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Abstract.  Software architecture describes the structure of a system, enabling 
more effective design, program understanding, and formal analysis.  However, 
existing approaches decouple implementation code from architecture, allowing 
inconsistencies that cause confusion, violate architectural properties, and inhibit 
software evolution.  We are developing ArchJava, an extension to Java that 
seamlessly unifies software architecture with an object-oriented 
implementation.  In this paper, we show how ArchJava’s type system ensures 
that implementation code conforms to architectural constraints.  A case study 
applying ArchJava to an Islamic tile design application demonstrates that 
ArchJava can express dynamically changing architectures effectively within 
implementation code, and suggests that the resulting program may be easier to 
understand and evolve. 

 

1. Introduction 

Software architecture [GS93,PW92] is the organization of a software system as a 
collection of components, connections between the components, and constraints on 
how the components interact.  Describing architecture in a formal architecture 
description language (ADL) [MT00] can aid in the specification and analysis of high-
level designs.  Software architecture can also facilitate the implementation and 
evolution of large software systems.  For example, a system’s architecture can show 
which components a module may interact with, help identify the components involved 
in a change, and describe system invariants that should be respected during software 
evolution. 

Existing ADLs, however, are loosely coupled to implementation languages, causing 
problems in the analysis, implementation, understanding, and evolution of software 
systems.  Some ADLs [SDK+95,LV95] connect components that are implemented in a 
separate language.  However, these languages do not guarantee that the 
implementation code obeys architectural constraints.  Instead, they require developers 
to follow style guidelines that prohibit common programming idioms such as data 
sharing.  Architectures described with more abstract ADLs [AG97,MQR95] must be 
implemented in an entirely different language.  Thus, it may be difficult to trace 
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architectural features to the implementation, and the implementation may become 
inconsistent with the architecture as the program evolves.  In summary, while 
architectural analysis in existing ADLs may reveal important architectural properties, 
these properties are not guaranteed to hold in the implementation. 

In order to enable architectural reasoning about an implementation, the 
implementation must conform to its architecture.  Luckham and Vera [LV95] 
identified three criteria for architectural conformance: 

• Decomposition: For each component in the architecture, there should be a 
corresponding component in the implementation. 

• Interface Conformance: Each component in the implementation must conform to 
its architectural interface. 

• Communication Integrity: Each component in the implementation may only 
communication directly with the components to which it is connected in the 
architecture. 

ADLs that provide tool support for skeleton code generation or component linking 
generally support the first two architectural conformance criteria: decomposition and 
interface conformance.  However, existing ADLs cannot enforce communication 
integrity, seriously compromising the benefits of architecture during implementation, 
testing, and software evolution. 

We are developing ArchJava [ACN02a], a small, backwards-compatible extension 
to Java that integrates software architecture smoothly with Java implementation code.  
ArchJava supports a flexible object-oriented programming style, allowing data sharing 
and supporting dynamic architectures where components are created and connected at 
run time.  The unique feature of ArchJava is a type system that guarantees 
communication integrity between an architecture and its implementation, even in the 
presence of shared objects and run-time architecture configuration.  In previous work 
[ACN02a] we introduced the ArchJava language and described our initial experience 
with the subset of ArchJava that supports static architectures. 

This paper makes two novel contributions: 

• A formalization of the language semantics as ArchFJ, a core language that 
integrates primitive object-oriented constructs with support for specifying 
dynamic software architectures.  We outline a proof of type soundness and 
communication integrity for the core language. 

• An evaluation of ArchJava in a case study specifying the dynamic architecture of 
Taprats, a 12,000-line application for designing Islamic tiling patterns. 

The rest of this paper is organized as follows.  After the next section’s discussion of 
related work, section 3 describes the ArchJava language.  Section 4 formalizes 
ArchJava as ArchFJ, and proves type soundness and communication integrity.  Section 
5 describes a case study in which we reengineered Taprats, using ArchJava to express 
a conceptual architecture drawn by the developer. Finally, section 6 concludes with a 
discussion of future work. 
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2. Previous Work 

Architecture Description Languages.  A number of architecture description 
languages (ADLs) have been defined to describe, model, check, and implement 
software architectures [MT00].  Many of these languages support sophisticated 
analysis and reasoning.  For example, Wright [AG97] allows architects to specify 
temporal communication protocols and check properties such as deadlock freedom.  
SADL [MQR95] formalizes architectures in terms of theories, shows how generic 
refinement operations can be proved correct, and describes a number of flexible 
refinement patterns.  Rapide [LV95] supports event-based behavioral specification 
and simulation of reactive architectures.  ArchJava’s architectural specifications are 
probably most similar to those of Darwin [MK96], an ADL designed to support 
dynamically evolving distributed architectures. 

While Wright and SADL are pure design languages, other ADLs have supported 
implementation in a number of ways.  UniCon’s tools  [SDK+95] generate code to 
connect components implemented in other languages, while C2 [MOR+96] provides 
runtime libraries in C++ and Java that connect components together.  Rapide 
architectures can be given implementations in an executable sub-language or in 
languages such as C++ or Ada.  More recently, the component-oriented programming 
languages ComponentJ [SC00] and ACOEL [Sre02] extend a Java-like base language 
to explicitly support component composition. 

However, existing ADLs cannot enforce communication integrity.  Instead, system 
implementers must follow style guidelines that ensure communication integrity.  For 
example, the Rapide language manual suggests that components should only 
communicate with other components through their own interfaces, and interfaces 
should not include references to mutable types.  These guidelines are not enforced 
automatically and are incompatible with common programming idioms such as shared 
mutable data structures. 

 
Module Interconnection Languages.  Module interconnection languages (MILs) 
support system composition from separate modules [PN86]. Jiazzi [MFH01] is a 
component infrastructure for Java, and a similar system, Knit, supports component-
based programming in C.  These tools are derived from research into advanced 
module systems, exemplified by MzScheme’s Units [FF98] and ML’s functors.  ADLs 
differ from MILs in that the former make connectors explicit in order to describe data 
and control flow between components, while the latter focus on describing the uses 
relationship between modules [MT00].  Existing MILs cannot be used to describe 
dynamic architectures, where component object instances are created and linked 
together at run time. 

Furthermore, MILs provide encapsulation by hiding names, which is insufficient to 
guarantee communication integrity in general.  For example, first-class functions or 
objects can be passed from one module to another, and later used to communicate in 
ways that are not directly described in the MIL description.  Thus, in these systems, 
programmers must follow a careful methodology to ensure that each module 
communicates only with the modules to which it is connected in the architecture. 
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CASE Tools.  A number of computer-aided software engineering tools allow 
programmers to define a software architecture in a design language such as UML, 
UML-RT, ROOM, or SDL, and fill in the architecture with code in the same language 
or in C++ or Java.  While these tools have powerful capabilities, they either do not 
enforce communication integrity or enforce it in a restricted language that is only 
applicable to certain domains.  For example, the SDL embedded system language 
prohibits sharing objects between components. This restriction ensures 
communication integrity, but it also makes the language awkward for general-purpose 
programming.  Many UML tools such as Rational Rose RealTime or I-Logix 
Rhapsody, in contrast, allow method implementations to be specified in a language 
like C++ or Java.  This supports a great deal of flexibility, but since the C++ or Java 
code may communicate arbitrarily with other system components, there is no 
guarantee of communication integrity in the implementation code.  The techniques 
described in this paper can be applied in tools such as Rational Rose RealTime to 
provide a static guarantee of communication integrity. 
 
Other Tools.  Tools such as Reflexion Models [MNS01] have been developed to 
show an engineer where an implementation is and is not consistent with an 
architectural view of a software system.  Similar systems include Virtual Software 
Classifications [MW99] and Gestalt [SSW96].  Unlike ArchJava, these systems 
describe architectural components in terms of source code, not run-time component 
object instances, and the architectural descriptions must be updated separately as the 
code evolves. 
 
Previous ArchJava Work.  In previous work [ACN02a], we describe in detail a case 
study applying ArchJava to Aphyds, a 12,000-line circuit design application with a 
static architecture and little use of inheritance.  The primary contributions of that 
paper are an informal description of the language and an empirical evaluation of 
ArchJava on the Aphyds application.  In contrast, this paper contributes a 
formalization of the language design, and proofs of type soundness and 
communication integrity.  This paper also presents a new case study applying 
ArchJava to Taprats, a second, contrasting application that exercises ArchJava’s 
support for dynamic architectures and component inheritance. 

