
To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 1

Architectural Reasoning in ArchJava

Jonathan Aldrich Craig Chambers David Notkin

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350 USA

+1 206 616-1846
{jonal, chambers, notkin}@cs.washington.edu

Abstract. Software architecture describes the structure of a system, enabling
more effective design, program understanding, and formal analysis. However,
existing approaches decouple implementation code from architecture, allowing
inconsistencies that cause confusion, violate architectural properties, and inhibit
software evolution. We are developing ArchJava, an extension to Java that
seamlessly unifies software architecture with an object-oriented
implementation. In this paper, we show how ArchJava’s type system ensures
that implementation code conforms to architectural constraints. A case study
applying ArchJava to an Islamic tile design application demonstrates that
ArchJava can express dynamically changing architectures effectively within
implementation code, and suggests that the resulting program may be easier to
understand and evolve.

1. Introduction

Software architecture [GS93,PW92] is the organization of a software system as a
collection of components, connections between the components, and constraints on
how the components interact. Describing architecture in a formal architecture
description language (ADL) [MT00] can aid in the specification and analysis of high-
level designs. Software architecture can also facilitate the implementation and
evolution of large software systems. For example, a system’s architecture can show
which components a module may interact with, help identify the components involved
in a change, and describe system invariants that should be respected during software
evolution.

Existing ADLs, however, are loosely coupled to implementation languages, causing
problems in the analysis, implementation, understanding, and evolution of software
systems. Some ADLs [SDK+95,LV95] connect components that are implemented in a
separate language. However, these languages do not guarantee that the
implementation code obeys architectural constraints. Instead, they require developers
to follow style guidelines that prohibit common programming idioms such as data
sharing. Architectures described with more abstract ADLs [AG97,MQR95] must be
implemented in an entirely different language. Thus, it may be difficult to trace

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 2

architectural features to the implementation, and the implementation may become
inconsistent with the architecture as the program evolves. In summary, while
architectural analysis in existing ADLs may reveal important architectural properties,
these properties are not guaranteed to hold in the implementation.

In order to enable architectural reasoning about an implementation, the
implementation must conform to its architecture. Luckham and Vera [LV95]
identified three criteria for architectural conformance:

• Decomposition: For each component in the architecture, there should be a
corresponding component in the implementation.

• Interface Conformance: Each component in the implementation must conform to
its architectural interface.

• Communication Integrity: Each component in the implementation may only
communication directly with the components to which it is connected in the
architecture.

ADLs that provide tool support for skeleton code generation or component linking
generally support the first two architectural conformance criteria: decomposition and
interface conformance. However, existing ADLs cannot enforce communication
integrity, seriously compromising the benefits of architecture during implementation,
testing, and software evolution.

We are developing ArchJava [ACN02a], a small, backwards-compatible extension
to Java that integrates software architecture smoothly with Java implementation code.
ArchJava supports a flexible object-oriented programming style, allowing data sharing
and supporting dynamic architectures where components are created and connected at
run time. The unique feature of ArchJava is a type system that guarantees
communication integrity between an architecture and its implementation, even in the
presence of shared objects and run-time architecture configuration. In previous work
[ACN02a] we introduced the ArchJava language and described our initial experience
with the subset of ArchJava that supports static architectures.

This paper makes two novel contributions:

• A formalization of the language semantics as ArchFJ, a core language that
integrates primitive object-oriented constructs with support for specifying
dynamic software architectures. We outline a proof of type soundness and
communication integrity for the core language.

• An evaluation of ArchJava in a case study specifying the dynamic architecture of
Taprats, a 12,000-line application for designing Islamic tiling patterns.

The rest of this paper is organized as follows. After the next section’s discussion of
related work, section 3 describes the ArchJava language. Section 4 formalizes
ArchJava as ArchFJ, and proves type soundness and communication integrity. Section
5 describes a case study in which we reengineered Taprats, using ArchJava to express
a conceptual architecture drawn by the developer. Finally, section 6 concludes with a
discussion of future work.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 3

2. Previous Work

Architecture Description Languages. A number of architecture description
languages (ADLs) have been defined to describe, model, check, and implement
software architectures [MT00]. Many of these languages support sophisticated
analysis and reasoning. For example, Wright [AG97] allows architects to specify
temporal communication protocols and check properties such as deadlock freedom.
SADL [MQR95] formalizes architectures in terms of theories, shows how generic
refinement operations can be proved correct, and describes a number of flexible
refinement patterns. Rapide [LV95] supports event-based behavioral specification
and simulation of reactive architectures. ArchJava’s architectural specifications are
probably most similar to those of Darwin [MK96], an ADL designed to support
dynamically evolving distributed architectures.

While Wright and SADL are pure design languages, other ADLs have supported
implementation in a number of ways. UniCon’s tools [SDK+95] generate code to
connect components implemented in other languages, while C2 [MOR+96] provides
runtime libraries in C++ and Java that connect components together. Rapide
architectures can be given implementations in an executable sub-language or in
languages such as C++ or Ada. More recently, the component-oriented programming
languages ComponentJ [SC00] and ACOEL [Sre02] extend a Java-like base language
to explicitly support component composition.

However, existing ADLs cannot enforce communication integrity. Instead, system
implementers must follow style guidelines that ensure communication integrity. For
example, the Rapide language manual suggests that components should only
communicate with other components through their own interfaces, and interfaces
should not include references to mutable types. These guidelines are not enforced
automatically and are incompatible with common programming idioms such as shared
mutable data structures.

Module Interconnection Languages. Module interconnection languages (MILs)
support system composition from separate modules [PN86]. Jiazzi [MFH01] is a
component infrastructure for Java, and a similar system, Knit, supports component-
based programming in C. These tools are derived from research into advanced
module systems, exemplified by MzScheme’s Units [FF98] and ML’s functors. ADLs
differ from MILs in that the former make connectors explicit in order to describe data
and control flow between components, while the latter focus on describing the uses
relationship between modules [MT00]. Existing MILs cannot be used to describe
dynamic architectures, where component object instances are created and linked
together at run time.

Furthermore, MILs provide encapsulation by hiding names, which is insufficient to
guarantee communication integrity in general. For example, first-class functions or
objects can be passed from one module to another, and later used to communicate in
ways that are not directly described in the MIL description. Thus, in these systems,
programmers must follow a careful methodology to ensure that each module
communicates only with the modules to which it is connected in the architecture.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 4

CASE Tools. A number of computer-aided software engineering tools allow
programmers to define a software architecture in a design language such as UML,
UML-RT, ROOM, or SDL, and fill in the architecture with code in the same language
or in C++ or Java. While these tools have powerful capabilities, they either do not
enforce communication integrity or enforce it in a restricted language that is only
applicable to certain domains. For example, the SDL embedded system language
prohibits sharing objects between components. This restriction ensures
communication integrity, but it also makes the language awkward for general-purpose
programming. Many UML tools such as Rational Rose RealTime or I-Logix
Rhapsody, in contrast, allow method implementations to be specified in a language
like C++ or Java. This supports a great deal of flexibility, but since the C++ or Java
code may communicate arbitrarily with other system components, there is no
guarantee of communication integrity in the implementation code. The techniques
described in this paper can be applied in tools such as Rational Rose RealTime to
provide a static guarantee of communication integrity.

Other Tools. Tools such as Reflexion Models [MNS01] have been developed to
show an engineer where an implementation is and is not consistent with an
architectural view of a software system. Similar systems include Virtual Software
Classifications [MW99] and Gestalt [SSW96]. Unlike ArchJava, these systems
describe architectural components in terms of source code, not run-time component
object instances, and the architectural descriptions must be updated separately as the
code evolves.

Previous ArchJava Work. In previous work [ACN02a], we describe in detail a case
study applying ArchJava to Aphyds, a 12,000-line circuit design application with a
static architecture and little use of inheritance. The primary contributions of that
paper are an informal description of the language and an empirical evaluation of
ArchJava on the Aphyds application. In contrast, this paper contributes a
formalization of the language design, and proofs of type soundness and
communication integrity. This paper also presents a new case study applying
ArchJava to Taprats, a second, contrasting application that exercises ArchJava’s
support for dynamic architectures and component inheritance.

3. The ArchJava Language

ArchJava is intended to investigate the benefits and drawbacks of a relatively
unexplored part of the ADL design space. Our approach extends a practical object-
oriented implementation language to incorporate architectural features and enforce
communication integrity. Key benefits we hope to realize with this approach include
better program understanding, reliable architectural reasoning about code, keeping
architecture and code consistent as they evolve, and encouraging more developers to
take advantage of software architecture. ArchJava’s design also has some limitations,
discussed below in section 3.5.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 5

To allow programmers to describe software architecture, ArchJava adds new
language constructs to support components, connections, and ports. The rest of this
section reviews the language design [ACN02a], describing by example how to use
these constructs to express software architectures. Throughout the discussion, we
show how the constructs work together to enforce communication integrity. Reports
on the ArchJava web site [Arc02] provide more information, including the complete
language semantics.

