
1.264 Lecture 4

Software Process: CMM
Unified Modeling Language (UML)

lieber
Note
Pittsburgh, PA, Feb. 15, 2005 - Watts S. Humphrey, a fellow of the Carnegie Mellon® Software Engineering Institute (SEI) has been awarded the 2003 National Medal of Technology, the highest honor awarded by the President of the United States to America’s leading innovators. A formal ceremony will take place March 14, 2005 at the White House.

Capability Maturity Model for Software

• Developed at Software Engineering Institute (SEI),
Carnegie-Mellon University (www.sei.cmu.edu)

• De facto standard for software process
assessment

• Five level model
– 1: Initial
– 2: Repeatable
– 3: Defined
– 4: Managed
– 5: Optimized

• Predictability, effectiveness and control of
software processes improve as organization
moves up these levels

lieber
Note
Humphrey came to the SEI in 1987 after 27 years with IBM Corporation (see bio <humphreybio.pdf>). Since joining the SEI, Humphrey developed the basis for the Capability Maturity Model for Software (SW-CMM), which became the generally accepted standard for assessing and improving software processes worldwide. Thousands of organizations throughout the world have used the SW-CMM, and it has been adapted for use in fields other than software engineering, with more than 120 different models in existence. The SW-CMM led to the Capability Maturity Model Integration (CMMI) Product Suite, which was released in 2002.

CMM Motivation

• 20 years of unfulfilled promises about
productivity and quality gains from new
software technology

• Organizations realized fundamental
problem is the inability to manage the
software process

• CMM provides guidance on how to evolve
toward a culture of software engineering
and rational management

CMM Level 1: Initial

• Ad hoc, occasionally chaotic
• Few processes defined
• Success depends on individual effort and

heroics

CMM Level 2: Repeatable

• Basic project management processes established
to track cost, schedule, functionality

• Discipline in place to repeat earlier successes on
projects with similar applications

• Key processes focus on basic project
management controls
– Requirements management
– Software project planning
– Software project tracking and oversight
– Software subcontract management
– Software quality assurance
– Software configuration management

• At level 2, you can measure what’s going on, and
that helps understand future projects

CMM Level 3: Defined

• Software process for management and development
is documented, standardized and integrated into an
overall process for the organization

• All projects use approved, tailored version of
standard process

• Key process areas focus on institutionalizing
effective process
– Organization process focus
– Organization process definition
– Training program
– Integrated software management
– Software product engineering
– Intergroup coordination
– Peer reviews

• At level 3, you begin to have some control; you can
actually project times/costs and make some choices

CMM Level 4: Managed

• Detailed measures of software process and
product quality are collected

• Process and products are quantitatively
understood and controlled

• Key processes focus on quantitative
understanding of process
– Quantitative process management
– Software quality management

• At level 4 you have real control: you can
measure and manage all aspects of the project

CMM Level 5: Optimizing

• Continuous process improvement through
quantitative feedback

• Piloting innovative technology and ideas
• Key process areas focus on continual process

improvement
– Defect prevention
– Technology change management
– Process change management

• At level 5, you not only have control but are
efficient

ISO 9000

• International Standards Organization (ISO)
– National standards bodies from 100+ countries

• ISO 9000
– Family of QA standards for framework, models,

specifications for quality management systems
– Best practices applied to production

• ISO 9001
– QA standards for design, development and service

organizations
– Guidelines for software are ISO 9000-3
– 20 requirements must be met
– Documenting and standardizing processes to develop

end product
– ISO 9001 does not standardize products

ISO 9000 cont

• ISO 9000 certification mandatory to do business
in Europe, and becoming so in Pacific Rim and
eventually Americas

• General approach
– Develop a quality team
– Say what you do: document processes, usually via flow

diagrams
– Do what you say
– Prove it: annual audits

• After completing these four tasks, independent
firm audits and grants certification

• Often, no real change results from ISO 9000

Unified Modeling Language

• Object-oriented modeling language, migrated from
relational database modeling
– Standard managed by Object Mgt Group (CORBA)
– Rational Rose, from Rational Corp, is a common

implementation of UML. Many other vendors available now.
• Combines previously competing approaches

– Rumbaugh Object Modeling Technique (OMT)
– Shlaer-Mellor method
– Booch method

• Modest level of use currently, becoming common

Unified Modeling Language, p.2

• Why is UML coming into wider use?
– Speed up requirements process
– Lessen information loss between requirements and design

processes, and between design and implementation
– Communication: clearer than natural language, provides a level of

precision, but avoids details
– Supports iterative development (i.e., spiral model)

• Supports both high level requirements/design in early spirals and
detailed requirements/design later

• UML is just the modeling language
– Rational Unified Process (RUP) is a recommended process, based

on using UML
• Inception (requirements)
• Elaboration (design)
• Construction (development): “extreme programming” fashionable
• Transition (test, implementation)

Unified Modeling Language, p.3

• Used in requirements:
– Deployment diagram, component diagram to show high level view

of system
– Use cases, which are very structured scenarios used to define

system requirements
• Good basic approach, but needs narrative to support

• Used in design:
– Data models (not strictly part of UML) are done in conjunction with

class (object) models and correspond closely
• Often done area by area and then consolidated

– Activity diagrams, used to model workflows, to find duplicate
processes that can be eliminated

– Prototyping used for risky, critical, difficult parts of system

UML static model diagrams
• Use case diagram

– Drawings and structured descriptions of steps in workflows
• Class diagram

– Internal structure of system, extension of entity-relationship
diagram.