3. The ArchJava Language 

ArchJava is intended to investigate the benefits and drawbacks of a relatively 
unexplored part of the ADL design space.  Our approach extends a practical object-
oriented implementation language to incorporate architectural features and enforce 
communication integrity.  Key benefits we hope to realize with this approach include 
better program understanding, reliable architectural reasoning about code, keeping 
architecture and code consistent as they evolve, and encouraging more developers to 
take advantage of software architecture.  ArchJava’s design also has some limitations, 
discussed below in section 3.5. 
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To allow programmers to describe software architecture, ArchJava adds new 
language constructs to support components, connections, and ports.  The rest of this 
section reviews the language design [ACN02a], describing by example how to use 
these constructs to express software architectures.  Throughout the discussion, we 
show how the constructs work together to enforce communication integrity. Reports 
on the ArchJava web site [Arc02] provide more information, including the complete 
language semantics. 

3.1. Components and Ports 

A component is a special kind of object that communicates with other components in a 
structured way.  Components are instances of component classes, such as the Parser 
component class in Figure 1. 

A component can only communicate with other components at its level in the 
architecture through explicitly declared ports—regular method calls between 
components are not allowed.  A port represents a logical communication channel 
between a component and one or more components that it is connected to. 

Ports declare three sets of methods, specified using the requires, provides, 
and broadcasts keywords.  A provided method is implemented by the component 
and is available to be called by other components connected to this port.  Conversely, 
each required method is provided by some other component connected to this port.  A 
component can invoke one of its required methods by sending a message to the port 

public component class Parser { 
  public port in { 
    provides void setInfo(Token symbol, SymTabEntry e); 
    requires Token nextToken() throws ScanException; 
  } 
  public port out { 
    provides SymTabEntry getInfo(Token t); 
    requires void compile(AST ast); 
  } 
 
  public void parse() { 
    Token tok = in.nextToken(); 
    AST ast = parseFile(tok); 
    out.compile(ast); 
  } 
 
  AST parseFile(Token lookahead) { ... } 
  void setInfo(Token t, SymTabEntry e) {...} 
  SymTabEntry getInfo(Token t) { ... } 
  ... 
} 
 
Figure 1.  A parser component in ArchJava.  The Parser component class uses two ports to 
communicate with other components in a compiler.  The parser’s in port declares a required 
method that requests a token from the lexical analyzer, and a provided method that enters 
tokens into the symbol table.  The out port requires a method that compiles an AST to object 
code, and provides a method that looks up tokens in the symbol table. 
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that defines the required method.  For example, the parse method calls nextToken 
on the parser’s in port.  Broadcast methods are just like required methods, except that 
they can be connected to an unbounded number of implementations and must return 
void. 

The goal of this port design is to specify both the services implemented by a 
component and the services a component needs to do its job.  Required interfaces 
make dependencies explicit, reducing coupling between components and promoting 
understanding of components in isolation.  Ports also make it easier to reason about a 
component’s communication patterns. 

3.2. Component Composition 

In ArchJava, hierarchical software architecture is expressed with composite 
components, which are made up of a number of subcomponents connected together.  A 
subcomponent1 is a component instance nested within another component.  Singleton 
subcomponents can be declared as final fields of component type. 

                                                           
1 Note: the term subcomponent indicates composition, whereas the term component 

subclass would indicate inheritance. 

Compiler 
out in out in 

parser  codegen  scanner  

 
 
public component class Compiler { 
  private final Scanner scanner = ...; 
  private final Parser parser = ...; 
  private final CodeGen codegen = ...; 
 
  connect scanner.out, parser.in; 
  connect parser.out, codegen.in; 
 
  public static void main(String args[]) { 
    new Compiler().compile(args); 
  } 
 
  public void compile(String args[]) { 
    // for each file in args do: 
    ...parser.parse();... 
  } 
} 
 
Figure 2.  A graphical compiler architecture and its ArchJava representation.  The Compiler
component class contains three subcomponents—a Scanner, a Parser, and a CodeGen. 
This compiler architecture follows the well-known pipeline compiler design [GS93].  The
scanner, parser, and codegen components are connected in a linear sequence, with the
out port of one component connected to the in port of the next component. 
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Figure 2 shows how a compiler’s architecture can be expressed in ArchJava.  The 
example shows that the parser communicates with the scanner using one protocol, and 
with the code generator using another.  The architecture also implies that the scanner 
does not communicate directly with the code generator.  A primary goal of ArchJava 
is to ease program understanding tasks by supporting this kind of reasoning about 
program structure. 
 
Connections.  The symmetric connect primitive connects two or more ports 
together, binding each required method to a provided method with the same name and 
signature.   The arguments to connect may be a component’s own ports, or those of 
subcomponents in final fields.  Connection consistency checks are performed to 
ensure that each required method is bound to a unique provided method. 

Provided methods can be implemented by forwarding invocations to 
subcomponents or to the required methods of another port.  The detailed semantics of 
method forwarding and broadcast methods are given in the language reference manual 
on the ArchJava web site [Arc02]. 

ArchJava does not explicitly support alternative connection semantics such as 
asynchronous communication; however, these semantics can be implemented in 
ArchJava by writing custom components that play the role of “smart connectors.”  The 
ArchJava release includes an example AsynchronousConnector component that 
caches required method calls in an internal worklist and then returns immediately, 
invoking the corresponding provided methods asynchronously from an internal thread. 
 
Inheritance.  Component classes can inherit from other component classes, or from 
class Object.  The compiler’s legacy mode also allows component classes to inherit 
from ordinary classes, at the cost of losing communication integrity guarantees for 
inherited methods, so that developers can use non-component-based legacy 
frameworks like the Java GUI libraries.  Component subclasses inherit methods, ports, 
and connections from their superclasses.  Component subclasses may also override 
method definitions and specify new methods and ports.  However, component 
subclasses may not specify new required methods because this could break subtype 
substitutability. 

ArchJava also supports architectural design with abstract components and 
ports, which allow an architect to specify and typecheck an ArchJava architecture 
before beginning program implementation. 

3.3. Communication Integrity 

The compiler architecture in Figure 2 shows that while the parser communicates with 
the scanner and code generator, the scanner and code generator do not directly 
communicate with each other.  If the diagram in Figure 2 represented an abstract 
architecture to be implemented in Java code, it might be difficult to verify the 
correctness of this reasoning in the implementation.  For example, if the scanner 
obtained a reference to the code generator, it could invoke any of the code generator’s 
methods, violating the intuition communicated by the architecture.  In contrast, 
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programmers can have confidence that an ArchJava architecture accurately represents 
communication between components, because the language semantics enforce 
communication integrity. 

Communication integrity in ArchJava means that components in an architecture can 
only call each other’s methods along declared connections between ports.  Each 
component in the architecture can use its ports to communicate with the components 
to which it is connected.  However, a component may not directly invoke the methods 
of components other than its own subcomponents, because this communication may 
not be declared in the architecture, and thus may violate communication integrity.  We 
define communication integrity more precisely in section 4.1. 

3.4. Dynamic Architectures 

The constructs described above express architecture as a static hierarchy of interacting 
component instances, which is sufficient for a large class of systems.  However, some 
system architectures require creating and connecting together a dynamically 
determined number of components. 
 
Dynamic Component Creation.  Components can be dynamically instantiated using 
the same new syntax used to create ordinary objects.  For example, Figure 2 shows the 
compiler’s main method, which creates a Compiler component and calls its 
compile method.  At creation time, each component records the component instance 
that created it as its container component.  For components like Compiler that are 
instantiated outside the scope of any component instance, the container component is 
null. 

Communication integrity places restrictions on the ways in which component 
instances can be used.  Because only a component’s container can invoke its methods 
directly, it is essential that typed references to subcomponents do not escape the scope 
of their container component.  This requirement is enforced by prohibiting component 
types in the ports and public interfaces of components, and prohibiting ordinary 
classes from declaring arrays or fields of component type.  Since a component 
instance can still be freely passed between components as an expression of type 
Object, a ComponentCastException is thrown if an expression is downcast to 
a component type outside the scope of its container component instance. 