3.1. Components and Ports

A component is a special kind of object that communicates with other components in a
structured way. Components are instances of component classes, such as the Parser
component class in Figure 1.

A component can only communicate with other components at its level in the
architecture through explicitly declared ports—regular method calls between
components are not allowed. A port represents a logical communication channel
between a component and one or more components that it is connected to.

Ports declare three sets of methods, specified using the requires, provides,
and broadcasts keywords. A provided method is implemented by the component
and is available to be called by other components connected to this port. Conversely,
each required method is provided by some other component connected to this port. A
component can invoke one of its required methods by sending a message to the port

public component class Parser {
 public port in {
 provides void setInfo(Token symbol, SymTabEntry e);
 requires Token nextToken() throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 public void parse() {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser component class uses two ports to
communicate with other components in a compiler. The parser’s in port declares a required
method that requests a token from the lexical analyzer, and a provided method that enters
tokens into the symbol table. The out port requires a method that compiles an AST to object
code, and provides a method that looks up tokens in the symbol table.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 6

that defines the required method. For example, the parse method calls nextToken
on the parser’s in port. Broadcast methods are just like required methods, except that
they can be connected to an unbounded number of implementations and must return
void.

The goal of this port design is to specify both the services implemented by a
component and the services a component needs to do its job. Required interfaces
make dependencies explicit, reducing coupling between components and promoting
understanding of components in isolation. Ports also make it easier to reason about a
component’s communication patterns.

3.2. Component Composition

In ArchJava, hierarchical software architecture is expressed with composite
components, which are made up of a number of subcomponents connected together. A
subcomponent1 is a component instance nested within another component. Singleton
subcomponents can be declared as final fields of component type.

1 Note: the term subcomponent indicates composition, whereas the term component

subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse();...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava representation. The Compiler
component class contains three subcomponents—a Scanner, a Parser, and a CodeGen.
This compiler architecture follows the well-known pipeline compiler design [GS93]. The
scanner, parser, and codegen components are connected in a linear sequence, with the
out port of one component connected to the in port of the next component.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 7

Figure 2 shows how a compiler’s architecture can be expressed in ArchJava. The
example shows that the parser communicates with the scanner using one protocol, and
with the code generator using another. The architecture also implies that the scanner
does not communicate directly with the code generator. A primary goal of ArchJava
is to ease program understanding tasks by supporting this kind of reasoning about
program structure.

Connections. The symmetric connect primitive connects two or more ports
together, binding each required method to a provided method with the same name and
signature. The arguments to connect may be a component’s own ports, or those of
subcomponents in final fields. Connection consistency checks are performed to
ensure that each required method is bound to a unique provided method.

Provided methods can be implemented by forwarding invocations to
subcomponents or to the required methods of another port. The detailed semantics of
method forwarding and broadcast methods are given in the language reference manual
on the ArchJava web site [Arc02].

ArchJava does not explicitly support alternative connection semantics such as
asynchronous communication; however, these semantics can be implemented in
ArchJava by writing custom components that play the role of “smart connectors.” The
ArchJava release includes an example AsynchronousConnector component that
caches required method calls in an internal worklist and then returns immediately,
invoking the corresponding provided methods asynchronously from an internal thread.

Inheritance. Component classes can inherit from other component classes, or from
class Object. The compiler’s legacy mode also allows component classes to inherit
from ordinary classes, at the cost of losing communication integrity guarantees for
inherited methods, so that developers can use non-component-based legacy
frameworks like the Java GUI libraries. Component subclasses inherit methods, ports,
and connections from their superclasses. Component subclasses may also override
method definitions and specify new methods and ports. However, component
subclasses may not specify new required methods because this could break subtype
substitutability.

ArchJava also supports architectural design with abstract components and
ports, which allow an architect to specify and typecheck an ArchJava architecture
before beginning program implementation.

3.3. Communication Integrity

The compiler architecture in Figure 2 shows that while the parser communicates with
the scanner and code generator, the scanner and code generator do not directly
communicate with each other. If the diagram in Figure 2 represented an abstract
architecture to be implemented in Java code, it might be difficult to verify the
correctness of this reasoning in the implementation. For example, if the scanner
obtained a reference to the code generator, it could invoke any of the code generator’s
methods, violating the intuition communicated by the architecture. In contrast,

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 8

programmers can have confidence that an ArchJava architecture accurately represents
communication between components, because the language semantics enforce
communication integrity.

Communication integrity in ArchJava means that components in an architecture can
only call each other’s methods along declared connections between ports. Each
component in the architecture can use its ports to communicate with the components
to which it is connected. However, a component may not directly invoke the methods
of components other than its own subcomponents, because this communication may
not be declared in the architecture, and thus may violate communication integrity. We
define communication integrity more precisely in section 4.1.

3.4. Dynamic Architectures

The constructs described above express architecture as a static hierarchy of interacting
component instances, which is sufficient for a large class of systems. However, some
system architectures require creating and connecting together a dynamically
determined number of components.

Dynamic Component Creation. Components can be dynamically instantiated using
the same new syntax used to create ordinary objects. For example, Figure 2 shows the
compiler’s main method, which creates a Compiler component and calls its
compile method. At creation time, each component records the component instance
that created it as its container component. For components like Compiler that are
instantiated outside the scope of any component instance, the container component is
null.

Communication integrity places restrictions on the ways in which component
instances can be used. Because only a component’s container can invoke its methods
directly, it is essential that typed references to subcomponents do not escape the scope
of their container component. This requirement is enforced by prohibiting component
types in the ports and public interfaces of components, and prohibiting ordinary
classes from declaring arrays or fields of component type. Since a component
instance can still be freely passed between components as an expression of type
Object, a ComponentCastException is thrown if an expression is downcast to
a component type outside the scope of its container component instance.

Connect Expressions. Dynamically created components can be connected together at
run time using a connect expression. For instance, Figure 3 shows a web server
architecture where a Router component receives incoming HTTP requests and
passes them through connections to Worker components that serve the request. The
requestWorker method of the web server dynamically creates a Worker
component and then connects its serve port to the workers port on the Router.

Communication integrity requires each component to explicitly document the kinds
of architectural interactions that are permitted between its subcomponents. A
connection pattern is used to describe a set of connections that can be instantiated at
run time using connect expressions. For example, connect pattern

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 9

Router.workers, Worker.serve describes a set of connections between the
Router subcomponent and dynamically created Worker subcomponents.

WebServer
workers

serve

request

create

Router

Worker

public component class WebServer {
 private final Router r = new Router();
 connect r.request, create;
 connect pattern Router.workers, Worker.serve;

 public void run() { r.listen(); }
 private port create {
 provides r.workers requestWorker() {
 final Worker newWorker = new Worker();
 r.workers connection = connect(r.workers, newWorker.serve);
 return connection;
 }
 }
}

public component class Router {
 public port interface workers {
 requires void httpRequest(InputStream in, OutputStream out);
 }
 public port request {
 requires this.workers requestWorker();
 }
 public void listen() {
 ServerSocket server = new ServerSocket(80);
 while (true) {
 Socket sock = server.accept();
 this.workers conn = request.requestWorker();
 conn.httpRequest(sock.getInputStream(), sock.getOutputStream());
 }
 }
}

public component class Worker extends Thread {
 public port serve {
 provides void httpRequest(InputStream in, OutputStream out) {
 this.in = in; this.out = out; start();
 }
 }
 public void run() {
 // gets requested file and sends it on the output stream
 }
}

Figure 3. A web server architecture. The Router subcomponent accepts incoming HTTP
requests and passes them on to a set of Worker components that respond. When a request
comes in, the Router requests a new worker connection on its request port. The
WebServer then creates a new worker and connects it to the Router. The Router assigns
requests to Workers through its workers port.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 10

Each connect expression must match a connection pattern declared in the enclosing
component. A connect expression matches a connection pattern if the connected ports
are identical and each connected component is an instance of the type specified in the
pattern. The connect expression in the web server example matches the corresponding
connection pattern because the r and newWorker components in the connect
expression conform to the types Router and Worker that are declared in the
connection pattern.

Port Interfaces. Often a single component participates in several connections using
the same conceptual protocol. For example, the Router component in the web
server communicates with several Worker components, each through a different
connection. A port interface describes a port that can be instantiated several times to
communicate through different connections.

