Recurrences

Objective

- running time as recursive function
- solve recurrence for order of growth
- method: substitution
- method: iteration/recursion tree
- method: MASTER method
- prerequisite:
- mathematical induction, recursive definitions
- arithmetic manipulations, series, products

Pipeline

Problem

Algorithm

Running Time Recursion

Solve Recursion

Running time

- will call it $T(n)=$ number of computational steps required to run the algorithm/program for input of size n
- we are interested in order of growth, not exact values
- for example $T(n)=\Theta\left(n^{2}\right)$ means quadratic running time
- $T(n)=O(n \log n)$ means $T(n)$ grows not faster than CONST* $n^{*} \log (n)$ for simple problems, we know the answer right away
- example: finding MAX of an array
- solution: traverse the array, keep track of the max encountered
- running time: one step for each array element, so n steps for array of size n; linear time $T(n)=\Theta(n)$

Running time for complex problems

- complex problems involve solving subproblems, usually
- init/prepare/preprocess, define subproblems
- solve subproblems
- put subproblems results together
- thus $\mathrm{T}(\mathrm{n})$ cannot be computed straight forward
- instead, follow the subproblem decomposition

Running time for complex problems

- often, subproblems are the same problem for a smaller input size:
- for example max(array) can be solved as:
- split array in array_Left, array_Right
- solve max(array_Left), max (array_Right)
- combine results to get global max
$\Rightarrow \operatorname{Max}\left(A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right)$
- if ($\mathrm{n}==1$) return a_{1}
- $\mathrm{k}=\mathrm{n} / 2$
- max_left $=\operatorname{Max}\left(\left[a_{1}, a_{2}, \ldots, a_{k}\right]\right)$
- max_right $=\operatorname{Max}\left(\left[a_{k+1}, a_{k+2}, \ldots, a_{n}\right]\right)$
- if(max_left>max_right) return max_left
- else return max_right
- $T(n)=2^{*} T(n / 2)+O(1)$

Running time for complex problems

- many problems can be solved using a divide-andconquer strategy
- prepare, solve subproblems, combine results
- running time can be written recursively
$-T(n)=$ time(preparation) + time(subproblems) + time(combine)
- for MAX recursive: $T(n)=2^{*} T(n / 2)+O(1)$

Running time for complex problems

- many problems can be solved using a divide-andconquer strategy
- prepare, solve subproblems, combine results
- running time can be written recursively
$-T(n)=$ time(preparation) + time(subproblems) + time(combine)
- for MAX recursive: $T(n)=2^{*} T(n / 2)+O(1)$

Running time for complex problems

- many problems can be solved using a divide-andconquer strategy
- prepare, solve subproblems, combine results
- running time can be written recursively
$-T(n)=$ time(preparation) + time(subproblems) + time(combine)
- for MAX recursive: $T(n)=2^{*} T(n / 2)+O_{1}$

Recurrence examples

- $T(n)=2 T(n / 2)+O(1)$
- $T(n)=2 T(n / 2)+O(n)$
- 2 subproblems of size $n / 2$ each, plus $O(n)$ steps to combine results
$T(n)=4 T(n / 3)+n$
- 4 subproblems of size $n / 3$ each, plus n steps to combine results
$T(n / 4)+T(n / 2)+n^{2}$
- a subproblem of size $n / 4$, another of size $n / 2 ; n^{2}$ to combine
- want to solve such recurrences, to obtain the order of growth of function T

Substitution method

$T(n)=4 T(n / 2)+n$

- STEP1 : guess solution, order of growth $T(n)=O\left(n^{3}\right)$
- that means there is a constant C and a starting value n_{0}, such that $T(n) \leq C n^{3}$, for any $n \geq n_{0}$
- STEP2: verify by induction
- assume $T(k) \leq k^{3}$, for $k<n$
- induction step: prove that $T(n) \leq C n^{3}$, using $T(k) \leq C k^{3}$, for $k<n$

$$
\begin{align*}
T(n) & =4 T\left(\frac{n}{2}\right)+n \tag{1}\\
& \leq 4 c\left(\frac{n}{2}\right)^{3}+n \tag{2}\\
& =\frac{c}{2} n^{3}+n \tag{3}\\
& =c n^{3}-\left(\frac{c}{2} n^{3}-n\right) \tag{4}\\
& \leq c n^{3} ; \text { if } \frac{c}{2} n^{3}-n>0, \text { choose } c \geq 2 \tag{5}
\end{align*}
$$