 
Connect Expressions.  Dynamically created components can be connected together at 
run time using a connect expression.  For instance, Figure 3 shows a web server 
architecture where a Router component receives incoming HTTP requests and 
passes them through connections to Worker components that serve the request.  The 
requestWorker method of the web server dynamically creates a Worker 
component and then connects its serve port to the workers port on the Router. 

Communication integrity requires each component to explicitly document the kinds 
of architectural interactions that are permitted between its subcomponents.  A 
connection pattern is used to describe a set of connections that can be instantiated at 
run time using connect expressions.  For example, connect pattern 
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Router.workers, Worker.serve describes a set of connections between the 
Router subcomponent and dynamically created Worker subcomponents. 

WebServer 
workers 

serve 

request 

create 

Router 
 
 
 

Worker  

 
public component class WebServer { 
  private final Router r = new Router(); 
  connect r.request, create; 
  connect pattern Router.workers, Worker.serve; 
 
  public void run() { r.listen(); } 
  private port create { 
    provides r.workers requestWorker() { 
      final Worker newWorker = new Worker(); 
      r.workers connection = connect(r.workers, newWorker.serve); 
      return connection; 
    } 
  } 
} 
  
public component class Router { 
  public port interface workers { 
    requires void httpRequest(InputStream in, OutputStream out); 
  } 
  public port request { 
    requires this.workers requestWorker(); 
  } 
  public void listen() { 
    ServerSocket server = new ServerSocket(80); 
    while (true) { 
      Socket sock = server.accept(); 
      this.workers conn = request.requestWorker(); 
      conn.httpRequest(sock.getInputStream(), sock.getOutputStream()); 
    } 
  } 
} 
 
public component class Worker extends Thread { 
  public port serve { 
    provides void httpRequest(InputStream in, OutputStream out) { 
      this.in = in; this.out = out; start(); 
    } 
  } 
  public void run() { 
    // gets requested file and sends it on the output stream 
  } 
} 
 

Figure 3.  A web server architecture.  The Router subcomponent accepts incoming HTTP 
requests and passes them on to a set of Worker components that respond.  When a request 
comes in, the Router requests a new worker connection on its request port.  The 
WebServer then creates a new worker and connects it to the Router.  The Router assigns 
requests to Workers through its workers port. 
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Each connect expression must match a connection pattern declared in the enclosing 
component.  A connect expression matches a connection pattern if the connected ports 
are identical and each connected component is an instance of the type specified in the 
pattern.  The connect expression in the web server example matches the corresponding 
connection pattern because the r and newWorker components in the connect 
expression conform to the types Router and Worker that are declared in the 
connection pattern. 
 
Port Interfaces. Often a single component participates in several connections using 
the same conceptual protocol.  For example, the Router component in the web 
server communicates with several Worker components, each through a different 
connection.  A port interface describes a port that can be instantiated several times to 
communicate through different connections. 

Each port interface defines a type that includes all of the required methods in that 
port.  A port interface type combines a port’s required interface with an instance 
expression that indicates which component instance the port belongs to.  For example, 
in the Router component, the type this.workers refers to an instance of the 
workers port of the current Router component.  Similarly, in the WebServer, 
the type r.workers refers to an instance of the workers port of the r 
subcomponent.  Port interface types can be used in method signatures such as 
requestWorker and in local variable declarations such as conn in the listen 
method.  In ArchJava, the required methods of a port can only be called by the 
component instance the port belongs to.  Therefore, required methods can only be 
invoked on expressions of port interface type when the instance expression is this, 
as shown by the call to httpRequest within Router.listen. 

Port interfaces are instantiated by connect expressions.  A connect expression 
returns a connection object that represents the connection.  This connection object 
implements the port interfaces of all the connected ports.  Thus, in Figure 3, the 
connection object connection implements the interfaces newWorker.serve 
and r.workers, and can therefore be assigned to a variable of either type. 

Provided methods use the sender keyword to obtain the connection object 
through which they were invoked.  The detailed semantics of sender and other 
language features are covered in the ArchJava language reference available on the 
ArchJava web site [Arc02]. 
 
Removing Components and Connections.  Just as Java does not provide a way to 
explicitly delete objects, ArchJava does not provide a way to explicitly remove 
components and connections.  Instead, components are garbage-collected when they 
are no longer reachable through direct references, running threads, or architectural 
connections.  For example, in Figure 3, a Worker component will be garbage 
collected when the reference to the original worker (newWorker) and the references 
to its connections (connection and conn) go out of scope, and the thread within 
Worker finishes execution. 
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3.5. Limitations of ArchJava 

There are currently several limitations to the ArchJava approach.  Our technique is 
presently only applicable to programs written in a single language and running on a 
single JVM, although the concepts may extend to a wider domain.  Architectures in 
ArchJava are more concrete than architectures in ADLs such as Wright, restricting the 
ways in which a given architecture can be implemented—for example, inter-
component connections must be implemented with method calls.  Also, our design 
focuses on ensuring communication integrity, and does not yet support other types of 
architectural reasoning, such as reasoning about the temporal order of architectural 
events, or about component multiplicity. 

ArchJava’s definition of communication integrity supports reasoning about 
communication through method calls between components; however, components may 
still used shared data to communicate in ways that are not directly expressed in the 
architecture.  Because existing ways to control communication through shared data 
involve significant restrictions on programming style, we chose to allow unrestricted 
data sharing.  Future work includes developing ways to reason about communication 
through shared data while preserving expressiveness.  Our preliminary experience 
with ArchJava [ACN02a] suggests that rigorous reasoning about architectural control 
flow can aid in program understanding and evolution, even in the presence of shared 
data structures. 

3.6. Implementation 

A prototype compiler for ArchJava is publicly available for download at the ArchJava 
web site [Arc02].  Our compiler is implemented on top of the Barat infrastructure 
[BS98].  The compiler accepts a list of ArchJava files (.archj), compiles each one 
down to Java source code, and invokes javac on the resulting .java files.  Our 
compilation technique is incremental, so that when a source file is updated, only that 
file and the files that depend on it need to be recompiled. 

The ArchJava compiler translates each component class to an ordinary class in 
Java, leaving the fields and method bodies substantially unchanged.  We mangle the 
names of classes to ensure that code not compiled by our compiler will not 
accidentally misuse component classes; the main function is left in a class with the 
original name, so that ArchJava applications work smoothly on existing Java virtual 
machines.  Each component class stores its container component and implements an 
interface that allows the container to be checked.  All casts to a component class are 
compiled into calls to a generated cast method that verifies that the cast expression’s 
container is the current component this, throwing a 
ComponentCastException if the check fails. 

Each port and port interface in the ArchJava source code is compiled into an 
interface containing the required methods of the port.  All variables of port interface 
type are compiled to variables of that port’s interface type. 

Each connection is compiled into a “connection class” that implements all of the 
interfaces of the connected ports.  The connect expression returns a new connection 
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object, passing the connected components to the connection object’s constructor.  The 
constructor assigns the connected components to internal fields.  Whenever a required 
method is invoked on that connection, the connection object invokes the 
corresponding provided method on the appropriate component. 

Although in ArchJava the source code is the canonical representation of the 
architecture, visual representations are also important for conveying architectural 
structure.  Parts of this paper use hand-drawn diagrams to communicate architecture; 
however, we have also constructed a simple visualization tool that generates 
architectural diagrams automatically from ArchJava source code.  In addition, we 
intend to provide an archjavadoc tool that would automatically construct 
graphical and textual web-based documentation for ArchJava architectures. 
 
Performance.  The main cost of our implementation technique is that calls through 
connections are routed through connection objects, adding a layer of indirection to the 
system.  Our current compiler is a prototype and does not perform any optimizations; 
however, future implementations could use well-known techniques like specialization 
to eliminate this indirection in many cases. 

Thus far, the only applications of significant size to which we have applied 
ArchJava are interactive, and thus it is difficult to benchmark their performance.  An 
independent evaluation of ArchJava on a microbenchmark that exhibited a very fine-
grained architecture measured an overhead of about 10% relative to Java code with a 
similar decomposition [AL02].  We expect that most realistic applications would use 
architectural features at a more coarse grain, and so this estimate is probably close to 
the worst case in practice. 