Each port interface defines a type that includes all of the required methods in that
port. A port interface type combines a port’s required interface with an instance
expression that indicates which component instance the port belongs to. For example,
in the Router component, the type this.workers refers to an instance of the
workers port of the current Router component. Similarly, in the WebServer,
the type r.workers refers to an instance of the workers port of the r
subcomponent. Port interface types can be used in method signatures such as
requestWorker and in local variable declarations such as conn in the listen
method. In ArchJava, the required methods of a port can only be called by the
component instance the port belongs to. Therefore, required methods can only be
invoked on expressions of port interface type when the instance expression is this,
as shown by the call to httpRequest within Router.listen.

Port interfaces are instantiated by connect expressions. A connect expression
returns a connection object that represents the connection. This connection object
implements the port interfaces of all the connected ports. Thus, in Figure 3, the
connection object connection implements the interfaces newWorker.serve
and r.workers, and can therefore be assigned to a variable of either type.

Provided methods use the sender keyword to obtain the connection object
through which they were invoked. The detailed semantics of sender and other
language features are covered in the ArchJava language reference available on the
ArchJava web site [Arc02].

Removing Components and Connections. Just as Java does not provide a way to
explicitly delete objects, ArchJava does not provide a way to explicitly remove
components and connections. Instead, components are garbage-collected when they
are no longer reachable through direct references, running threads, or architectural
connections. For example, in Figure 3, a Worker component will be garbage
collected when the reference to the original worker (newWorker) and the references
to its connections (connection and conn) go out of scope, and the thread within
Worker finishes execution.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 11

3.5. Limitations of ArchJava

There are currently several limitations to the ArchJava approach. Our technique is
presently only applicable to programs written in a single language and running on a
single JVM, although the concepts may extend to a wider domain. Architectures in
ArchJava are more concrete than architectures in ADLs such as Wright, restricting the
ways in which a given architecture can be implemented—for example, inter-
component connections must be implemented with method calls. Also, our design
focuses on ensuring communication integrity, and does not yet support other types of
architectural reasoning, such as reasoning about the temporal order of architectural
events, or about component multiplicity.

ArchJava’s definition of communication integrity supports reasoning about
communication through method calls between components; however, components may
still used shared data to communicate in ways that are not directly expressed in the
architecture. Because existing ways to control communication through shared data
involve significant restrictions on programming style, we chose to allow unrestricted
data sharing. Future work includes developing ways to reason about communication
through shared data while preserving expressiveness. Our preliminary experience
with ArchJava [ACN02a] suggests that rigorous reasoning about architectural control
flow can aid in program understanding and evolution, even in the presence of shared
data structures.

3.6. Implementation

A prototype compiler for ArchJava is publicly available for download at the ArchJava
web site [Arc02]. Our compiler is implemented on top of the Barat infrastructure
[BS98]. The compiler accepts a list of ArchJava files (.archj), compiles each one
down to Java source code, and invokes javac on the resulting .java files. Our
compilation technique is incremental, so that when a source file is updated, only that
file and the files that depend on it need to be recompiled.

The ArchJava compiler translates each component class to an ordinary class in
Java, leaving the fields and method bodies substantially unchanged. We mangle the
names of classes to ensure that code not compiled by our compiler will not
accidentally misuse component classes; the main function is left in a class with the
original name, so that ArchJava applications work smoothly on existing Java virtual
machines. Each component class stores its container component and implements an
interface that allows the container to be checked. All casts to a component class are
compiled into calls to a generated cast method that verifies that the cast expression’s
container is the current component this, throwing a
ComponentCastException if the check fails.

Each port and port interface in the ArchJava source code is compiled into an
interface containing the required methods of the port. All variables of port interface
type are compiled to variables of that port’s interface type.

Each connection is compiled into a “connection class” that implements all of the
interfaces of the connected ports. The connect expression returns a new connection

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 12

object, passing the connected components to the connection object’s constructor. The
constructor assigns the connected components to internal fields. Whenever a required
method is invoked on that connection, the connection object invokes the
corresponding provided method on the appropriate component.

Although in ArchJava the source code is the canonical representation of the
architecture, visual representations are also important for conveying architectural
structure. Parts of this paper use hand-drawn diagrams to communicate architecture;
however, we have also constructed a simple visualization tool that generates
architectural diagrams automatically from ArchJava source code. In addition, we
intend to provide an archjavadoc tool that would automatically construct
graphical and textual web-based documentation for ArchJava architectures.

Performance. The main cost of our implementation technique is that calls through
connections are routed through connection objects, adding a layer of indirection to the
system. Our current compiler is a prototype and does not perform any optimizations;
however, future implementations could use well-known techniques like specialization
to eliminate this indirection in many cases.

Thus far, the only applications of significant size to which we have applied
ArchJava are interactive, and thus it is difficult to benchmark their performance. An
independent evaluation of ArchJava on a microbenchmark that exhibited a very fine-
grained architecture measured an overhead of about 10% relative to Java code with a
similar decomposition [AL02]. We expect that most realistic applications would use
architectural features at a more coarse grain, and so this estimate is probably close to
the worst case in practice.

4. ArchJava Formalization

In this section, we discuss the formal definition of communication integrity and
ArchJava’s semantics. The next subsection defines communication integrity in
ArchJava. Subsection 4.2 gives the static and dynamic semantics of ArchFJ, a
language incorporating the core features of ArchJava. Finally, subsection 4.3 outlines
states type soundness theorems for ArchFJ, and subsection 4.4 outlines a proof of
communication integrity.

4.1. Definition of Communication Integrity

Communication integrity is the key property of ArchJava that ensures that the
implementation does not communicate in ways that could violate reasoning about
control flow in the architecture. Intuitively, communication integrity in ArchJava
means that a component instance A may not call the methods of another component
instance B unless B is A’s subcomponent, or A and B are sibling subcomponents of a
common component instance that declares a connection or connection pattern between
them.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 13

We now precisely define communication integrity in ArchJava. We want to reason
about not only the direct method calls made by a component instance c to a
component instance b, but also indirect method calls made through non-component
intermediary objects. To reason about these indirect calls, we define the execution
scope of component instance c on the run-time stack, denoted escope(c), be any of
c’s executing methods and any of the object methods they transitively invoke.

Definition 1 [Dynamic Execution Scope]: Let c be a component instance, let mf
range over method frames executing on the stack, and assume that the caller function
returns the previous method frame on the stack. Then we can define the execution
scope of c recursively as follows:

escope(c) { mf | (mf.this = c) } ∪
 { mf | !component(mf.this) ∧ caller(mf) ∈ escope(c) }
escope(null) { mf | ∀c ≠ null . mf ∉ escope(c) }

It is easy to show that each method frame mf is in the execution scope of either
exactly one component or null.

Now we can define communication integrity. Let <: be the subtyping relation over
component classes (defined precisely in section 4.2, below). Let the function
container return a component’s container component (i.e., the component instance in
whose scope it was created), or null if there is no such container. We use class to
refer to the class of a component instance, and requiredmethods and providedmethods
to refer to the set of required and provided methods in a port.

Definition 2 [Communication Integrity in ArchJava]: A program has
communication integrity if, for all run-time method calls to a method m of a
component instance b in an executing stack frame mf ∈ escope(a):

1. For direct method calls, a = b or a = container(b)
2. For calls through connections, there exists a component instance c such that:

• c = a or c = container(a), and
• c = b or c = container(b), and
• connect pattern P1.z1,...,Pn.zn ∈ class(c), and
• ∃i,j ∈ 1..n . class(a) <: Pi ∧ class(b) <: Pj ∧

 m ∈ requiredmethods(pi) ∧ m ∈ providedmethods(pj)

In the definition above, the first case represents direct method calls between
components: the callee must either be the caller itself or one of the caller’s
subcomponents. The second case represents a method call along a connection
between components: some component instance c that is equal to or contains a and b
must have declared a connection pattern between a and b that matches the types of a
and b and includes the invoked method m. In section 4.4, we state and prove this
communication integrity property for a core subset of ArchJava.

This definition has been simplified slightly in the interest of clarity. Calls to
broadcast methods can be modeled as calls to multiple required methods, and static

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 14

connections can be modeled with dynamic connections and connect pattern
declarations.

4.2. Formalization as ArchFJ

We would like to use formal techniques to prove that the ArchJava language design
guarantees communication integrity, and show that the language is type safe. A
standard technique, exemplified by Featherweight Java [IPW99], is to formalize a
core language that captures the key typing issues while ignoring complicating
language details. We have formalized ArchJava as ArchFJ, a core language based on
Featherweight Java (FJ).

