but first (small) results on aspects:
formal semantics, interaction analysis, modularity
and aspects.

3. “AOP cannot be reasonably used”
Pragmatic answer: Application of AOP to
interfaces (e.g., integration aspects for distributed
middlewares)

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.14/30

Other pointcut languages (1)

• Stateful pointcuts (explicit state in pointcuts)
• Sequence pointcuts:

Ex.: protocol translation and bug correction
• Temporal logic pointcuts:

Ex.: manipulation of Linux kernel code
• Regular expression pointcuts:

Enable interference analysis among aspects

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.15/30

Other pointcut languages (2)

• AOP and distributed applications
• Often integration/configuration of existing

distribution platforms (see Kevin’s talk)
⇒ distribution implicit to aspects

• Remote pointcuts [Nishizawa et al.,
AOSD’04]: explicit hosts, advice server

• Trade-off: hide complexity vs. flexibility

• Data-flow pointcuts [Masuhara, Kawauchi;
APLAS’03], e.g., for security enforcement.
Efficiency realization

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.16/30

III. Beyond AspectJ

1. Dynamic aspects for C system-level applications

2. Temporal logic pointcuts for Linux kernel evolution

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.17/30

1. Dynamic aspects for C
system-level applications

• Software evolution frequently to be performed on
running systems (e.g., high-availability servers)

• Ex. concerns in a web cache
• Modification of caching policies
• Optimizations (e.g., protocol transformations

TCP→UDP)
• Bug corrections

• Some large applications:
Open-source web-cache “squid”: 9 MB of source

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.18/30

Ex.: explicit sequences for buffer
overflows

• Aspect language with explicit sequences

seq(call(void∗ malloc(size_t))

&& args(allocatedSize) && return(buffer) ;

write(buffer) && size(writtenSize)

&& if(writtenSize> allocatedSize)

then reportOverflow(); ∗

call(void free(void∗)))

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.19/30

Aspect language

• Primitive pointcuts: calls and variables accesses
(to global and local variables)

• cflow for nested calls (like AspectJ)

• Sequences with
• Conditionals over data

Principally equalities (e.g. over file handles)
• Means for ressource handling

Optimize ressource usage (e.g., reuse of file
handles)

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.20/30

Realization: the Arachne system

• Dynamic aspect application for C without program
interruption
www.emn.fr/x-info/arachne

• Rewrite binary code on the fly to weave (and
deweave) aspects

• Current weaving semantics excludes nested
aspects
Simplified implementation, somewhat more
efficient

• [Ségura et al, AOSD’03] [Fritz et al, AOSD’05]

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.21/30

2. Temporal logic pointcuts for
Linux kernel evolution

• Problem: support extensions of the Linux kernel
over a range of kernel versions
E.g., over one major version number

• Ex.: support application-specific schedulers
E.g., for multi-media streaming

• Context: integrate an existing system for
scheduler development with the kernel

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.22/30

Bossa: new schedulers for plain
old Linux

• Bossa: system for scheduler development
www.emn.fr/x-info/bossa

• DSL: definition of scheduling policies

• Support runtime for hierachical, prioritized, etc.,
schedulers

• Runtime overhead < 5%

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.23/30

Bossa architecture

• Events mediate between (instrumented) kernel
and Bossa runtime, which supports policies

scheduler
Bossa

Kernel module
event

scheduler state

bossa.schedule

elected process

system
run−time

Bossa

Kernel

events

events
Bossa
with

kernel
Standard

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.24/30

Mediation through events
crosscuts the kernel

• Instrument kernel code + drivers (˜ 100 MB
source code)

• Instrumentation for Bossa:
• ˜ 400 instructions changed in about 150 files

• Previously manually done for Linux kernel 2.4

• Can we do better with aspects?

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.25/30

Problem: context dependencies

• Generate events for
schedule instructions

• Other instructions
relevant (e.g., thread
state, yield)

• Problem: thread
context implicit

• Explicit context depen-
dencies vs. efficiency remove_wait_queue();

reg_write();

retval=−EINTR;

run_sub_pcl();

add_wait_queue();

set_current_state(TASK_INTERRUPTIBLE);

schedule();

if(signal_pending(current))

schedule();

true

false

while(...)

n

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.26/30

Solution: temporal logic pointcuts

• Use temporal predicates to express control-flow
relationships

n : Rewrite(n,schedule_running)

If n` AX4(A4(¬changeOfState() U changeToRunning()))

“Change current instruction to schedule running if
for all backword pathes starting from the predecessor
node, all backward pathes change to running without
previous changes to the state.”

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.27/30

Results

• Transformational system for Bossa integration: 25
rules

• Implementation based on CIL yields exact
instrumentation
⇒ no overhead to manual instrumentation

• 6 bugs of manual instrumentation detected

• [Åberg et al., ASE’03]

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.28/30

Conclusion

• AOP is relevant to software development

• AOP interesting from theoretical and pratical
viewpoint

• AspectJ is an interesting language and tool
but not the end of the story

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.29/30

Future work

• (Almost) everything still to be done

• AOP for distributed programming
• Remote pointcut: extend language,

implementation, remote aspect calculus

• Aspect interactions
• Generalize first results over regular

expressions, use of model checking

• Aspects and components
• Aspects over components with explicit

protocols
“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.30/30

	Plan
	
	Defining characteristics of AOP?
	What's new? qquad (1)
	What's new? qquad (2)
	Yes, it is! (in a sense)
	AspectJ in one slide
	Characteristics of AspectJ
	
	Other characteristics of aspect languages
	A world outside Java?
	A principled view on AO for programming
	One (my)
not-so principled answer
	Other pointcut languages quad (1)
	Other pointcut languages quad (2)
	
	1. Dynamic aspects for C system-level applications
	Ex.: explicit sequences for buffer overflows
	Aspect language
	Realization: the Arachne system
	2. Temporal logic pointcuts for Linux kernel evolution
	Bossa: new schedulers for plain old Linux
	Bossa architecture
	Mediation through events crosscuts the kernel
	Problem: context dependencies
	Solution: temporal logic pointcuts
	Results
	Conclusion
	Future work