4. ArchJava Formalization 

In this section, we discuss the formal definition of communication integrity and 
ArchJava’s semantics.  The next subsection defines communication integrity in 
ArchJava.  Subsection 4.2 gives the static and dynamic semantics of ArchFJ, a 
language incorporating the core features of ArchJava.  Finally, subsection 4.3 outlines 
states type soundness theorems for ArchFJ, and subsection 4.4 outlines a proof of 
communication integrity. 

4.1. Definition of Communication Integrity 

Communication integrity is the key property of ArchJava that ensures that the 
implementation does not communicate in ways that could violate reasoning about 
control flow in the architecture.  Intuitively, communication integrity in ArchJava 
means that a component instance A may not call the methods of another component 
instance B unless B is A’s subcomponent, or A and B are sibling subcomponents of a 
common component instance that declares a connection or connection pattern between 
them. 
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We now precisely define communication integrity in ArchJava.  We want to reason 
about not only the direct method calls made by a component instance c to a 
component instance b, but also indirect method calls made through non-component 
intermediary objects.  To reason about these indirect calls, we define the execution 
scope of component instance c on the run-time stack, denoted escope(c), be any of 
c’s executing methods and any of the object methods they transitively invoke. 
 
Definition 1 [Dynamic Execution Scope]:  Let c be a component instance, let mf 
range over method frames executing on the stack, and assume that the caller function 
returns the previous method frame on the stack.  Then we can define the execution 
scope of c recursively as follows: 

escope(c)  { mf | (mf.this = c) } ∪  
  { mf | !component(mf.this) ∧ caller(mf) ∈ escope(c) } 
escope(null)  { mf | ∀c ≠ null . mf ∉ escope(c) } 

 
It is easy to show that each method frame mf is in the execution scope of either 
exactly one component or null. 

Now we can define communication integrity.  Let <: be the subtyping relation over 
component classes (defined precisely in section 4.2, below).  Let the function 
container return a component’s container component (i.e., the component instance in 
whose scope it was created), or null if there is no such container.  We use class to 
refer to the class of a component instance, and requiredmethods and providedmethods 
to refer to the set of required and provided methods in a port. 
 
Definition 2 [Communication Integrity in ArchJava]:  A program has 
communication integrity if, for all run-time method calls to a method m of a 
component instance b in an executing stack frame mf ∈ escope(a): 

1. For direct method calls, a = b or a = container(b) 
2. For calls through connections, there exists a component instance c such that: 

• c = a or c = container(a), and 
• c = b or c = container(b), and 
• connect pattern P1.z1,...,Pn.zn ∈ class(c), and 
• ∃i,j ∈ 1..n  . class(a) <: Pi ∧ class(b) <: Pj ∧  

  m ∈ requiredmethods(pi) ∧ m ∈ providedmethods(pj) 
 
In the definition above, the first case represents direct method calls between 
components: the callee must either be the caller itself or one of the caller’s 
subcomponents.  The second case represents a method call along a connection 
between components: some component instance c that is equal to or contains a and b 
must have declared a connection pattern between a and b that matches the types of a 
and b and includes the invoked method m.  In section 4.4, we state and prove this 
communication integrity property for a core subset of ArchJava. 

This definition has been simplified slightly in the interest of clarity.  Calls to 
broadcast methods can be modeled as calls to multiple required methods, and static 
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connections can be modeled with dynamic connections and connect pattern 
declarations. 

4.2. Formalization as ArchFJ 

We would like to use formal techniques to prove that the ArchJava language design 
guarantees communication integrity, and show that the language is type safe.  A 
standard technique, exemplified by Featherweight Java [IPW99], is to formalize a 
core language that captures the key typing issues while ignoring complicating 
language details.  We have formalized ArchJava as ArchFJ, a core language based on 
Featherweight Java (FJ).   
 
Syntax.  Figure 4 presents the syntax of ArchFJ.  The metavariables C and D range 
over class names; E and F range over component and class names; T and V range over 
types; P and Q range over component classes; f and g range over fields; v ranges over 
values; d and e range over expressions; z ranges over port names; S ranges over 

                        _ _    _ 
CL ::= class C extends C {C f; K M} _ _    _         _ _  _ 
CP ::= component class P extends E_{C f; K M port z {R M} X} 
K ::= E(C f)_{super(f); this.f = f;} 
M ::= T m(T x) { return e; } 
R ::= requires T m(T x)_ _ 
X ::= connect pattern (P.z) 
 
e ::= v     _ 

|   new E(e) 
 |   e.f _ 
 |   e.m(e) 

|   (T)e 
|   θ > e 

 
v ::= x 

|   l        _ _ 
 |   connect(v.z) 
 |   error 
 
T,V ::= E 
 |   v.z _ 
 |   8(v.z) 
             _ 
S ::= l Å E (l) 
 ::= x Å T 

Σ ::= l Å T 
 
l,θ,  ∈ Locations 
 

Figure 4.  ArchFJ Syntax 
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stores; �, θ, and  range over locations in the store, where θ is typically used to 
represent the value of this and ����������������	
��������

����
���	�, and M ranges 
over methods.  As a shorthand, we use an overbar to represent a sequence.  We 
assume a fixed class table CT mapping regular and component classes to their 
definitions.  A program, then, is a pair (CT, e) of a class table and an expression. 

ArchFJ makes a number of simplifications relative to ArchJava.  In ArchFJ, each 
component has exactly one port, defining a set of required and provided methods.  For 
simplicity, we require that the same set of methods appear in the class body and in the 
port body.  Static connections and component fields are left out, as they are subsumed 
by dynamically created connections and components.  We also omit the sender 
keyword and broadcast methods.  As in Featherweight Java (FJ), we omit interfaces, 
assignment, and some statement and expression forms.  These changes make our type 
soundness proof shorter, but do not materially affect it otherwise. 

ArchFJ extends FJ in several ways.  Regular classes extend another class (which 
can be Object, a predefined class) and define a constructor K and a set of 
fieldsf and methods M .  Component classes can extend another component class, or 
Object.  Component classes also define a single port that includes a set of required 
methods R and provided methods M .  Finally, component classes declare a set of 
connection patterns X between their subcomponents. 

We need to reason about object identity (represented by a location l) in order to 
verify communication integrity.  A store S maps locations l to their contents: the class 
of the object and the values stored in its fields.  As in ArchJava, the store also keeps 
track of each object’s container object (represented by a subscript on the class name) 
in order to check run time component casts properly.  We will write S[l] to denote 
the store entry for l.  Functional store updates are abbreviated S[l→E

l
( l)].  The 

function container(S,l) looks up the container of l in store S. 
Expressions include object creation expressions, field lookup, method calls, and 

casts.  Component creations and casts must refer to the current value of this, so our 
reduction rules keep track of the this reference as part of the executing context.  We 
give a small-step reduction semantics, and so a program expression must represent a 
stack of executing methods, each with a potentially different receiver value this.  
Therefore, we use an expression θ > e to represent a method body e executing with a 
receiver θ. 

Values represent irreducible computational results, and include locations and 
connections.  ArchFJ represents failed casts with an explicit error value.  We 
include variables as values because a variable may appear as the instance expression 
in a port interface type.  The set of variables includes the distinguished variable this 
used to refer to the receiver of a method.  Neither the error value, nor locations, nor 
θ > e expressions may appear in the source text of the program; these represent 
intermediate forms. 

Types include class and component types (E), port interface types (v.z), and a 
union type that matches any one of a set of port interface types. 
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Reduction Rules.  The evaluation relation, defined by the reduction rules given in 
Figure 5, is of the form S,θ � e→ e’,S’  read “In the context of store S and 
receiver θ, expression e reduces to expression e’ in one step, producing the new store 
S’.”  We write →* for the reflexive, transitive closure of →.  Most of the rules are 
standard; the interesting features are how they manipulate architectural constructs.  
The R-NEW rule reduces a new expression into a fresh location.  The store is updated 
at that location to refer to a new object with its fields set to the values passed into the 
constructor, and with its container set to the current object θ (representing this).  
The field read rule looks up the receiver in the store and returns the location in the ith 
field. 