Syntax. Figure 4 presents the syntax of ArchFJ. The metavariables C and D range
over class names; E and F range over component and class names; T and V range over
types; P and Q range over component classes; f and g range over fields; v ranges over
values; d and e range over expressions; z ranges over port names; S ranges over

 _ _ _
CL ::= class C extends C {C f; K M} _ _ _ _ _ _
CP ::= component class P extends E_{C f; K M port z {R M} X}
K ::= E(C f)_{super(f); this.f = f;}
M ::= T m(T x) { return e; }
R ::= requires T m(T x)_ _
X ::= connect pattern (P.z)

e ::= v _

| new E(e)
 | e.f _
 | e.m(e)

| (T)e
| θ > e

v ::= x

| l _ _
 | connect(v.z)
 | error

T,V ::= E
 | v.z _
 | 8(v.z)
 _
S ::= l Å E (l)
 ::= x Å T

Σ ::= l Å T

l,θ, ∈ Locations

Figure 4. ArchFJ Syntax

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 15

stores; �, θ, and range over locations in the store, where θ is typically used to
represent the value of this and ����������������	
��������

����
���	�, and M ranges
over methods. As a shorthand, we use an overbar to represent a sequence. We
assume a fixed class table CT mapping regular and component classes to their
definitions. A program, then, is a pair (CT, e) of a class table and an expression.

ArchFJ makes a number of simplifications relative to ArchJava. In ArchFJ, each
component has exactly one port, defining a set of required and provided methods. For
simplicity, we require that the same set of methods appear in the class body and in the
port body. Static connections and component fields are left out, as they are subsumed
by dynamically created connections and components. We also omit the sender
keyword and broadcast methods. As in Featherweight Java (FJ), we omit interfaces,
assignment, and some statement and expression forms. These changes make our type
soundness proof shorter, but do not materially affect it otherwise.

ArchFJ extends FJ in several ways. Regular classes extend another class (which
can be Object, a predefined class) and define a constructor K and a set of
fieldsf and methods M . Component classes can extend another component class, or
Object. Component classes also define a single port that includes a set of required
methods R and provided methods M . Finally, component classes declare a set of
connection patterns X between their subcomponents.

We need to reason about object identity (represented by a location l) in order to
verify communication integrity. A store S maps locations l to their contents: the class
of the object and the values stored in its fields. As in ArchJava, the store also keeps
track of each object’s container object (represented by a subscript on the class name)
in order to check run time component casts properly. We will write S[l] to denote
the store entry for l. Functional store updates are abbreviated S[l→E

l
(l)]. The

function container(S,l) looks up the container of l in store S.
Expressions include object creation expressions, field lookup, method calls, and

casts. Component creations and casts must refer to the current value of this, so our
reduction rules keep track of the this reference as part of the executing context. We
give a small-step reduction semantics, and so a program expression must represent a
stack of executing methods, each with a potentially different receiver value this.
Therefore, we use an expression θ > e to represent a method body e executing with a
receiver θ.

Values represent irreducible computational results, and include locations and
connections. ArchFJ represents failed casts with an explicit error value. We
include variables as values because a variable may appear as the instance expression
in a port interface type. The set of variables includes the distinguished variable this
used to refer to the receiver of a method. Neither the error value, nor locations, nor
θ > e expressions may appear in the source text of the program; these represent
intermediate forms.

Types include class and component types (E), port interface types (v.z), and a
union type that matches any one of a set of port interface types.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 16

Reduction Rules. The evaluation relation, defined by the reduction rules given in
Figure 5, is of the form S,θ � e→ e’,S’ read “In the context of store S and
receiver θ, expression e reduces to expression e’ in one step, producing the new store
S’.” We write →* for the reflexive, transitive closure of →. Most of the rules are
standard; the interesting features are how they manipulate architectural constructs.
The R-NEW rule reduces a new expression into a fresh location. The store is updated
at that location to refer to a new object with its fields set to the values passed into the
constructor, and with its container set to the current object θ (representing this).
The field read rule looks up the receiver in the store and returns the location in the ith
field.

The reduction rule for object casts looks up the actual type of the casted object in
the store, and verifies that the actual type is a subtype of the type in the cast
expression. In addition, if the cast is to a component class, the rule verifies that the
current component θ is equal to either l or l’s container. Similarly, the rule for casts
to a port interface type verifies that the named port interface type is one of the ones in
the actual connection. If any of the conditions on the cast fails, then the cast reduces
to the error expression (the error rules are given in the companion technical report
[ACN02b]).

The method invocation rule R-INVK looks up the receiver in the store, then uses the
mbody helper function (defined in Figure 9) to determine the correct method body to

S ,)E(S,

)](ES[S S

′→
→=′∉
ll

lll

new--lθ
θ)(domain

 (R-NEW)

S .f S,

f CE)(E]S[

,

fields

ii ll

ll

→
==

--lθ
ς)(

 (R-FIELD)

S , (E) S,

S E E : F)(F]S[

ll

llll

→
=∨=⇒<=

--lθ
θθς)),((containercomponenta

 (R-CAST)

S),z.())z.(.z)((S,

z..z

lll

ll

connectconnect →
∈

--lθ
 (R-CONNECTCAST)

S ,e)v.m(S,

]e ,xv[e e,xEm,)(E]S[

b

0b0

>ll

lll

→

===
--lθ

ς this//)()(mbody
 (R-INVK)

S ,e)v).m(z.(S,

]e ,xv[e ,e,xPm,)(P]S[

b

0b0

>ll

ll l

i

iimbody...

→
===

connect

this

--lθ
)()(

0 (R-CONNECTINVK)

 S v,v S, →>l--lθ (R-CONTEXT)

S ,e e S,

S ,ee S,

′′→
′′→

>l>l

l

--l

--l

θ
 (RC-CONTEXT)

Figure 5. ArchFJ Evaluation Rules

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 17

invoke. In the method body, all occurrences of the formal method parameters and
this are replaced with the actual arguments and the receiver, respectively.
Execution of the method body continues in the context of the receiver location. The
rule for invocations on connections is similar, except that the mbody helper function
also determines which of the connected components defines the invoked method.
When a method expression reduces to a value, the R-CONTEXT rule propagates the
value outside of its method context and into the surrounding method expression.

The full semantics of the language include a set of congruence rules (such as if
e→e’ then e.f→e’.f) allow reduction to proceed in the order of evaluation
defined by Java. We include the congruence rule RC-CONTEXT because it shows the
semantics of the l > e construct: evaluation of the expression e occurs in the context
of the receiver l instead of the receiver θ. The rest of the congruence rules are omitted
here, but can be found in a companion technical report [ACN02b].

Subtyping Rules. ArchFJ’s subtyping rules are given in Figure 6. Subtyping of
classes and components is defined by the reflexive, transitive closure of the immediate
subclass relation given by the extends clauses in CT. In the S-EXTENDS rule and
elsewhere, the brackets and ellipses indicate optional syntax that does not affect the
rule’s semantics. We require that there are no cycles in the induced subtype relation.
Every type is a subtype of Object, and a union type is a subtype of all its member
types.

Typing Rules. Typing judgments, shown in Figure 7, are of the form Te E :,, --lΣΓ ,

�����������������������
������ ����
����������Σ, and class E, expression e has type T.”
The T-VAR rule looks up the������

��������������� �����������-LOC rule looks up the
type of a location in Σ. The object creation rule verifies that the types of all the actual
constructor argument types are subtypes of the declared constructor argument types.
The connection rule assigns the connection a union type of all the connected ports. If
the instance expressions in the connection are variables, then this is a connection in
the source text, and so the connection must match a connect pattern declaration in the
enclosing component. It is not necessary to perform this check once the variables in

 T : T < (S-REFLEX)

T : T

T : T T : T

′′<′
′′<′′<
 (S-TRANS)

F : E

} ... { F E][E

<
= extendsclasscomponent)(CT

 (S-EXTENDS)

 Object : T < (S-OBJECT)

v.z :)z.v(

z.vv.z

<
∈

U
 (S-UNION)

Figure 6. ArchFJ Subtyping

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 18

the connect expression have been replaced with locations. The rule for field reads
looks up the declared type of the field using the fields function defined in Figure 9.
Casts to a component class in ArchJava can only appear in methods of a component
class; the cast rule for ArchFJ checks this constraint.

Rule T-INVK looks up the invoked method’s type using the mtype function defined
in Figure 9, and verifies that the actual argument types are subtypes of the method’s
argument types. Because this may appear as part of port interface types in the
method’s argument and result types, the rule substitutes any occurrences of this in
the method’s type with the actual receiver value. This substitution is undefined if the
method’s type contains this and the receiver is not a value. If the invocation is
through a port interface type and the instance expression is a variable, then the
instance expression must be this, as in ArchJava. Finally, the T-CONTEXT typing
rule for an executing method checks the method’s body in the context of the class of
the this pointer.