Substitution method

- STEP 3 : identify constants, in our case $c=2$ works
- so we proved $T(n)=O\left(n^{3}\right)$
- thats correct, but the result is too weak
- technically we say the bound $O\left(n^{3}\right)$ "cubic" is too lose
- can prove better bounds like $T(n)$ "quadratic" $T(n)=O\left(n^{2}\right)$
- Our guess was wrong! (too big)
- lets try again : STEP1: guess $T(n)=O\left(n^{2}\right)$
- STEP2: verify by induction
- assume $T(k) \leq C k^{2}$, for $k<n$
- induction step: prove that $T(n) \leq C n^{2}$, using $T(k) \leq C k^{2}$, for $k<n$

Substitution method

- Fallacious argument

$$
\begin{align*}
T(n) & =4 T\left(\frac{n}{2}\right)+n \tag{1}\\
& \leq 4 c\left(\frac{n}{2}\right)^{2}+n \tag{2}\\
& =c n^{2}+n \tag{3}\\
& =O\left(n^{2}\right) \tag{4}\\
& \leq c n^{2} \tag{5}
\end{align*}
$$

- cant prove $T(n)=O\left(n^{2}\right)$ this way: need same constant steps 3-4-5
- maybe its not true? Guess $O\left(n^{2}\right)$ was too low?
- or maybe we dont have the right proof idea
- common trick: if math doesnt work out, make a stronger assumption (subtract a lower degree term)
- assume instead $T(k) \leq C_{1} k^{2}-C_{2} k$, for $k<n$
- then prove $T(n) \leq C_{1} n^{2}-C_{2} n$, using induction

Substitution method

$$
\begin{aligned}
T(n) & =4 T\left(\frac{n}{2}\right)+n \\
& \leq 4\left(c_{1}\left(\frac{n}{2}\right)^{2}-c_{2} \frac{n}{2}\right)+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { for } c_{2}>1
\end{aligned}
$$

- So we can prove $T(n)=O\left(n^{2}\right)$, but is that asymptotically correct?
- maybe we can prove a lower upper bound, like O(nlogn)? NOPE
- to make sure its the asymptote, prove its also the lower bound
- $T(n)=\Omega\left(n^{2}\right)$ or there is a different constant d s.t. $T(n) \geq d n^{2}$

Substitution method: lower bound

- induction step

$$
\begin{aligned}
T(n) & =4 T\left(\frac{n}{2}\right)+n \\
& \geq 4 d\left(\frac{n}{2}\right)^{2}+n \\
& =d n^{2}+n \geq d n^{2}
\end{aligned}
$$

- now we know its asymptotically close, $T(n)=\Theta\left(n^{2}\right)$
- hard to make the initial guess $\Theta\left(n^{2}\right)$
- need another method to educate our guess

Iteration method

$$
\begin{aligned}
& T(n)=n+4 T\left(\frac{n}{2}\right) \\
= & n+4\left(\frac{n}{2}+4 T\left(\frac{n}{4}\right)\right)=n+2 n+4^{2} T\left(\frac{n}{2^{2}}\right) \\
= & n+2 n+4^{2}\left(\frac{n}{2^{2}}+4 T\left(\frac{n}{2^{3}}\right)\right)=n+2 n+2^{2} n+4^{3} T\left(\frac{n}{2^{3}}\right) \\
= & \cdots \\
= & n+2 n+2^{2} n+\ldots+2^{k-1} n+4^{k} T\left(\frac{n}{2^{k}}\right) \\
= & \sum_{i=0}^{k-1} 2^{i} n+4^{k} T\left(\frac{n}{2^{k}}\right)
\end{aligned}
$$

Iteration method

$$
\begin{aligned}
& T(n)=n+4 T\left(\frac{n}{2}\right) \\
= & n+4\left(\frac{n}{2}+4 T\left(\frac{n}{4}\right)\right)=n+2 n+4^{2} T\left(\frac{n}{2^{2}}\right) \\
= & n+2 n+4^{2}\left(\frac{n}{2^{2}}+4 T\left(\frac{n}{2^{3}}\right)\right)=n+2 n+2^{2} n+4^{3} T\left(\frac{n}{2^{3}}\right) \\
= & \cdots \\
= & n+2 n+2^{2} n+\ldots+2^{k-1} n+4^{k} T\left(\frac{n}{2^{k}}\right) \\
= & \sum_{i=0}^{k-1} 2^{i} n+4^{k} T\left(\frac{n}{2^{k}}\right) ; \quad \quad \text { want } k=\log (n) \Leftrightarrow \frac{n}{2^{k}}=1
\end{aligned}
$$