The reduction rule for object casts looks up the actual type of the casted object in 
the store, and verifies that the actual type is a subtype of the type in the cast 
expression.  In addition, if the cast is to a component class, the rule verifies that the 
current component θ is equal to either l or l’s container.  Similarly, the rule for casts 
to a port interface type verifies that the named port interface type is one of the ones in 
the actual connection.  If any of the conditions on the cast fails, then the cast reduces 
to the error expression (the error rules are given in the companion technical report 
[ACN02b]). 

The method invocation rule R-INVK looks up the receiver in the store, then uses the 
mbody helper function (defined in Figure 9) to determine the correct method body to 
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Figure 5.  ArchFJ Evaluation Rules 
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invoke.  In the method body, all occurrences of the formal method parameters and 
this are replaced with the actual arguments and the receiver, respectively.  
Execution of the method body continues in the context of the receiver location.  The 
rule for invocations on connections is similar, except that the mbody helper function 
also determines which of the connected components defines the invoked method.  
When a method expression reduces to a value, the R-CONTEXT rule propagates the 
value outside of its method context and into the surrounding method expression. 

The full semantics of the language include a set of congruence rules (such as if 
e→e’ then e.f→e’.f) allow reduction to proceed in the order of evaluation 
defined by Java.  We include the congruence rule RC-CONTEXT because it shows the 
semantics of the l > e construct: evaluation of the expression e occurs in the context 
of the receiver l instead of the receiver θ.  The rest of the congruence rules are omitted 
here, but can be found in a companion technical report [ACN02b]. 
 
Subtyping Rules.  ArchFJ’s subtyping rules are given in Figure 6.  Subtyping of 
classes and components is defined by the reflexive, transitive closure of the immediate 
subclass relation given by the extends clauses in CT.  In the S-EXTENDS rule and 
elsewhere, the brackets and ellipses indicate optional syntax that does not affect the 
rule’s semantics.  We require that there are no cycles in the induced subtype relation.  
Every type is a subtype of Object, and a union type is a subtype of all its member 
types. 
 
Typing Rules.  Typing judgments, shown in Figure 7, are of the form Te E :,,  --lΣΓ , 

�����������������������
������ ����
����������Σ, and class E, expression e has type T.”  
The T-VAR rule looks up the������

��������������� �����������-LOC rule looks up the 
type of a location in Σ.  The object creation rule verifies that the types of all the actual 
constructor argument types are subtypes of the declared constructor argument types.  
The connection rule assigns the connection a union type of all the connected ports. If 
the instance expressions in the connection are variables, then this is a connection in 
the source text, and so the connection must match a connect pattern declaration in the 
enclosing component.  It is not necessary to perform this check once the variables in 

 T : T <  (S-REFLEX) 
 

 
T : T

T : T    T : T

′′<′
′′<′′<
 (S-TRANS) 

 

 
F : E

} ... { F  E  ][  E

<
= extendsclasscomponent)(CT

 (S-EXTENDS) 

 
 Object : T <  (S-OBJECT) 
 

 
v.z : )z.v(

z.vv.z

<
∈

U
 (S-UNION) 

 

Figure 6.  ArchFJ Subtyping 
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the connect expression have been replaced with locations.  The rule for field reads 
looks up the declared type of the field using the fields function defined in Figure 9.  
Casts to a component class in ArchJava can only appear in methods of a component 
class; the cast rule for ArchFJ checks this constraint. 

Rule T-INVK looks up the invoked method’s type using the mtype function defined 
in Figure 9, and verifies that the actual argument types are subtypes of the method’s 
argument types.  Because this may appear as part of port interface types in the 
method’s argument and result types, the rule substitutes any occurrences of this in 
the method’s type with the actual receiver value.  This substitution is undefined if the 
method’s type contains this and the receiver is not a value.  If the invocation is 
through a port interface type and the instance expression is a variable, then the 
instance expression must be this, as in ArchJava.  Finally, the T-CONTEXT typing 
rule for an executing method checks the method’s body in the context of the class of 
the this pointer.   

 
Class and Store Typing.  Figure 8 shows the rules for well-formed class definitions 
and stores.  The rules for well-formed classes have the form “class declaration E  is 
OK,” and “method/port/connection X is OK in E.”  The class rules checks that the 
form of the constructor simply calls the superclass constructor, then assigns the values 
passed to the constructor to the corresponding fields.  It also verifies that any methods, 
ports, and connections in the class are well-formed.  Component classes may only 
inherit from other component classes, or from class Object. 
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Figure 7.  ArchFJ Typechecking 
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The rule for methods checks that the method body is well typed, and uses the 
override function (defined in Figure 9) to verify that methods are overridden with a 
method of the same type.  It also ensures that the signature of a component method 
does not include component types.  For component classes, the port typing rule 
verifies that only subclasses of Object may define new required and provided 
methods.  The rule for connect patterns verifies that each required method has a 
unique provided method with the right signature. 

The store typing rules ensure that the form of the store is consistent with the Java’s 
typing rules.  The two clauses of the store typing rule are the usual well-formedness 
rules, requiring the store type Σ to type every location in S, and verifying that the 
types of objects in a field are compatible with the field’s type. 
 
Auxiliary Definitions.  Most of the auxiliary definitions shown in Figure 9 are 
straightforward and are derived from FJ.  The field and connection lookup rules return 
the list of fields and connections in a given class.  ArchFJ follows Java’s lookup rules 
for method types and method bodies, with straightforward extensions for port types 
and union types.  The method body lookup rule mbody for connections chooses the 
component i providing the method.  It is guaranteed to choose a unique component 
because the T-PATTERN rule implies that only one of the components in a connection 
defines each method.  It then computes the actual method body using the usual mbody 
rule.  Finally, the override rule checks that overriding methods have the same type 
signatures as the methods they override. 
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Figure 8.  Class, Method, Port, Connection, and Store Typing 
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4.3. Type Soundness 

Before proving communication integrity, we show that our type system is sound, i.e., 
execution of ArchFJ programs will not become stuck except due to failed casts.  We 
frame type soundness with the usual theorems: Subject Reduction states that if a well-
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typed program reduces to another program in a single reduction step, the resulting 
program is either well-typed or contains an error subexpression from a failed cast.  
Progress states that a well-typed program is either an irreducible value or an 
expression to which one or more of the evaluation rules applies.  Our presentation is 
modeled after that of Featherweight Java [IPW99]; the full details of the proofs can be 
found in the companion technical report [ACN02b]. 
 
Theorem [Subject Reduction]:  If Te E :,,  --lΣΓ , E=Σ )(θ ,  S --lΣ ,  and 

S,ee S, ′′→--lθ  then either T:T <′Σ⊇Σ′∃ ,  such that Te E ′′Σ′Γ :,,  --l  and S ′Σ′ --l , or else 
e’ has an error subexpression. 
 
Before proving the theorem, we define a term substitution lemma, necessary for the 
method invocation case in the proof.  This enables us to show that substituting terms 
in a well-typed expression preserves the typing: 
 
Lemma [Term Substitution]: If Te E  :E} ,T:x{ :, --l∅,this ,  V F :,, l--lΣ∅ ,  

E F ′Σ∅ :,, l--l ,  T]/[:V thisl< ,  and E:E <′ ,  then T]e/,x/[   F ′Σ∅ :, thisll>l--l,  for some 
]T/[:T thisl<′ . 

 
The proof is by induction over the structure of e, with a case analysis on the form of 
the outermost term. 

Subject reduction is then proved by induction on the derivation of S,ee S, ′′→--lθ  
with a case analysis on the last reduction rule used. � 
 
Theorem [Progress]:  If Te E :,,  --lΣ∅ , then either e is an irreducible value, or else 
∀S,θ such that S --lΣ  and E=Σ )(θ  we have S,ee S, ′′→--lθ . 
 