Class and Store Typing. Figure 8 shows the rules for well-formed class definitions
and stores. The rules for well-formed classes have the form “class declaration E is
OK,” and “method/port/connection X is OK in E.” The class rules checks that the
form of the constructor simply calls the superclass constructor, then assigns the values
passed to the constructor to the corresponding fields. It also verifies that any methods,
ports, and connections in the class are well-formed. Component classes may only
inherit from other component classes, or from class Object.

)(:,, ll ΣΣΓ --l E (T-LOC)

)(:,, xx E ΓΣΓ --l (T-VAR)

E)eE(F

D : C f DE Ce F

:,,

)(:,,

new--l

--l

ΣΓ
<=ΣΓ fields

 (T-NEW)

)z.v()z.v(E

Q : PPz.QPE xv

Pv E

thisthis

U:,,

))((

:,,

connect

 pattern connect

--l

--l

ΣΓ
<∧∈∧=⇒=

ΣΓ

connects
 (T-CONNECT)

ii

fields

C.fe E

f CE Ee E

0

000

:,,

)(:,,
--l

--l
ΣΓ

=ΣΓ
 (T-FIELD)

T(T)e E

E T Te E 0

:,,

:,,
--l

--l

ΣΓ
⇒ΣΓ onent is a component is a comp

 (T-CAST)

R0this

00R0

this000this

T)e.m(e E

x x.zT T[eT T][e : V

Ve E TTTm, Te E

:,,

]//

:,,)(:,,

--l

--l--l

ΣΓ
=⇒==<

ΣΓ→=ΣΓ

thisthisthis

mtype

 (T-INVK)

Te E

Te F F E

:,,

:,,:,,

>l

l

--l

--l--l

ΣΓ
ΣΓΣΓ

 (T-CONTEXT)

Figure 7. ArchFJ Typechecking

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 19

The rule for methods checks that the method body is well typed, and uses the
override function (defined in Figure 9) to verify that methods are overridden with a
method of the same type. It also ensures that the signature of a component method
does not include component types. For component classes, the port typing rule
verifies that only subclasses of Object may define new required and provided
methods. The rule for connect patterns verifies that each required method has a
unique provided method with the right signature.

The store typing rules ensure that the form of the store is consistent with the Java’s
typing rules. The two clauses of the store typing rule are the usual well-formedness
rules, requiring the store type Σ to type every location in S, and verifying that the
types of objects in a field are compatible with the field’s type.

Auxiliary Definitions. Most of the auxiliary definitions shown in Figure 9 are
straightforward and are derived from FJ. The field and connection lookup rules return
the list of fields and connections in a given class. ArchFJ follows Java’s lookup rules
for method types and method bodies, with straightforward extensions for port types
and union types. The method body lookup rule mbody for connections chooses the
component i providing the method. It is guaranteed to choose a unique component
because the T-PATTERN rule implies that only one of the components in a connection
defines each method. It then computes the actual method body using the usual mbody
rule. Finally, the override rule checks that overriding methods have the same type
signatures as the methods they override.

OK]}X }M Rz{ [M K ;f C{ E F][

F) IN OK Xz, Object)E ((EF

F IN OK M g DE };f f.);g({)f C ,g DF(K

portextendsclasscomponent

thissuper

∧=∨⇒

===

nt class a component class a compone

fields)(

 (T-CLASS)

E in OK } e; {)x T m(T

TT, T : V Ve E,:E},this ,T:x{

TT F, m, }{ F E][E

return

extendsclasscomponent

nents not compo

overrideCT

<∅

→…=

:

)()(

--l
 (T-METH)

P in OK } M R { z

E} M R { z Object E

}{ E P P

 T,T);x Tm(T R

port

port

extendsclass component

requires

∈⇒≠

…=
=

)(CT

componentsnotiiiiii

 (T-PORT)

Q IN OK)P.z(

) Pm, TTPm, (

T)Tzm,(

 patternconnect

definednotmtypejkmtypetsij

mtypei

kj

i

)()(..

)(

≠∀∧→=≠∃⇒

→=∀

 (T-PATTERN)

S

C :)(f CE)(E]S[. S S

--lΣ
<Σ⇒=∧=∈∀=Σ))(()()()(llll fieldsdomdomdom ς (T-STORE)

Figure 8. Class, Method, Port, Connection, and Store Typing

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 20

4.3. Type Soundness

Before proving communication integrity, we show that our type system is sound, i.e.,
execution of ArchFJ programs will not become stuck except due to failed casts. We
frame type soundness with the usual theorems: Subject Reduction states that if a well-

Field lookup:
•=)(Objectfields

f C ,g DE

g DF]}X R[M K ;f C{ F E][E

=
==

)(

)()(

fields

fieldsCT extendsclasscomponent

Connection lookup:

•=)(Objectconnects

X ,XP

XE }X R M K ;f C{ E P P

0

0

=
==

)(

)()(

connects

connectsCT extendsclasscomponent

Method type lookup:

TTEm,

M} e; {)x T(m T }M{ F E][E

→=
∈……=

)(

)(

mtype

CT returnextendsclasscomponent

)()(

)(

Fm,Em,

Mm }M{ F E][E

mtypemtype

fined in is not deCT

=
……= extendsclasscomponent

TTzm,

R)x T(mT }}M R{ z { E P

→=
∈∈……

)(mtype

CT requiresportextendsclasscomponent

TTz.v(m,

TTzm,

→=
→=

))(

)(

Umtype

mtype i

Method body lookup:

)()(

)(

e,xEm,

M} e; {)x T(m T }M{ F E][E

=
∈……=

mbody

CT returnextendsclasscomponent

)()(

)(

Fm,Em,

Mm }M{ F E][E

mbodymbody

fined in is not deCT

=
……= extendsclasscomponent

)()(

)()(

0

0

imbody

mbody i

,e,xPm,

e,xPm,

=
=

Valid method overriding:

)(

)(

0

000

VV E, m,

TV TV TTE m,

→
=∧=⇒→=

override

mtype

Figure 9. ArchFJ Auxiliary Definitions

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 21

typed program reduces to another program in a single reduction step, the resulting
program is either well-typed or contains an error subexpression from a failed cast.
Progress states that a well-typed program is either an irreducible value or an
expression to which one or more of the evaluation rules applies. Our presentation is
modeled after that of Featherweight Java [IPW99]; the full details of the proofs can be
found in the companion technical report [ACN02b].

Theorem [Subject Reduction]: If Te E :,, --lΣΓ , E=Σ)(θ , S --lΣ , and

S,ee S, ′′→--lθ then either T:T <′Σ⊇Σ′∃ , such that Te E ′′Σ′Γ :,, --l and S ′Σ′ --l , or else
e’ has an error subexpression.

Before proving the theorem, we define a term substitution lemma, necessary for the
method invocation case in the proof. This enables us to show that substituting terms
in a well-typed expression preserves the typing:

Lemma [Term Substitution]: If Te E :E} ,T:x{ :, --l∅,this , V F :,, l--lΣ∅ ,

E F ′Σ∅ :,, l--l , T]/[:V thisl< , and E:E <′ , then T]e/,x/[F ′Σ∅ :, thisll>l--l, for some
]T/[:T thisl<′ .

The proof is by induction over the structure of e, with a case analysis on the form of
the outermost term.

Subject reduction is then proved by induction on the derivation of S,ee S, ′′→--lθ
with a case analysis on the last reduction rule used. �

Theorem [Progress]: If Te E :,, --lΣ∅ , then either e is an irreducible value, or else
∀S,θ such that S --lΣ and E=Σ)(θ we have S,ee S, ′′→--lθ .

The proof is by induction on the derivation of Te E :,, --lΣ∅ with a case analysis on the
last typing rule used. �

4.4. Communication Integrity

Like the definition of communication integrity for ArchJava in section 4.1,
communication integrity for ArchFJ has two parts: a theorem for direct method calls,
and a theorem for method calls through a connection. The first theorem states that for
all direct method invocations on a component, the receiver must be the current
component this or one of its immediate subcomponents. The formal statement of
the theorem is somewhat technical:

Theorem [Communication Integrity of Direct Calls]: Consider any method call

)e.n(e′ in the body of another method m. We assume that the method body is well
typed, so we have E in OK } e; {)x T m(T return with)e.n(e′ a subexpression of e.
Consider a well-typed run time method call to m on an object θ, such that

S ,e)v.m(S, bo >θθθ →--l , Te F b :,, >θ--lΣΓ , and S --lΣ . Communication integrity

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 22

means that if e’ has a component type (Pe E :,, ′ΣΓ --l) and e’ reduces to a location l
(S , e S, ′→ l*--lθ), then the current component θ is either the receiver l of the method
call or the container of the receiver (θ=l or θ=container(S,l)). This last condition
corresponds to the first case of communication integrity given in section 4.1.