Iteration method

$$
\begin{aligned}
& T(n)=n+4 T\left(\frac{n}{2}\right) \\
= & n+4\left(\frac{n}{2}+4 T\left(\frac{n}{4}\right)\right)=n+2 n+4^{2} T\left(\frac{n}{2^{2}}\right) \\
= & n+2 n+4^{2}\left(\frac{n}{2^{2}}+4 T\left(\frac{n}{2^{3}}\right)\right)=n+2 n+2^{2} n+4^{3} T\left(\frac{n}{2^{3}}\right) \\
= & \cdots \\
= & n+2 n+2^{2} n+\ldots+2^{k-1} n+4^{k} T\left(\frac{n}{2^{k}}\right) \\
= & \sum_{i=0}^{k-1} 2^{i} n+4^{k} T\left(\frac{n}{2^{k}}\right) ; \quad \operatorname{want}^{k}=\log (n) \Leftrightarrow \frac{n}{2^{k}}=1 \\
= & n \sum_{i=0}^{\log (n)-1} 2^{i}+4^{\log (n)} T(1) \\
= & n \frac{2^{l o g}(n)}{2-1}+n^{2} T(1) \\
= & n(n-1)+n^{2} T(1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Iteration method

$$
\begin{aligned}
& T(n)=n+4 T\left(\frac{n}{2}\right) \\
= & n+4\left(\frac{n}{2}+4 T\left(\frac{n}{4}\right)\right)=n+2 n+4^{2} T\left(\frac{n}{2^{2}}\right) \\
= & n+2 n+4^{2}\left(\frac{n}{2^{2}}+4 T\left(\frac{n}{2^{3}}\right)\right)=n+2 n+2^{2} n+4^{3} T\left(\frac{n}{2^{3}}\right) \\
= & \cdots \\
= & n+2 n+2^{2} n+\ldots+2^{k-1} n+4^{k} T\left(\frac{n}{2^{k}}\right) \\
= & \sum_{i=0}^{k-1} 2^{i} n+4^{k} T\left(\frac{n}{2^{k}}\right) ; \quad \quad \text { want } k=\log (n) \Leftrightarrow \frac{n}{2^{k}}=1
\end{aligned}
$$

- math can be messy
- recap sum, product, series, logarithms
- iteration method good for

$$
\begin{aligned}
& =n \sum_{i=0}^{\log (n)-1} 2^{i}+4^{\log (n)} T(1) \\
& =n \frac{2^{\log (n)}-1}{2-1}+n^{2} T(1) \\
& =n(n-1)+n^{2} T(1)=\Theta\left(n^{2}\right)
\end{aligned}
$$ guess, but usually unreliable for an exact result

- use iteration for guess, and substitution for proofs
- stopping condition
$-T(. .)=.T(1)$, solve for k

Iteration method: visual tree

Iteration method: visual tree

- compute the tree depth: how many levels till nodes become leaves $T(1)$? $\log (n)$
- compute the total number of leaves $T(1)$ in the tree (last level): $4^{\log (n)}$
- compute the total additional work (right side) $n+2 n+4 n+\ldots=n(n-1)$
- add the work $4^{\log (n)}+n(n-1)=\Theta\left(n^{2}\right)$

Iteration Method : derivation

- $T(n)=n^{2}+T(n / 2)+T(n / 4)$

$$
\begin{aligned}
& T(n)=n^{2}+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right) \\
&= n^{2}+\left(\frac{n}{2}\right)^{2}+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\left(\frac{n}{4}\right)^{2}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+T\left(\frac{n}{4}\right)+2 T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+\left(\frac{n}{4}\right)^{2}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+2\left(\frac{n}{8}\right)^{2}+2 T\left(\frac{n}{16}\right)+2 T\left(\frac{n}{32}\right)+\left(\frac{n}{16}\right)^{2}+ \\
& T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{8}\right)+3 T\left(\frac{n}{16}\right)+3 T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right)
\end{aligned}
$$