The proof is by induction on the derivation of Te E :,,  --lΣ∅  with a case analysis on the 
last typing rule used. � 

4.4. Communication Integrity 

Like the definition of communication integrity for ArchJava in section 4.1, 
communication integrity for ArchFJ has two parts: a theorem for direct method calls, 
and a theorem for method calls through a connection.  The first theorem states that for 
all direct method invocations on a component, the receiver must be the current 
component this or one of its immediate subcomponents.  The formal statement of 
the theorem is somewhat technical: 
 
Theorem [Communication Integrity of Direct Calls]: Consider any method call 

)e.n(e′  in the body of another method m.  We assume that the method body is well 
typed, so we have E in OK } e;  { )x T m(T return  with )e.n(e′  a subexpression of e.  
Consider a well-typed run time method call to m on an object θ, such that 

S ,e   )v.m( S, bo >θθθ →--l , Te   F b :,, >θ--lΣΓ , and S --lΣ .  Communication integrity 
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means that if e’ has a component type ( Pe E :,, ′ΣΓ --l ) and e’ reduces to a location l 
( S , e S, ′→ l*--lθ ), then the current component θ is either the receiver l of the method 
call or the container of the receiver (θ=l or θ=container(S,l)).  This last condition 
corresponds to the first case of communication integrity given in section 4.1. 
 
The theorem is proved by a case analysis on the form of expression e’, followed by 
induction on the derivation of S , e S, ′→ l*--lθ .  For example, one of the more 
interesting cases occurs if e’ is a cast to a component type.  The last reduction rule 
used in the derivation of S , e S, ′→ l*--lθ  must be R-CAST, which checks that θ=l or 
θ=container(S,l), ensuring that communication integrity holds for this case. � 
 
The second theorem states that for all method invocations on a connection, there exists 
a creating component that declared a matching connection pattern, and all components 
in the connection are either the creating component or one of its subcomponents.  
Furthermore, the current component this must be a part of the connection. 
 
Theorem [Communication Integrity of Indirect Calls]: If an initial expression e 
evaluates to a well-typed expression e’ ( S ,e e , o ′→∅ *--lθ , Te Object :,, ′Σ∅ --l , 

S --lΣ ), and ).z(lconnect  is a subexpression of e’ then there exists a component 
instance l that declared a connection pattern ( ))(( lΣ∈ connects  z.Q pattern connect ) 
whose types match the connected components ( Q:<∑ )(l ), and all of the connected 
components are equal to or contained by l ( ),( iii container llllll S   . =∨=∈∀ ).  
Furthermore, if a method is called on the connection 
( S ,e  )v).m(.z( S, b>ll i→connect--lθ ) then the current component l  ∈θ . 
 
The proof is by induction on the derivation of S ,e e , o ′→∅ *--lθ .  Connect 
expressions may only be introduced into e’ through method calls, and the T-
CONNECT rule verifies that the appropriate connection pattern is present in the 
enclosing component class.  A lemma similar to the communication integrity of direct 
calls theorem is used to show that ),( iii container llllll S   . =∨=∈∀ .   

Finally, we show that l∈θ .  The key insight is that rule T-INVK requires that any 
port interface type with a variable as the instance expression must be of the form 
this.z.  When the method is called the variable this will be replace with the 
actual receiver θ, and so type soundness guarantees that the connect expression 
includes θ. � 

5. Experience 

In previous work, we validated the basic design of ArchJava with a case study on 
Aphyds, a 12,000-line circuit-design program with a static architecture [ACN02a].  In 
this section, we describe a case study that evaluates ArchJava’s support for dynamic 
architectures and component inheritance, and adds to our confidence in the application 
of ArchJava.  In our case study, we attempt to answer the following experimental 
questions: 
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• Is ArchJava expressive enough to describe a real architecture that is dynamically 
evolving? 

• How does the difficulty of reengineering a Java program in order to express its 
architecture vary with the program’s characteristics? 

• What might be the benefits of expressing a program’s architecture in ArchJava? 

5.1. Methodology 

Our approach to answering these questions was to translate Taprats from Java into 
ArchJava, using the conceptual architecture provided by the program’s developer as a 
guide. In the process of our Taprats case study, we refined the hypotheses formed in 
our initial case study, and made new hypotheses, outlined in bold below. 

The case study participant was a graduate student with five years’ experience of 
system programming in Java.  Although the participant was the developer of the 
ArchJava compiler, he was unfamiliar with Taprats and had little experience writing 
user interfaces in Java.  Thus, the study reflects the common reality of a programmer 
asked to evolve an unfamiliar system.  The participant was one of us, and will be 
informally referred to as “we” in the following text. 

We reengineered Taprats to express the conceptual architecture described by the 
developer.  After browsing the code to determine which classes corresponded to the 
components in the developer’s conceptual architecture, we converted these classes 
into ArchJava component classes. 

The next four subsections describe the process of reengineering Taprats, a 
comparison to the earlier Aphyds case study, an analysis of what we learned about the 
ArchJava language, and a summary of the benefits of reengineering Taprats in 
ArchJava. 

5.2. Reengineering Taprats 

Taprats [Kap00] is an application for designing Islamic star patterns.  The user first 
chooses a basic tiling pattern from a library, then defines the exact shapes used within 
the tiles, and finally renders the design in one of several styles.  Different windows are 
provided for these tasks, and the user can simultaneously work on different variations 
of a single design. 

The developer of Taprats (not one of us) is a computer science graduate student 
and an experienced Java programmer.  Taprats won the grand prize in the 2000 
ACM/IBM Quest for Java, and can thus be considered a model Java program with a 
quality design and implementation.  The application is 12,540 lines of Java source 
code, as measured by the Unix wc (word count) program, not counting the Java 
libraries used. 

We asked the developer to draw the conceptual architecture of Taprats, as shown in 
Figure 10.  He drew two diagrams, one representing the user interface and one 
representing the internal data structures.  The user interface is a pipeline architecture 
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of four windows, each of which passes an increasingly detailed data structure to the 
next window.  The internal view shows how data structures are contained within and 
produced from each other. 
 
Validating Taprats’ Architecture.  We began the study by examining the Taprats 
source code to try to determine how it corresponds to the developer’s conceptual 
architecture.  We discovered that the main method in the Program class created the 
first user interface window, and that each successive window spawned the next one in 
the action code for the appropriate button. 

Although the conceptual architecture of the user interface showed a sequence of 
windows, the implementation structure was more like a nesting of window instances, 
where each window object is responsible for creating child window objects for the 
next tile design stage.  Thus, our experience with Taprats supports a hypothesis from 
our previous case study: 

Hypothesis 1: Developers have a conceptual model of their 
architecture that is mostly accurate, but this model may be a 
simplification of reality, and it is often not explicit in the code. 

 
Figure 10.  The developer’s drawing of Taprats’ architecture.  The drawing on the top shows 
the user’s point of view, describing the four main user interface windows, what they look like 
on the screen, and what data structures are passed from one window to the next.  The drawing 
on the bottom shows the internal data structures, beginning with a Tiling that is nested 
withing a Prototype, which first evolves into a Map and then has rendering style 
information added. 
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Architectural Design Principles.  ArchJava provides two kinds of objects with which 
to build applications.  Component objects allow developers to specify the 
communication patterns within an architecture, but the compiler’s communication 
integrity checks limit the ways in which component objects can be used.  ArchJava 
also provides ordinary Java objects, which allow unrestricted data sharing within a 
component architecture, but which cannot be used to specify or check architectural 
properties.  Design principles are needed to help determine where to use component 
objects and where to use ordinary objects. 

Using the intuition that architecture is most important at the largest scales in the 
application, we began our study by creating a component representing the entire 
Taprats application, and then refined this architecture to increase its level of detail.  
We used the following guidelines to help us choose which application objects should 
be components in the architecture, and which are best left as ordinary objects: 

• Scale.  The larger the scale of the component, the more program understanding 
and evolution benefits may be gained by making its internal structure explicit.  
This is primarily because other tools for program understanding (including 
browsing source code) are the least effective at large scales. 

• Control flow.  Does one of the constituent objects of a component call back into 
that component?  If so, that object will have to be made part of the architecture 
to satisfy the compiler’s communication integrity checks.  This rule is largely a 
consequence of ArchJava’s focus on control flow communication integrity. 

• Sharing.  ArchJava supports a hierarchical view of software architecture, and 
therefore does not allow a component to be shared by two container components.  
Thus, structures that are shared between components should be left as ordinary 
objects, unless the sharing can be easily replaced with method calls through the 
container component’s port. 