The theorem is proved by a case analysis on the form of expression e’, followed by
induction on the derivation of S , e S, ′→ l*--lθ . For example, one of the more
interesting cases occurs if e’ is a cast to a component type. The last reduction rule
used in the derivation of S , e S, ′→ l*--lθ must be R-CAST, which checks that θ=l or
θ=container(S,l), ensuring that communication integrity holds for this case. �

The second theorem states that for all method invocations on a connection, there exists
a creating component that declared a matching connection pattern, and all components
in the connection are either the creating component or one of its subcomponents.
Furthermore, the current component this must be a part of the connection.

Theorem [Communication Integrity of Indirect Calls]: If an initial expression e
evaluates to a well-typed expression e’ (S ,e e , o ′→∅ *--lθ , Te Object :,, ′Σ∅ --l ,

S --lΣ), and).z(lconnect is a subexpression of e’ then there exists a component
instance l that declared a connection pattern ())((lΣ∈ connects z.Q pattern connect)
whose types match the connected components (Q:<∑)(l), and all of the connected
components are equal to or contained by l (),(iii container llllll S . =∨=∈∀).
Furthermore, if a method is called on the connection
(S ,e)v).m(.z(S, b>ll i→connect--lθ) then the current component l ∈θ .

The proof is by induction on the derivation of S ,e e , o ′→∅ *--lθ . Connect
expressions may only be introduced into e’ through method calls, and the T-
CONNECT rule verifies that the appropriate connection pattern is present in the
enclosing component class. A lemma similar to the communication integrity of direct
calls theorem is used to show that),(iii container llllll S . =∨=∈∀ .

Finally, we show that l∈θ . The key insight is that rule T-INVK requires that any
port interface type with a variable as the instance expression must be of the form
this.z. When the method is called the variable this will be replace with the
actual receiver θ, and so type soundness guarantees that the connect expression
includes θ. �

5. Experience

In previous work, we validated the basic design of ArchJava with a case study on
Aphyds, a 12,000-line circuit-design program with a static architecture [ACN02a]. In
this section, we describe a case study that evaluates ArchJava’s support for dynamic
architectures and component inheritance, and adds to our confidence in the application
of ArchJava. In our case study, we attempt to answer the following experimental
questions:

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 23

• Is ArchJava expressive enough to describe a real architecture that is dynamically
evolving?

• How does the difficulty of reengineering a Java program in order to express its
architecture vary with the program’s characteristics?

• What might be the benefits of expressing a program’s architecture in ArchJava?

5.1. Methodology

Our approach to answering these questions was to translate Taprats from Java into
ArchJava, using the conceptual architecture provided by the program’s developer as a
guide. In the process of our Taprats case study, we refined the hypotheses formed in
our initial case study, and made new hypotheses, outlined in bold below.

The case study participant was a graduate student with five years’ experience of
system programming in Java. Although the participant was the developer of the
ArchJava compiler, he was unfamiliar with Taprats and had little experience writing
user interfaces in Java. Thus, the study reflects the common reality of a programmer
asked to evolve an unfamiliar system. The participant was one of us, and will be
informally referred to as “we” in the following text.

We reengineered Taprats to express the conceptual architecture described by the
developer. After browsing the code to determine which classes corresponded to the
components in the developer’s conceptual architecture, we converted these classes
into ArchJava component classes.

The next four subsections describe the process of reengineering Taprats, a
comparison to the earlier Aphyds case study, an analysis of what we learned about the
ArchJava language, and a summary of the benefits of reengineering Taprats in
ArchJava.

5.2. Reengineering Taprats

Taprats [Kap00] is an application for designing Islamic star patterns. The user first
chooses a basic tiling pattern from a library, then defines the exact shapes used within
the tiles, and finally renders the design in one of several styles. Different windows are
provided for these tasks, and the user can simultaneously work on different variations
of a single design.

The developer of Taprats (not one of us) is a computer science graduate student
and an experienced Java programmer. Taprats won the grand prize in the 2000
ACM/IBM Quest for Java, and can thus be considered a model Java program with a
quality design and implementation. The application is 12,540 lines of Java source
code, as measured by the Unix wc (word count) program, not counting the Java
libraries used.

We asked the developer to draw the conceptual architecture of Taprats, as shown in
Figure 10. He drew two diagrams, one representing the user interface and one
representing the internal data structures. The user interface is a pipeline architecture

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 24

of four windows, each of which passes an increasingly detailed data structure to the
next window. The internal view shows how data structures are contained within and
produced from each other.

Validating Taprats’ Architecture. We began the study by examining the Taprats
source code to try to determine how it corresponds to the developer’s conceptual
architecture. We discovered that the main method in the Program class created the
first user interface window, and that each successive window spawned the next one in
the action code for the appropriate button.

Although the conceptual architecture of the user interface showed a sequence of
windows, the implementation structure was more like a nesting of window instances,
where each window object is responsible for creating child window objects for the
next tile design stage. Thus, our experience with Taprats supports a hypothesis from
our previous case study:

Hypothesis 1: Developers have a conceptual model of their
architecture that is mostly accurate, but this model may be a
simplification of reality, and it is often not explicit in the code.

Figure 10. The developer’s drawing of Taprats’ architecture. The drawing on the top shows
the user’s point of view, describing the four main user interface windows, what they look like
on the screen, and what data structures are passed from one window to the next. The drawing
on the bottom shows the internal data structures, beginning with a Tiling that is nested
withing a Prototype, which first evolves into a Map and then has rendering style
information added.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 25

Architectural Design Principles. ArchJava provides two kinds of objects with which
to build applications. Component objects allow developers to specify the
communication patterns within an architecture, but the compiler’s communication
integrity checks limit the ways in which component objects can be used. ArchJava
also provides ordinary Java objects, which allow unrestricted data sharing within a
component architecture, but which cannot be used to specify or check architectural
properties. Design principles are needed to help determine where to use component
objects and where to use ordinary objects.

Using the intuition that architecture is most important at the largest scales in the
application, we began our study by creating a component representing the entire
Taprats application, and then refined this architecture to increase its level of detail.
We used the following guidelines to help us choose which application objects should
be components in the architecture, and which are best left as ordinary objects:

• Scale. The larger the scale of the component, the more program understanding
and evolution benefits may be gained by making its internal structure explicit.
This is primarily because other tools for program understanding (including
browsing source code) are the least effective at large scales.

• Control flow. Does one of the constituent objects of a component call back into
that component? If so, that object will have to be made part of the architecture
to satisfy the compiler’s communication integrity checks. This rule is largely a
consequence of ArchJava’s focus on control flow communication integrity.

• Sharing. ArchJava supports a hierarchical view of software architecture, and
therefore does not allow a component to be shared by two container components.
Thus, structures that are shared between components should be left as ordinary
objects, unless the sharing can be easily replaced with method calls through the
container component’s port.

• Database objects. Singleton objects that encapsulate information shared by
multiple components are good component candidates, forming a repository
architecture style. They may need to be promoted up a level in the component
hierarchy to make the sharing explicit.

• Data structures. Small data structures that have many instances and are shared
or passed between components are best left as ordinary objects. ArchJava’s
component mechanisms may be too “heavyweight” to use at these small
application scales.

• Cooperation. If a set of objects communicate with each other in complex ways,
making them component classes in an architecture may aid program
understanding by making the communication patterns explicit as connections in
the architecture.

• Lack of communication. ArchJava’s architectural features can be used to
document the invariant that a set of components do not communicate directly
with one another.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 26

These principles are not orthogonal; a designer must make tradeoffs based on the
applicability of the different design criteria, and the specific nature of the application.
We hope to refine these design principles based on future experience with ArchJava.

Architectural Design. Applying the design principles above, we initially focused on
the architecture of the user interface, as shown in the top part of Figure 10. Our
rationale was that the user interface is the highest level of scale in the application, and
also that control flow originates in the user interface. Our experience suggests:

Hypothesis 2: Because ArchJava ensures control-flow
communication integrity, it has a natural bias towards a UI-centric
architecture in user-interface driven applications.

This hypothesis is also supported by our previous case study, which also resulted in a
UI-centric architecture. Our hypothesis suggests that in the future, we should apply
ArchJava to systems applications that are not user-interface driven, to determine the
effectiveness of the language in that domain.

As we reengineered Taprats, we used the architecture design guidelines to flesh out
our initial architecture. Following the developer’s conceptual architecture, we made
each user interface window into a component. We then refined the architecture by
making several window panes into subcomponents of their containing window, either
because there was control flow from the pane back into the window, or because we
wanted to document the fact that the panes were unshared and they did not
communicate with other components. Ultimately, we decided not to encode the
bottom part of Figure 10 in the architecture, because these are data structures that are
passed along the user interface pipeline.