Iteration Method : derivation

- $T(n)=n^{2}+T(n / 2)+T(n / 4)$

$$
\begin{aligned}
& T(n)=n^{2}+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right) \\
&= n^{2}+\left(\frac{n}{2}\right)^{2}+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\left(\frac{n}{4}\right)^{2}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+T\left(\frac{n}{4}\right)+2 T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&=\left.n^{2}+\frac{5}{16} n^{2}+\left(\frac{n}{4}\right)^{2}\right)+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+2\left(\frac{n}{8}\right)^{2}-2 T\left(\frac{n}{16}\right)+2 T\left(\frac{n}{32}\right)+\left(\frac{n}{16}\right)^{2} \\
& T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{8}\right)+3 T\left(\frac{n}{16}\right)+3 T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right)
\end{aligned}
$$

Iteration Method : derivation

- $T(n)=n^{2}+T(n / 2)+T(n / 4)$

$$
\begin{aligned}
& T(n)=n^{2}+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right) \\
&= n^{2}+\left(\frac{n}{2}\right)^{2}+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\left(\frac{n}{4}\right)^{2}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+T\left(\frac{n}{4}\right)+2 T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
&=\left.n^{2}+\frac{5}{16} n^{2}+\left(\frac{n}{4}\right)^{2}\right)+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+2\left(\frac{n}{8}\right)^{2}+2 T\left(\frac{n}{16}\right)+2 T\left(\frac{n}{32}\right)+\left(\frac{n}{16}\right)^{2} \\
& T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{8}\right)+3 T\left(\frac{n}{16}\right)+3 T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right) \\
&= n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{16}\right)+T\left(\frac{n}{32}\right)+\left(\frac{n}{8}\right)^{2}+3 T\left(\frac{n}{32}\right)+3 T\left(\frac{n}{64}\right)+3\left(\frac{n}{16}\right)^{2}+ \\
& 3 T\left(\frac{n}{64}\right)+3 T\left(\frac{n}{128}\right)+3\left(\frac{n}{32}\right)^{2}+T\left(\frac{n}{128}\right)+T\left(\frac{n}{256}\right)+\left(\frac{n}{64}\right)^{2}
\end{aligned}
$$

Iteration Method : derivation

- $T(n)=n^{2}+T(n / 2)+T(n / 4)$

$$
\begin{aligned}
& \quad T(n)=n^{2}+T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right) \\
& = \\
& =n^{2}+\left(\frac{n}{2}\right)^{2}+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+\left(\frac{n}{4}\right)^{2}+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
& =n^{2}+\frac{5}{16} n^{2}+T\left(\frac{n}{4}\right)+2 T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right) \\
& = \\
& \left.T\left(\frac{n}{32}\right)+T\left(\frac{5}{16}\right) n^{2}+\left(\frac{n}{4}\right)^{2}\right)+T\left(\frac{n}{8}\right)+T\left(\frac{n}{16}\right)+2\left(\frac{n}{8}\right)^{2}+2 T\left(\frac{n}{16}\right)+2 T\left(\frac{n}{32}\right)+\left(\frac{n}{16}\right)^{2}+ \\
& = \\
& \quad n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{8}\right)+3 T\left(\frac{n}{16}\right)+3 T\left(\frac{n}{32}\right)+T\left(\frac{n}{64}\right) \\
& \left.\left.\quad=n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+T\left(\frac{n}{16}\right)+T\left(\frac{n}{32}\right)+\left(\frac{n}{8}\right)^{2}\right)+3 T\left(\frac{n}{32}\right)+3 T\left(\frac{n}{64}\right)+3\left(\frac{n}{16}\right)^{2}\right)+ \\
& \left.\left.3 T\left(\frac{n}{64}\right)+3 T\left(\frac{n}{128}\right)+\left(\frac{n}{32}\right)^{2}\right)+T\left(\frac{n}{128}\right)+T\left(\frac{n}{256}\right)+\left(\frac{n}{64}\right)^{2}\right) \\
& \\
& \quad=n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+\left(\frac{5}{16}\right)^{3} n^{2}+T\left(\frac{n}{16}\right)+4 T\left(\frac{n}{32}\right)+6 T\left(\frac{n}{64}\right)+4 T\left(\frac{n}{128}\right)+ \\
&
\end{aligned}
$$

Iteration Method : tree

Iteration Method : tree

$$
\begin{aligned}
& +\frac{5}{16} n^{2} \\
+ & \left(\frac{5}{16}\right)^{2} n^{2} \\
+ & \left(\frac{5}{16}\right)^{3} n^{2}
\end{aligned}
$$