• Database objects. Singleton objects that encapsulate information shared by 
multiple components are good component candidates, forming a repository 
architecture style.  They may need to be promoted up a level in the component 
hierarchy to make the sharing explicit. 

• Data structures.  Small data structures that have many instances and are shared 
or passed between components are best left as ordinary objects.  ArchJava’s 
component mechanisms may be too “heavyweight” to use at these small 
application scales. 

• Cooperation.  If a set of objects communicate with each other in complex ways, 
making them component classes in an architecture may aid program 
understanding by making the communication patterns explicit as connections in 
the architecture. 

• Lack of communication.  ArchJava’s architectural features can be used to 
document the invariant that a set of components do not communicate directly 
with one another. 
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These principles are not orthogonal; a designer must make tradeoffs based on the 
applicability of the different design criteria, and the specific nature of the application.  
We hope to refine these design principles based on future experience with ArchJava. 
 
Architectural Design.  Applying the design principles above, we initially focused on 
the architecture of the user interface, as shown in the top part of Figure 10.  Our 
rationale was that the user interface is the highest level of scale in the application, and 
also that control flow originates in the user interface.  Our experience suggests: 

Hypothesis 2: Because ArchJava ensures control-flow 
communication integrity, it has a natural bias towards a UI-centric 
architecture in user-interface driven applications. 

This hypothesis is also supported by our previous case study, which also resulted in a 
UI-centric architecture.  Our hypothesis suggests that in the future, we should apply 
ArchJava to systems applications that are not user-interface driven, to determine the 
effectiveness of the language in that domain. 

As we reengineered Taprats, we used the architecture design guidelines to flesh out 
our initial architecture.  Following the developer’s conceptual architecture, we made 
each user interface window into a component.  We then refined the architecture by 
making several window panes into subcomponents of their containing window, either 
because there was control flow from the pane back into the window, or because we 
wanted to document the fact that the panes were unshared and they did not 
communicate with other components.  Ultimately, we decided not to encode the 
bottom part of Figure 10 in the architecture, because these are data structures that are 
passed along the user interface pipeline. 

Parts of the user interface architecture made extensive use of inheritance, exercising 
ArchJava’s support for component inheritance.  For example, the user interface 
employs window panes of different classes depending on the tiling pattern chosen by 
the user.  Taprats’ design shows how inheritance can be useful in a component-based 
system. 
 
Code Restructuring.  As described above, each window in the user interface creates 
the next one, suggesting a series of nested windows rather than a pipeline of windows.  
In order to make the developer’s conceptually linear architecture more explicit, we 
decided to make two structural changes to the application. 

First, we made the windows siblings in the architecture instead of being nested 
within each other.  Because components can only be created by their container 
component in ArchJava, this meant we had to move all the application’s window-
creation code into the Program class.  This change complicated the application 
slightly, because each window had to call into the container component to create the 
next window.  However, it has benefits as well: the new design shows the conceptual 
architecture more directly than the original design.  This “factory pattern” design 
[GHJ+94] also decouples the different user interface windows, because each window 
no longer specifies exactly which window will be created next and how it will be 
created.  This information is hidden within the container component, potentially 
allowing the interface to be modified at a smaller cost. 
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Hypothesis 3: Using ArchJava to express software architecture 
explicitly can aid information hiding by encouraging developers to 
reduce coupling between different components in their architecture. 

In a post-study interview, the Taprats developer said that this change made the 
ArchJava architecture appear more like his conceptual architecture, but thought that 
there should be some way to allow components to be constructed by their siblings in 
the architecture.  We are considering how to address this limitation of the current 
ArchJava language design, perhaps by supporting constructor calls through ports. 

Second, instead of passing tiling data from one window to the next via an argument 
to the latter window’s constructor, we created explicit connections between the 
windows, along which the data could be passed.  We made this change in order to 
express the developer’s conceptual architecture as directly as possible, and the 
developer agreed that the new design helped to accomplish this goal.  However, a 
serious drawback of the new design is that windows are not completely initialized 
when the constructor completes, but remain in a partially initialized state until the 
tiling data is passed via a separate method call.  Because of this, the developer said 
that he would not have made this second architectural change.  It is possible that 
allowing constructor calls through ports will enable us to express this type of 
connection directly without the drawbacks of our current implementation. 
 
Reengineering Process.  We performed our reengineering as a series of small 
refactoring steps, compiling the program and fixing introduced defects after every 
stage.  Thus, we never went more than an hour without a correctly running program.  
This methodology was suggested in our previous case study, after we tried to make 
many changes at once and ended up introducing several hard-to-repair defects.  We 
found that this methodology was effective at limiting defects in this study. 

To help us understand the process of reengineering a program to make its 
architecture explicit with ArchJava, we recorded the major refactoring steps we 
performed, and categorized them into the following refactoring patterns: 

• Change class to component class: When a class describes an object that is part of 
the architecture, change it into a component class.  This may require applying 
other refactorings in order to pass communication integrity checks. 

• Move creation to container component: When a component creates one of its 
sibling components in the architecture, create a port in the component and its 
container with a single method, requestCreate.  The container component 
creates the sibling in requestCreate, connects it as appropriate in the 
architecture, and optionally returns a connected port to the original child 
component. 

• Change a field link into a connection: When a component has a field that refers 
to a sibling component, replace the field with a port that contains all of the 
methods invoked on the sibling component.  In the container component, 
connect the component’s port to a corresponding port on its sibling, and then 
convert method invocations on the field into invocations on the appropriate port. 
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In addition to these major refactoring steps, we used several conventional refactoring 
patterns [FBB+99], as well as a few more minor refactoring patterns that are specific 
to ArchJava. 
 
Reengineering Cost.  We spent about 5½ developer hours reengineering Taprats, or 
about 30 minutes of work per KLOC.  Of this time, approximately half was spent in 
design activity—understanding the structure of the original program, planning the 
conversion to ArchJava, considering architectural alternatives, and examining the final 
architecture for completeness at the end.  Because the developer of Taprats had 
already put considerable effort into making a clean design and implementation, a 
relatively small amount of our time was spent actually implementing the architectural 
changes. 

Our implementation time was divided roughly equally between modifying the 
source code to express the architecture, and repairing defects that were introduced in 
these refactoring steps.  The final program code is 12693 lines long—only 153 lines 
longer than the original application.  A total of 242 lines of code were added or 
changed in the process.  Our experience supports a hypothesis from our previous 
study: 

Hypothesis 4:  Applications can be translated into ArchJava with a 
modest amount of effort, and without excessive code bloat. 

Code Characteristics.  One particular code characteristic that stood out as we edited 
Taprats was the Law of Demeter [LH89], which states that objects should only 
communicate directly with their immediate neighbors in a system.  The Law of 
Demeter can be thought of as the object-oriented analog of communication integrity, 
since ArchJava components may only communicate with the architectural “neighbors” 
to which they are connected in the architecture. 

We discovered this connection by examining a violation of the Law of Demeter that 
forced us to restructure Taprats’ code.  After constructing a new window, the Taprats 
code called an accessor function to get a pane of that window, and then set the 
parameters of the pane’s viewport directly—violating the Law of Demeter, since the 
pane was not an immediate neighbor of the original code.  In our architecture, the pane 
was an internal component of the window component, and so this communication 
violated communication integrity.  Therefore, we had to restructure the program to 
pass the viewport parameters to the enclosing window, which then passed them on to 
the pane.  When shown the offending code, the developer agreed with our assessment 
and thought our solution was appropriate.  

