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“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.1/30



Plan

• AOP and AspectJ

• AspectJ: end of story?

• Beyond AspectJ
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I. AOP and AspectJ
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Defining characteristics of AOP?

• Quantification : modularization of crosscutting
concerns

• Obliviousness : non-anticipation; incremental
development

⇒ Tackle crosscutting in large-scale applications
throughout the software life cycle

More probably later from Bob . . .
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What’s new? (1)

• What about computational reflection ?
• 3-Lisp, CLOS, Reflex [Tanter et al.,

OOPSLA’03], . . .
• General enough reflective system can

“emulate” AOP systems
• Difficult to understand
• Performance issues
• Semantics issues, lack of correctness

guarantees
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What’s new? (2)

• What about transformation systems ?
• General enough transformation system can

“emulate” AOP systems
• SOOT, Recoder, CIL, . . .
• Difficult to understand
• Correctness properties difficult to handle
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Yes, it is! (in a sense)

Goals for AOP

• Provide abstractions general enough to
modularize (some or all) concerns.

• Be specific enough to make such modularization
understandable, tractable and amenable to
testing, analysis, verification of properties.
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AspectJ in one slide

Base program: critical, access
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AspectJ in one slide

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));
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AspectJ in one slide

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}
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AspectJ in one slide

aspect ProfBar pertarget call(void Base.acc(int)) {

int calls = 0;

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}

}
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AspectJ in one slide

aspect ProfBar pertarget call(void Base.acc(int)) {

int calls = 0;

static int Base.calls = 0;

pointcut accesses(Base r): call(void Base.acc(int)

&& target(r)

&& cflow(call(void Base.crit(int))));

void around(Base r): critAcc(r) {

calls++;

if (ok()) proceed(r);

}

}
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Characteristics of AspectJ

+ Join points

+ Pointcuts

+ Advice

+ Aspects

+ Inter-type declarations

+– Aspect instantiation (coarse-grained)

+– Aspect activation (on/off)

+– Aspect composition (dominate)
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II. AspectJ: end of story?

• Other characteristics of aspect languages

• Other base languages, execution environments

• More expressive pointcut languages
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Other characteristics of aspect
languages

• Aspect instantiation
E.g., runtime instances, Kevin’s talk

• Aspect activation
E.g., enable/disable aspects at runtime

• Aspects of aspects
E.g., layered aspects, Kevin’s talk

• Aspect composition
E.g. for conflict resolution

• Weaver semantics
E.g., no aspects of aspects
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A world outside Java?

• Crosscutting concerns in large (legacy) C
applications

• Ex.: optimization of web caches without cache
flushes

• New aspect languages for expression of complex
context conditions
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A principled view on AO for
programming

• Matthias F.:

1. “CS = reconcile hacking with Math”
• Hacking: property-free programming
• Math: freewheeling property proving

2. “AOP currently has no valid foundation, is
nothing but hacking”

3. “AOP cannot be firmly grounded and
reasonably used because of destruction of
encapsulation properties”
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One (my) not-so principled
answer

1. “CS = reconcile hacking with Math”
Ok.

2. “AOP currently has no valid foundation”
Essentially ok, but first (small) results on aspects:
formal semantics, interaction analysis, modularity
and aspects.

3. “AOP cannot be reasonably used”
Pragmatic answer: Application of AOP to
interfaces (e.g., integration aspects for distributed
middlewares)
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Other pointcut languages (1)

• Stateful pointcuts (explicit state in pointcuts)
• Sequence pointcuts:

Ex.: protocol translation and bug correction
• Temporal logic pointcuts:

Ex.: manipulation of Linux kernel code
• Regular expression pointcuts:

Enable interference analysis among aspects
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Other pointcut languages (2)

• AOP and distributed applications
• Often integration/configuration of existing

distribution platforms (see Kevin’s talk)
⇒ distribution implicit to aspects

• Remote pointcuts [Nishizawa et al.,
AOSD’04]: explicit hosts, advice server

• Trade-off: hide complexity vs. flexibility

• Data-flow pointcuts [Masuhara, Kawauchi;
APLAS’03], e.g., for security enforcement.
Efficiency realization
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III. Beyond AspectJ