– Three elements in each entity: name, attributes, methods
• Deployment diagram

– Physical components: processors, workstations, network
• Package or Component diagram

– High level model of physical software architecture
– Consists of modules, which are grouped in packages
– Packages contains definition of group of classes (entities,

methods)

Use Case Example
Use Case Name Locate Orders and Products Using Order Number and Zip

Summary Allow user to locate their customer and order info for the items to be returned by entering an order
number (usually located on the invoice) and zip code.

Iteration Filled

Events 1. System displays search screen
2. User enters search criteria. The search criteria in this case are:

a. Order Number (usually located on the invoice)
b. Billing Zip Code

3. System retrieves and displays customer’s order and order details

Exception Paths 1. If no search results were located then:
a. The system will display an error message that this information was not found
b. The system will redisplay the search using order number and zip code screen
c. The user will enter the search attributes
d. The system retrieves and displays customer’s order and order details

2. If the customer’s search fails three times consecutively then:
a. The system will display an error message apologizing for not finding the order and suggesting that the
user call customer service
b. The user can select to try the search again or go elsewhere on the site

Trigger Customer has logged in or called in, is identified and chooses ‘new return’ option

Assumptions Orders and product data are correct and current through previous day. Customer data is current
through previous day. (All must be real-time for in-store returns)

Preconditions 1. User has selected this command from the retailer’s customer service page
2. The user has purchased a product from this retailer
3. The user has the order # (from e-mail receipts, the invoice, or other means)

Postconditions 1. The system located and displayed the order and order details (products)

Related Business
Rules

1. Note an annoyance: zip codes change. Check old and new during transition period
2. What if a customer wants to return items from two orders? Ok; allow multiple selection.

Notes --

History Todd Clarke – 3/15/01 - Façade iteration
Todd Clarke – 3/16/01 - Filled iteration

Use Case Example, p.2

Search by customer
 attributes

CSR Customer

Return product

«uses»

Actors (stick figures): CSR, Customer
Use Cases (ovals): Search, return

Relationship(line, arrow)

Class Diagrams

• Used in requirements, design and implementation:
– Conceptual, to represent general entities in system
– Specification, where we specify what each entity (class) will do

(but not how)
• List the methods/actions

– Implementation
• Detailed class diagram of actual software (Java or C++)

• List attributes, same as data model
• List methods/operations/functions

– Activities naturally associated with the data in the entity
• Also model constraints, preconditions, postconditions, etc.

that are laid out in the use cases
• We often don’t model everything—too hard to read

– Focus on key parts of system

Class Diagram

+getHazClass()
+getDescr()

-UNNbr
-HazClass
-Description

ChemicalProduct

+getName()

-UNNbr
-ChemicalName

ChemicalName -End1

1..*

-End2

*

LiquidProduct Solid ProductGasProduct

ChemicalAnalysis

Deployment diagram

Server Workstation
*20

«send»ElectronicTagScanner
*4

-WirelessSend

*

-WirelessRecv

*

Printer

-End5*

-End6*

Package diagram similar but more detailed

Dynamic models

• While static models are done for the system as a
whole, dynamic models are done only for key
components

• State diagram
– Specifies behavior of an object (entity)

• Sequence diagram (or ladder diagram)
– Shows details of scenario and messages that flow

between objects over time
– Heavily used in standards

• Collaboration diagram
– Shows flow of messages as a graph.

State diagram

Activ e
Account

AccountOv erdu
e

Collections

Terminated

Inactiv e

Sequence diagram

C u s t o m e r S e c u r it y

W e b S e s s io n

D a t a b a s e

E n t e rN a m e P a s s w o rd ()

R e a d N a m e P a s s w o rd ()

C re a t e S e s s io n ()

Q u e ry O rd e rs ()

O rd e r

N e w O rd e r()

V e r if y N a m e P a s s w o rd ()

G e t O rd e rH e a d e r()

G e t O rd e rI t e m s ()
S a v e O rd e r()

I n f o rm O u t O f S t o c k ()

V e r if y F in a l()

S a v e F in a l()

C o m m it ()

UML Summary

• Visio demo (Software->UML Model has all types)
• Use UML after:

– Writing scenarios and narratives as an initial requirements
document

• Refine them into use cases
– Preparing the initial data model

• Add operations/methods to the entities, after understanding the
data, to create a class diagram

• Use UML package and component models to give overview
of the system, in requirements

• Use UML state, collaboration, sequence models selectively
in complex parts of the system

• UML is becoming a ‘universal’ language: new staff coming
to a project can read it, and this reduces the learning curve
very substantially

	1.264 Lecture 4
	Capability Maturity Model for Software
	CMM Motivation
	CMM Level 1: Initial
	CMM Level 2: Repeatable
	CMM Level 3: Defined
	CMM Level 4: Managed
	CMM Level 5: Optimizing
	
	
	
	ISO 9000
	ISO 9000 cont
	Unified Modeling Language
	Unified Modeling Language, p.2
	Unified Modeling Language, p.3
	UML static model diagrams
	Use Case Example
	Use Case Example, p.2
	Class Diagrams
	Class Diagram
	Deployment diagram
	Dynamic models
	State diagram
	Sequence diagram
	UML Summary