Despite this example, most of the Taprats code obeyed the Law of Demeter.  This 
had a beneficial effect on our reengineering: when we converted an object into a 
component, the new component would often pass the compiler’s communication 
integrity checks as soon as we converted direct method calls into calls on ports.  Our 
experience suggests: 

Hypothesis 5: It will be relatively easy to use ArchJava to express 
the software architecture of an object-oriented program whose 
source code obeys the Law of Demeter. 
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public component class Program { 
 
  // the tiling selector window subcomponent 
  private final TilingSelector ts = new TilingSelector(); 
 
  // ports for creating windows 
  private port createDesignEditor { 
    provides ts.sendTiling requestEditor() { 
      DesignEditor e = new DesignEditor(); 
      connect(createPreviewPanel, e.createNext); 
      ts.sendTiling aPort = connect(ts.send, e.receive); 
      return aPort; 
    } 
  } 
  private port interface createPreviewPanel { 
    provides Object requestPreview(Object edit) { 
      DesignEditor e = (DesignEditor) edit; 
      PreviewPanel p = new PreviewPanel(); 
      connect(createRenderPanel, p.createNext); 
      return connect(e.send, p.receive); 
    } 
  } 
  private port interface createRenderPanel { 
    provides Object requestRender(Object prevw) { 
      PreviewPanel p = (PreviewPanel) prevw; 
      RenderPanel r = new RenderPanel(); 
      return connect(p.send, r.receive); 
    } 
  } 
 
  // connections between the creation ports and the windows 
  connect createDesignEditor, ts.createNext; 
  connect pattern createPreviewPanel, DesignEditor.createNext; 
  connect pattern createRenderPanel, PreviewPanel.createNext; 
 
  // connections between the windows 
  connect pattern TilingSelector.send, DesignEditor.receive; 
  connect pattern DesignEditor.send, PreviewPanel.receive; 
  connect pattern PreviewPanel.send, RenderPanel.receive; 
 
  // the main methods of the program 
  public void run() { 
    Frame f = new Frame( "Taprats 0.3" ); 
    f.add( "Center", ts ); 
    // more code to finish setting up the window... 
  } 
 
  public static void main(String[] args) { 
    new Program().run(); 
  } 
} 
 
Figure 11.  ArchJava code for the Taprats component.    The main application method
creates a Program component and invokes run on it.  The initial TileSelector window 
is created in the field initializer for ts, and the run method wraps it in a Frame. The three 
private ports contain methods that create and connect new window components.  Connect
declarations show communication patterns between windows. 
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Final Architecture.  Figure 11 shows the ArchJava code that expresses the 
architecture of Taprats.  The complete ArchJava source code for Taprats is available 
at the ArchJava web site [Arc02].  Compared to the developer’s conceptual 
architecture, our final ArchJava architecture describes identical communication 
patterns between the user interface windows. 

Figure 12 shows a visualization of the Taprats architecture automatically derived 
from the ArchJava source code using a visualization tool.  We showed the developer 
this diagram, and he agreed that it captured his conceptual architecture well. 
 
Alternative Architectural Choices.  Our study was directed towards implementing 
the developer’s conceptual architecture as directly as possible in ArchJava.  However, 
an architect could have expressed alternative Taprats architectures using ArchJava.  
For example, we could have followed the original source code more closely, 
producing a nested hierarchy of components instead of a linear sequence of 
components.  Although this architecture would not show all of the user interface 
components and connections within one composite component, it would express the 
constraint that the user interface window instances form a tree with each window 
spawning multiple windows on the next level.  The architecture we chose does not 
eliminate the possibility that the windows form a dag, where data from two source 
windows might be combined into a later-stage window (this does not occur in practice, 
of course).  ArchJava is flexible enough to express both architectures, depending on 
which the software architect deems more appropriate. 

5.3. Comparison to Aphyds Case Study 

We found that expressing the conceptual architecture of Taprats with ArchJava was 
straightforward when compared with our earlier case study.  In all, we spent 
approximately five times less effort in this case study than in the Aphyds case study, 

 
Figure 12.  A visualization of the Taprats architecture, automatically derived from the 
ArchJava source code.  Boxes represent subcomponents, and arrows represent inter-component 
control flow.  The ovals are internal ports of the program component, which are used by the 
first three window components to create the next window in the sequence. 
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despite the fact that the programs were of similar size.  Several application 
characteristics may have contributed to this difference: 

• Architecture Style.  The pipeline architecture style of Taprats, where data is 
passed from one component to another, has simpler communication patterns than 
the repository architecture style of Aphyds, where components access a shared 
database. 

• Architectural Connectivity.  Once spawned, Taprats’ user interface windows are 
completely independent: they access different data, and do not communicate in 
any way.  In contrast, Aphyds’ user interface windows show different views of 
the same data, and therefore the user interface architecture includes connections 
to pass updated data and window state. 

• Architecture Granularity.  The developer of Aphyds specified a fairly fine-
grained architecture, and the control flow within the user interface encouraged us 
to make the architecture even more fine-grained than the developer specified.  In 
contrast, the Taprats user interface architecture was more coarse-grained, 
consisting of only four windows and their window panes. 

• Architectural Mismatches.  The structure of Taprats was quite similar to the 
architecture we tried to express.  In the Aphyds study, we chose to make some 
previously dynamic structures static, requiring us to restructure the code to 
support re-initialization where new objects had been created previously. 

• Code Interdependence.  As described above, Taprats had a well-factored 
codebase that generally followed the Law of Demeter, making the architectural 
reengineering easy.  In contrast, the Aphyds codebase contained many 
dependencies across object structures.  Its frequent violations of the Law of 
Demeter required many reengineering steps before the compiler’s 
communication integrity checks were satisfied. 

Our experience suggests that looking at these application characteristics may shed 
light on how much effort will be required to express an application’s architecture with 
ArchJava. 

5.4. Evaluation of the ArchJava Language 

In general, our experience suggests that the ArchJava language design was adequate 
for expressing the architecture of Taprats.  We were able to describe the conceptual 
architecture of the developer with minimal reengineering effort.  The dynamic 
constructs of the language, which were largely untested in our earlier case study, were 
sufficient to express the dynamic nature of the Taprats user interface. 

We also noticed areas in which the language design could be improved.  As 
discussed before, it would be cleaner if each window in Taprats’ user interface 
pipeline could create the next window in a more natural way, rather than requesting 
that the container component create the next window, as is done in the current 
solution.  Also, in Figure 12, the creation ports (such as createPreviewPanel) 
that are connected to dynamically created child windows cannot accept an argument of 
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component type telling them which window to connect, nor can they return a port with 
the correct type (as does the createDesignEditor port).  Due to limitations in 
the current type system of ArchJava, two extra casts are required, one in the container 
component and one in the window component.  We are considering ways to extend the 
ArchJava language design to handle these cases more smoothly. 

5.5. Benefits of ArchJava 

The ArchJava architecture has a number of advantages compared to the original, 
conceptual architecture of Taprats.  ArchJava architectures are guaranteed to be 
complete, listing all method call communication between components.  The ArchJava 
architecture is guaranteed to stay up-to-date as the code evolves with changing 
requirements, and architectural visualizations can be generated automatically.  Finally, 
it is easy to examine the source code to look at the interior structure of an ArchJava 
component, determine what methods are in each port, or examine how the methods are 
implemented. 

The process of reengineering Taprats to make its architecture explicit may also 
have made the code more maintainable and easier to change.  For example, the 
compiler’s communication integrity checks identified several violations of the Law of 
Demeter, enabling us to replace them with better-factored code.  Because ports 
encapsulate all control-flow communication between components, the components are 
more loosely coupled in the final version of the code, making them easier to evolve as 
requirements change.  More experience with evolving ArchJava programs is needed to 
determine if these potential benefits are realized in practice. 

In summary, we were able to capture the conceptual architecture of Taprats 
effectively in ArchJava with a small amount of effort relative to the size of the 
program.  Our experience demonstrates that the language is flexible enough to 
describe dynamically evolving software architectures, and suggests future 
improvements to the language design. 

6. Conclusion and Future Work 

ArchJava allows programmers to express architectural structure and then seamlessly 
fill in the implementation with Java code.  At every stage of the software lifecycle, 
ArchJava ensures that the implementation conforms to the specified architecture.  Our 
formalization of ArchJava gives us confidence in its type system’s ability to enforce 
communication integrity.  A case study suggests that ArchJava can be applied with 
relatively little effort to moderate-sized Java programs with dynamically evolving 
architectures, making the program’s structure explicit and improving the 
maintainability of code.  Thus, ArchJava helps to promote effective architecture-based 
design, implementation, program understanding, and evolution. 

In future work, we intend to gather experience from outside users of ArchJava, and 
perform further case studies to see if the language can be successfully applied to 
programs larger than 100,000 lines of code.  We will also investigate extending the 
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language design to enable more advanced architectural reasoning, including temporal 
ordering constraints on component method invocations and constraints on data sharing 
between components. 
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