Iteration Method : tree

$$
+\frac{5}{16} n^{2}
$$

$$
+\left(\frac{5}{16}\right)^{2} n^{2}
$$

$$
+\left(\frac{5}{16}\right)^{3} n^{2}
$$

- depth : at most $\log (n)$
- leaves: at most $2^{\log (n)}=n$; computational cost $n T(1)=O(n)$
- work : $n^{2}+\frac{5}{16} n^{2}+\left(\frac{5}{16}\right)^{2} n^{2}+\left(\frac{5}{16}\right)^{3} n^{2}+\ldots \leq n^{2} \sum_{i=0}^{\infty}\left(\frac{5}{16}\right)^{i}=\frac{16}{11} n^{2}=\Theta\left(n^{2}\right)$
- total $\Theta\left(n^{2}\right)$

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$
- $R=a / b^{c}$, compare R with 1 , or c with $\log _{b}(a)$

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$ - $R=a / b^{c}$, compare R with 1 , or c with $\log _{b}(a)$

Case 1:	$c<\log _{b} a$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2:	$c=\log _{b} a$	$T(n)=\Theta\left(n^{c} \log n\right)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3:	$c>\log _{b} a$	$T(n)=\Theta\left(n^{c}\right)$

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$ - $R=a / b^{c}$, compare R with 1 , or c with $\log _{b}(a)$

Case 1:	$c<\log _{b} a$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2:	$c=\log _{b} a$	$T(n)=\Theta\left(n^{c} \log n\right)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3:	$c>\log _{b} a$	$T(n)=\Theta\left(n^{c}\right)$

- MergeSort $T(n)=2 T(n / 2)+\Theta(n) ; a=2 b=2 c=1$ case $2 ; T(n)=\Theta$ (nlogn)

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$ - $R=a / b^{c}$, compare R with 1 , or c with $\log _{b}(a)$

Case 1:	$c<\log _{b} a$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2:	$c=\log _{b} a$	$T(n)=\Theta\left(n^{c} \log n\right)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3:	$c>\log _{b} a$	$T(n)=\Theta\left(n^{c}\right)$

- MergeSort $T(n)=2 T(n / 2)+\Theta(n) ; a=2 b=2 c=1$ case $2 ; T(n)=\Theta$ (nlogn)
- Strassen's $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) ; a=7 b=2 c=2$ case $1, T(n)=\Theta\left(n \log _{2}(7)\right)$

Master Theorem - simple

- simple general case $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$ - $R=a / b^{c}$, compare R with 1 , or c with $\log _{b}(a)$

Case 1:	$c<\log _{b} a$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2:	$c=\log _{b} a$	$T(n)=\Theta\left(n^{c} \log n\right)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3:	$c>\log _{b} a$	$T(n)=\Theta\left(n^{c}\right)$

- MergeSort $T(n)=2 T(n / 2)+\Theta(n) ; a=2 b=2 c=1$ case $2 ; T(n)=\Theta$ (nlogn)
- Strassen's $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) ; a=7 b=2 c=2$ case $1, T(n)=\Theta\left(\log _{2}(7)\right)$
- Binary Search $T(n)=T(n / 2)+\Theta(1) ; a=1 b=2 c=0$ case $2, T(n)=\Theta(\log n)$

Master Theorem - why 3 cases

$$
T(n)=a T(\omega / b)+n^{c} \quad(\text { for simplicity, elturuate } \theta)
$$

Recension tree:

So, total is $n^{c} \sum_{i=0}^{\log n-1}\left(\frac{a}{b^{c}}\right)^{i}+\theta\left(n^{\log _{2} a}\right)$
that sum is geometric progression with base $R=a / b^{c}$
it comes down to R being $<1,=1,>1$. So three cases

Master Theorem - why 3 cases

Case $1 \quad c<\log _{b} a \Longleftrightarrow \frac{a}{b^{c}}>1 \quad$-work increase geometrically

$$
\begin{aligned}
\text { Rum } & =n^{c} \sum_{i=0}^{\log _{2}^{n-1}}\left(\frac{a}{b^{c}}\right)^{i}+\theta\left(n^{\log _{b} a}\right) \\
& =n^{c} \frac{\left(\frac{a}{b^{c}}\right)^{\log _{b} n}-1}{\left(\frac{a}{b^{c}}\right)-1}+\theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\left(b^{c}\right)^{\log _{b} n} & =\theta\left(n^{c} \frac{a^{\log _{b} n}}{\left(b^{c}\right)^{\log _{b} n}}\right)+\theta\left(n^{\log _{b} a}\right) \\
b^{c \cdot \log _{c} n} & =\theta\left(n^{c} \frac{n^{\prime \prime}}{n^{c}}\right)+\theta\left(n^{\log _{t} a}\right) \\
\left(\log ^{\prime \log n}\right)^{c} & =\theta\left(n^{\log _{b} a}\right)
\end{array}
$$

\therefore work at each level sineack geometiveally; constant fraction y work is in leave...