Parts of the user interface architecture made extensive use of inheritance, exercising
ArchJava’s support for component inheritance. For example, the user interface
employs window panes of different classes depending on the tiling pattern chosen by
the user. Taprats’ design shows how inheritance can be useful in a component-based
system.

Code Restructuring. As described above, each window in the user interface creates
the next one, suggesting a series of nested windows rather than a pipeline of windows.
In order to make the developer’s conceptually linear architecture more explicit, we
decided to make two structural changes to the application.

First, we made the windows siblings in the architecture instead of being nested
within each other. Because components can only be created by their container
component in ArchJava, this meant we had to move all the application’s window-
creation code into the Program class. This change complicated the application
slightly, because each window had to call into the container component to create the
next window. However, it has benefits as well: the new design shows the conceptual
architecture more directly than the original design. This “factory pattern” design
[GHJ+94] also decouples the different user interface windows, because each window
no longer specifies exactly which window will be created next and how it will be
created. This information is hidden within the container component, potentially
allowing the interface to be modified at a smaller cost.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 27

Hypothesis 3: Using ArchJava to express software architecture
explicitly can aid information hiding by encouraging developers to
reduce coupling between different components in their architecture.

In a post-study interview, the Taprats developer said that this change made the
ArchJava architecture appear more like his conceptual architecture, but thought that
there should be some way to allow components to be constructed by their siblings in
the architecture. We are considering how to address this limitation of the current
ArchJava language design, perhaps by supporting constructor calls through ports.

Second, instead of passing tiling data from one window to the next via an argument
to the latter window’s constructor, we created explicit connections between the
windows, along which the data could be passed. We made this change in order to
express the developer’s conceptual architecture as directly as possible, and the
developer agreed that the new design helped to accomplish this goal. However, a
serious drawback of the new design is that windows are not completely initialized
when the constructor completes, but remain in a partially initialized state until the
tiling data is passed via a separate method call. Because of this, the developer said
that he would not have made this second architectural change. It is possible that
allowing constructor calls through ports will enable us to express this type of
connection directly without the drawbacks of our current implementation.

Reengineering Process. We performed our reengineering as a series of small
refactoring steps, compiling the program and fixing introduced defects after every
stage. Thus, we never went more than an hour without a correctly running program.
This methodology was suggested in our previous case study, after we tried to make
many changes at once and ended up introducing several hard-to-repair defects. We
found that this methodology was effective at limiting defects in this study.

To help us understand the process of reengineering a program to make its
architecture explicit with ArchJava, we recorded the major refactoring steps we
performed, and categorized them into the following refactoring patterns:

• Change class to component class: When a class describes an object that is part of
the architecture, change it into a component class. This may require applying
other refactorings in order to pass communication integrity checks.

• Move creation to container component: When a component creates one of its
sibling components in the architecture, create a port in the component and its
container with a single method, requestCreate. The container component
creates the sibling in requestCreate, connects it as appropriate in the
architecture, and optionally returns a connected port to the original child
component.

• Change a field link into a connection: When a component has a field that refers
to a sibling component, replace the field with a port that contains all of the
methods invoked on the sibling component. In the container component,
connect the component’s port to a corresponding port on its sibling, and then
convert method invocations on the field into invocations on the appropriate port.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 28

In addition to these major refactoring steps, we used several conventional refactoring
patterns [FBB+99], as well as a few more minor refactoring patterns that are specific
to ArchJava.

Reengineering Cost. We spent about 5½ developer hours reengineering Taprats, or
about 30 minutes of work per KLOC. Of this time, approximately half was spent in
design activity—understanding the structure of the original program, planning the
conversion to ArchJava, considering architectural alternatives, and examining the final
architecture for completeness at the end. Because the developer of Taprats had
already put considerable effort into making a clean design and implementation, a
relatively small amount of our time was spent actually implementing the architectural
changes.

Our implementation time was divided roughly equally between modifying the
source code to express the architecture, and repairing defects that were introduced in
these refactoring steps. The final program code is 12693 lines long—only 153 lines
longer than the original application. A total of 242 lines of code were added or
changed in the process. Our experience supports a hypothesis from our previous
study:

Hypothesis 4: Applications can be translated into ArchJava with a
modest amount of effort, and without excessive code bloat.

Code Characteristics. One particular code characteristic that stood out as we edited
Taprats was the Law of Demeter [LH89], which states that objects should only
communicate directly with their immediate neighbors in a system. The Law of
Demeter can be thought of as the object-oriented analog of communication integrity,
since ArchJava components may only communicate with the architectural “neighbors”
to which they are connected in the architecture.

We discovered this connection by examining a violation of the Law of Demeter that
forced us to restructure Taprats’ code. After constructing a new window, the Taprats
code called an accessor function to get a pane of that window, and then set the
parameters of the pane’s viewport directly—violating the Law of Demeter, since the
pane was not an immediate neighbor of the original code. In our architecture, the pane
was an internal component of the window component, and so this communication
violated communication integrity. Therefore, we had to restructure the program to
pass the viewport parameters to the enclosing window, which then passed them on to
the pane. When shown the offending code, the developer agreed with our assessment
and thought our solution was appropriate.

Despite this example, most of the Taprats code obeyed the Law of Demeter. This
had a beneficial effect on our reengineering: when we converted an object into a
component, the new component would often pass the compiler’s communication
integrity checks as soon as we converted direct method calls into calls on ports. Our
experience suggests:

Hypothesis 5: It will be relatively easy to use ArchJava to express
the software architecture of an object-oriented program whose
source code obeys the Law of Demeter.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 29

public component class Program {

 // the tiling selector window subcomponent
 private final TilingSelector ts = new TilingSelector();

 // ports for creating windows
 private port createDesignEditor {
 provides ts.sendTiling requestEditor() {
 DesignEditor e = new DesignEditor();
 connect(createPreviewPanel, e.createNext);
 ts.sendTiling aPort = connect(ts.send, e.receive);
 return aPort;
 }
 }
 private port interface createPreviewPanel {
 provides Object requestPreview(Object edit) {
 DesignEditor e = (DesignEditor) edit;
 PreviewPanel p = new PreviewPanel();
 connect(createRenderPanel, p.createNext);
 return connect(e.send, p.receive);
 }
 }
 private port interface createRenderPanel {
 provides Object requestRender(Object prevw) {
 PreviewPanel p = (PreviewPanel) prevw;
 RenderPanel r = new RenderPanel();
 return connect(p.send, r.receive);
 }
 }

 // connections between the creation ports and the windows
 connect createDesignEditor, ts.createNext;
 connect pattern createPreviewPanel, DesignEditor.createNext;
 connect pattern createRenderPanel, PreviewPanel.createNext;

 // connections between the windows
 connect pattern TilingSelector.send, DesignEditor.receive;
 connect pattern DesignEditor.send, PreviewPanel.receive;
 connect pattern PreviewPanel.send, RenderPanel.receive;

 // the main methods of the program
 public void run() {
 Frame f = new Frame("Taprats 0.3");
 f.add("Center", ts);
 // more code to finish setting up the window...
 }

 public static void main(String[] args) {
 new Program().run();
 }
}

Figure 11. ArchJava code for the Taprats component. The main application method
creates a Program component and invokes run on it. The initial TileSelector window
is created in the field initializer for ts, and the run method wraps it in a Frame. The three
private ports contain methods that create and connect new window components. Connect
declarations show communication patterns between windows.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 30

Final Architecture. Figure 11 shows the ArchJava code that expresses the
architecture of Taprats. The complete ArchJava source code for Taprats is available
at the ArchJava web site [Arc02]. Compared to the developer’s conceptual
architecture, our final ArchJava architecture describes identical communication
patterns between the user interface windows.

Figure 12 shows a visualization of the Taprats architecture automatically derived
from the ArchJava source code using a visualization tool. We showed the developer
this diagram, and he agreed that it captured his conceptual architecture well.

Alternative Architectural Choices. Our study was directed towards implementing
the developer’s conceptual architecture as directly as possible in ArchJava. However,
an architect could have expressed alternative Taprats architectures using ArchJava.
For example, we could have followed the original source code more closely,
producing a nested hierarchy of components instead of a linear sequence of
components. Although this architecture would not show all of the user interface
components and connections within one composite component, it would express the
constraint that the user interface window instances form a tree with each window
spawning multiple windows on the next level. The architecture we chose does not
eliminate the possibility that the windows form a dag, where data from two source
windows might be combined into a later-stage window (this does not occur in practice,
of course). ArchJava is flexible enough to express both architectures, depending on
which the software architect deems more appropriate.