1. Dynamic aspects for C system-level applications

2. Temporal logic pointcuts for Linux kernel evolution
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1. Dynamic aspects for C
system-level applications

• Software evolution frequently to be performed on
running systems (e.g., high-availability servers)

• Ex. concerns in a web cache
• Modification of caching policies
• Optimizations (e.g., protocol transformations

TCP→UDP)
• Bug corrections

• Some large applications:
Open-source web-cache “squid”: 9 MB of source
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Ex.: explicit sequences for buffer
overflows

• Aspect language with explicit sequences

seq( call(void∗ malloc(size_t))

&& args(allocatedSize) && return(buffer) ;

write(buffer) && size(writtenSize)

&& if(writtenSize> allocatedSize)

then reportOverflow(); ∗

call(void free(void∗)) )
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Aspect language

• Primitive pointcuts: calls and variables accesses
(to global and local variables)

• cflow for nested calls (like AspectJ)

• Sequences with
• Conditionals over data

Principally equalities (e.g. over file handles)
• Means for ressource handling

Optimize ressource usage (e.g., reuse of file
handles)
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Realization: the Arachne system

• Dynamic aspect application for C without program
interruption
www.emn.fr/x-info/arachne

• Rewrite binary code on the fly to weave (and
deweave) aspects

• Current weaving semantics excludes nested
aspects
Simplified implementation, somewhat more
efficient

• [Ségura et al, AOSD’03] [Fritz et al, AOSD’05]
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2. Temporal logic pointcuts for
Linux kernel evolution

• Problem: support extensions of the Linux kernel
over a range of kernel versions
E.g., over one major version number

• Ex.: support application-specific schedulers
E.g., for multi-media streaming

• Context: integrate an existing system for
scheduler development with the kernel
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Bossa: new schedulers for plain
old Linux

• Bossa: system for scheduler development
www.emn.fr/x-info/bossa

• DSL: definition of scheduling policies

• Support runtime for hierachical, prioritized, etc.,
schedulers

• Runtime overhead < 5%
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Bossa architecture

• Events mediate between (instrumented) kernel
and Bossa runtime, which supports policies

scheduler
Bossa

Kernel module
event

scheduler state

bossa.schedule

elected process

system
run−time

Bossa

Kernel

events

events
Bossa
with

kernel
Standard
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Mediation through events
crosscuts the kernel

• Instrument kernel code + drivers (˜ 100 MB
source code)

• Instrumentation for Bossa:
• ˜ 400 instructions changed in about 150 files

• Previously manually done for Linux kernel 2.4

• Can we do better with aspects?

“Language support for AOP”; Mario S üdholt; INRIA/EMN; March 10, 2005 – p.25/30



Problem: context dependencies

• Generate events for
schedule instructions

• Other instructions
relevant (e.g., thread
state, yield)

• Problem: thread
context implicit

• Explicit context depen-
dencies vs. efficiency remove_wait_queue();

reg_write();

retval=−EINTR;

run_sub_pcl();

add_wait_queue();

set_current_state(TASK_INTERRUPTIBLE);

schedule();

if(signal_pending(current))

schedule();

true

false

while(...)

n
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Solution: temporal logic pointcuts

• Use temporal predicates to express control-flow
relationships

n : Rewrite(n,schedule_running)

If n` AX4(A4(¬changeOfState() U changeToRunning()))

“Change current instruction to schedule running if
for all backword pathes starting from the predecessor
node, all backward pathes change to running without
previous changes to the state.”
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Results

• Transformational system for Bossa integration: 25
rules

• Implementation based on CIL yields exact
instrumentation
⇒ no overhead to manual instrumentation

• 6 bugs of manual instrumentation detected

• [Åberg et al., ASE’03]
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Conclusion

• AOP is relevant to software development

• AOP interesting from theoretical and pratical
viewpoint

• AspectJ is an interesting language and tool
but not the end of the story
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Future work

• (Almost) everything still to be done

• AOP for distributed programming
• Remote pointcut: extend language,

implementation, remote aspect calculus

• Aspect interactions
• Generalize first results over regular

expressions, use of model checking

• Aspects and components
• Aspects over components with explicit

protocols
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