Master Theorem - why 3 cases

Case $2 \quad c=\log _{b} a \Leftrightarrow 9 / b^{c}=1 \quad$ - wake constant at each led

$$
\operatorname{sum}=n^{c} \sum_{i=0}^{\log _{5} n-1}(1)^{i}+\theta\left(n^{\log _{b} a}\right)=n^{c} \log _{b} n+\theta\left(n^{\log _{b} a}\right)=\theta\left(n^{c} \log _{b} n\right)
$$

\therefore work at each level is $n^{c}\left(=n^{\log _{2}{ }^{\circ}}\right)$; $\log _{4} \eta$ levels; knower is $\theta\left(n^{c} \log _{b} n\right)$

Master Theorem - why 3 cases

Case 3

$$
\begin{array}{rl}
3 & c>\log _{b} a \Leftrightarrow \frac{a}{b^{c}}<1 \\
& =n^{c} \sum_{i=0}^{\log ^{n-1}}\left(\frac{a}{b^{c}}\right)^{i}+\theta\left(n^{\log _{b} a}\right) \\
& =\theta(1)+\theta\left(n^{\log _{b} a}\right) \\
& =\theta\left(n^{c}\right)+\theta\left(n^{\log _{b} a}\right) \\
& =\theta\left(n^{c}\right)
\end{array}
$$

- wok decease gramativially

$$
\begin{aligned}
& \text { Note: } \\
& \text { (1) } \sum_{i=0}^{\log n^{n-1}}\left(\frac{a}{b^{c}}\right)^{i} \geqslant\left(\frac{a}{b^{c}}\right)^{0}=1 \\
& \Rightarrow \sum_{i=0}^{\log _{n}^{n-1}\left(\frac{q}{b^{c}}\right)^{i}}=\Omega(1) \\
& \text { (2) } \sum_{i=0}^{\operatorname{lon}+1}\left(\frac{a}{b^{2}}\right)^{i}<\sum_{i=0}^{\infty}\left(\frac{a}{b^{2}}\right)^{i} \\
& =\frac{1}{1-\theta / L C} \text { (content) } \\
& \Rightarrow \sum_{i=0}^{\operatorname{los}+1}\left(\frac{a}{b}\right)^{i}=O(1) \\
& \therefore \sum_{i=0}^{\log _{0 i}+1}\left(\frac{a}{b}\right)^{i}=\Theta(1)
\end{aligned}
$$

\therefore work at each level decreases geometrically; constant fraction z wore ic at root...

Master Theorem

- general case $T(n)=a T(n / b)+f(n)$
- CASE 1 :

$$
f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

- CASE 2:

$$
f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

- CASE 3:

$$
f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) ; \frac{a f(n / b)}{f(n)}<1-\epsilon \Rightarrow T(n)=\Theta(f(n))
$$

Master Theorem Example

- recurrence: $T(n)=4 T(n / 2)+\Theta\left(n^{2} \log n\right)$
- Master Theorem: $a=4 ; b=2 ; f(n)=n^{2} \operatorname{logn}$
- $f(n) / n^{\log _{b} a}=f(n) / n^{2}=\operatorname{logn}$, so case 2 with $k=1$
- solution $T(n)=\Theta\left(n^{2} \log ^{2} n\right)$

Master Theorem Example

- $T(n)=4 T(n / 2)+\Theta\left(n^{3}\right)$
- Master Theorem: $a=4 ; b=2 ; f(n)=n^{3}$
- $f(n) / n^{\log _{b} a}=f(n) / n^{2}=n$, so case 3
- check case 3 condition:
- $4 f(n / 2) / f(n)=4(n / 2)^{3} / n^{3}=1 / 2<1-\varepsilon$
- solution $T(n)=\Theta\left(n^{3}\right)$

NON-Master Theorem Example

- $T(n)=4 T(n / 2)+n^{2} / \log n ; f(n)=n^{2} / \log n$
- $f(n) / n^{\log _{b} a}=f(n) / n^{2}=1 / \log n$
- casel:
- case2:
- case3:
- no case applies - cant use Master Theorem
- use iteration method for guess, and substitution for a proof
- see attached pdf