5.3. Comparison to Aphyds Case Study

We found that expressing the conceptual architecture of Taprats with ArchJava was
straightforward when compared with our earlier case study. In all, we spent
approximately five times less effort in this case study than in the Aphyds case study,

Figure 12. A visualization of the Taprats architecture, automatically derived from the
ArchJava source code. Boxes represent subcomponents, and arrows represent inter-component
control flow. The ovals are internal ports of the program component, which are used by the
first three window components to create the next window in the sequence.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 31

despite the fact that the programs were of similar size. Several application
characteristics may have contributed to this difference:

• Architecture Style. The pipeline architecture style of Taprats, where data is
passed from one component to another, has simpler communication patterns than
the repository architecture style of Aphyds, where components access a shared
database.

• Architectural Connectivity. Once spawned, Taprats’ user interface windows are
completely independent: they access different data, and do not communicate in
any way. In contrast, Aphyds’ user interface windows show different views of
the same data, and therefore the user interface architecture includes connections
to pass updated data and window state.

• Architecture Granularity. The developer of Aphyds specified a fairly fine-
grained architecture, and the control flow within the user interface encouraged us
to make the architecture even more fine-grained than the developer specified. In
contrast, the Taprats user interface architecture was more coarse-grained,
consisting of only four windows and their window panes.

• Architectural Mismatches. The structure of Taprats was quite similar to the
architecture we tried to express. In the Aphyds study, we chose to make some
previously dynamic structures static, requiring us to restructure the code to
support re-initialization where new objects had been created previously.

• Code Interdependence. As described above, Taprats had a well-factored
codebase that generally followed the Law of Demeter, making the architectural
reengineering easy. In contrast, the Aphyds codebase contained many
dependencies across object structures. Its frequent violations of the Law of
Demeter required many reengineering steps before the compiler’s
communication integrity checks were satisfied.

Our experience suggests that looking at these application characteristics may shed
light on how much effort will be required to express an application’s architecture with
ArchJava.

5.4. Evaluation of the ArchJava Language

In general, our experience suggests that the ArchJava language design was adequate
for expressing the architecture of Taprats. We were able to describe the conceptual
architecture of the developer with minimal reengineering effort. The dynamic
constructs of the language, which were largely untested in our earlier case study, were
sufficient to express the dynamic nature of the Taprats user interface.

We also noticed areas in which the language design could be improved. As
discussed before, it would be cleaner if each window in Taprats’ user interface
pipeline could create the next window in a more natural way, rather than requesting
that the container component create the next window, as is done in the current
solution. Also, in Figure 12, the creation ports (such as createPreviewPanel)
that are connected to dynamically created child windows cannot accept an argument of

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 32

component type telling them which window to connect, nor can they return a port with
the correct type (as does the createDesignEditor port). Due to limitations in
the current type system of ArchJava, two extra casts are required, one in the container
component and one in the window component. We are considering ways to extend the
ArchJava language design to handle these cases more smoothly.

5.5. Benefits of ArchJava

The ArchJava architecture has a number of advantages compared to the original,
conceptual architecture of Taprats. ArchJava architectures are guaranteed to be
complete, listing all method call communication between components. The ArchJava
architecture is guaranteed to stay up-to-date as the code evolves with changing
requirements, and architectural visualizations can be generated automatically. Finally,
it is easy to examine the source code to look at the interior structure of an ArchJava
component, determine what methods are in each port, or examine how the methods are
implemented.

The process of reengineering Taprats to make its architecture explicit may also
have made the code more maintainable and easier to change. For example, the
compiler’s communication integrity checks identified several violations of the Law of
Demeter, enabling us to replace them with better-factored code. Because ports
encapsulate all control-flow communication between components, the components are
more loosely coupled in the final version of the code, making them easier to evolve as
requirements change. More experience with evolving ArchJava programs is needed to
determine if these potential benefits are realized in practice.

In summary, we were able to capture the conceptual architecture of Taprats
effectively in ArchJava with a small amount of effort relative to the size of the
program. Our experience demonstrates that the language is flexible enough to
describe dynamically evolving software architectures, and suggests future
improvements to the language design.

6. Conclusion and Future Work

ArchJava allows programmers to express architectural structure and then seamlessly
fill in the implementation with Java code. At every stage of the software lifecycle,
ArchJava ensures that the implementation conforms to the specified architecture. Our
formalization of ArchJava gives us confidence in its type system’s ability to enforce
communication integrity. A case study suggests that ArchJava can be applied with
relatively little effort to moderate-sized Java programs with dynamically evolving
architectures, making the program’s structure explicit and improving the
maintainability of code. Thus, ArchJava helps to promote effective architecture-based
design, implementation, program understanding, and evolution.

In future work, we intend to gather experience from outside users of ArchJava, and
perform further case studies to see if the language can be successfully applied to
programs larger than 100,000 lines of code. We will also investigate extending the

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 33

language design to enable more advanced architectural reasoning, including temporal
ordering constraints on component method invocations and constraints on data sharing
between components.

Acknowledgements

We would like to thank David Garlan, Sorin Lerner, Vassily Litvinov, Vibha Sazawal,
Todd Millstein, and Matthai Philipose for their comments and suggestions. We
especially thank Craig Kaplan for his time and the Taprats program. This work was
supported in part by NSF grant CCR-9970986, NSF Young Investigator Award CCR-
945776, and gifts from Sun Microsystems and IBM.

References

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. Proc. International Conference on Software
Engineering, Orlando, Florida, May 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Reasoning in
ArchJava. University of Washington Technical Report UW-CSE-02-04-01, available at
http://www.archjava.org/, April 2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3), July 1997.

[Arc02] ArchJava web site. http://www.archjava.org/

[AL02] Andrei Alexandrescu and Konrad Lorincz. ArchJava: An Evaluation. University of
Washington CSE 503 class report, available at http://www.archjava.org/, February
2002.

[BS98] Boris Bokowski and André Spiegel. Barat—A Front-End for Java. Freie Universität
Berlin Technical Report B-98-09, December 1998.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. Proc.
Programming Language Design and Implementation, Montreal, Canada, June 1998.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In Advances
in Software Engineering and Knowledge Engineering, I (Ambriola V, Tortora G, Eds.)
World Scientific Publishing Company, 1993.

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A Minimal
Core Calculus for Java and GJ. Proc. Object Oriented Programming Systems,
Languages and Applications, Denver, Colorado, November 1999.

[Kap00] Craig S. Kaplan. Computer Generated Islamic Star Patterns. Proc. Bridges 2000:
Mathematical Connections in Art, Music and Science, Winfield, Kansas, July 2000.

[LH89] Karl Lieberherr and Ian Holland. Assuring Good Style for Object-Oriented Programs.
IEEE Software, Sept 1989.

To appear in European Conference on Object Oriented Programming, Málaga, Spain, June 10-14, 2002

Copyright © 2002 Springer—Verlag 34

[LV95] David C. Luckham and James Vera. An Event Based Architecture Definition
Language. IEEE Trans. Software Engineering 21(9), September 1995.

[MFH01] Sean McDirmid, Matthew Flatt and Wilson C. Hsieh. Jiazzi: New-Age Components
for Old-Fashioned Java. Proc. Object Oriented Programming Systems, Languages, and
Applications, Tampa, Florida, October 2001.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MNS01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software Reflexion Models:
Bridging the Gap Between Design and Implementation. IEEE Trans. Software
Engineering, 27(4), April 2001.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using Object-Oriented Typing to Support Architectural Design in the C2 Style. Proc.
Foundations of Software Engineering, San Francisco, California, October 1996.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider. Correct Architecture
Refinement. IEEE Trans. Software Engineering, 21(4), April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans. Software
Engineering, 26(1), January 2000.

[MW99] Kim Mens and Roel Wuyts. Declaratively Codifying Software Architectures using
Virtual Software Classifications. Proc. Technology of Object-Oriented Languages and
Systems Europe, Nancy, France, June 1999.

[PN86] Ruben Prieto-Diaz and James Neighbors. Module Interconnection Languages. Journal
of Systems and Software 6(4), April 1986.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, 17:40-52, October 1992.

[RN00] David S. Rosenblum and Rema Natarajan. Supporting Architectural Concerns in
Component-Interoperability Standards. IEE Proceedings-Software 147(6), 2000.

[SC00] João C. Seco and Luís Caires. A Basic Model of Typed Components. Proc. European
Conference on Object-Oriented Programming, Cannes, France 2000.

[SDK+95] Mary Shaw, Rob DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and
Gregory Zelesnik. Abstractions for Software Architecture and Tools to Support Them.
IEEE Trans. Software Engineering, 21(4), April 1995.

[Sre02] Vugranam C. Sreedhar. Mixin’ Up Components. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

[SSW96] Robert W. Schwanke, Veronika A. Strack, and Thomas Werthmann-Auzinger.
Industrial software architecture with Gestalt. Proc. International Workshop on
Software Specification and Design, Paderborn, Germany, March 1996.

