Eidgendssische Institut

Technische fur
Hochschule Informatik
ZUrich
Karl Lieberherr Toward Feasible
Solutions of
NP-Complete Problems

September 1975 14

Toward Feasible Solutions of NP -Complete Problems

S e o ok B G0 W S Ay i) o e 424 A S O S ol S e e S A M o B B o T e o e e e o e D D W (e e

K. LieberherrT

Keywords and Phrases :
approximation algorithms for NP-complete problems, decision
procedure for satisfiability, incomplete resoclution strategy,
NP -complete, resclution, satisfiability, worst case behaviour of
approximation algorithms.

CR Categories : 5.21,5.,25,5.39,

Abstract
W3R R

An algorithm j is considered which finds for each conjunctive
normal faorm (enf) a relatively good approximation model. An
upper bound for the worst case behaviour is proven and is used
to derive upper bounds for approximation algorithms for other
NP —<complete problems (e.g. graph colouring problems). Anather
algorithm, called Rj2, is obtained from algorithm j by adding a
learning mechanism 1in such & way that for each input cnf a
finite number of approximate solutions is produced. This
seguence " has the property that the last approximate solution is
a model 1if there exists any. An interpretation of a cnf is
called maximal if it satisfies a maximal number of clauses in
the cnf. It is shown that P=NP if algorithm R3j2 also finds a
maximal interpretation for a subclass of the unsatisfiable
cnf’s .

Institut fuer Informatik
Clausiusstrasse 55
CH -B006 Zuerich

- 2 -

Contents
PR

Introduction

1

1, The Approximation Algorithm j

1.1. The Applicatiaon of Algorithm j to Other
NP -Complete Problems

1.1.1 Introduction

1.17.2 The Optimization Problem
’Braph Colouring’’

1.1.3 The Optimization Problem
‘’Hitting Set '’

2, The Problem °’Maximum Satisfiability’
3. Complete Algorithms

4. Combination of R and J
The Interpretation Construction Method Rj

5. The Behaviour of Algorithm Rj1 for
Unsatisfiable Cnf’s

6. Restricted Learning
7. Conclusions and Open Problems

References
Bibliography

Introduction
36 36 36 3 3 3 3 I I H %

Certain combinatorial problems, such as the travelling salesman
problem and the theorem proving in the propositional calculus,
have long been notorious for their computational intractability,
in this way that, despite the effort of many clever people, no
algorithms have been found for them which can be guaranteed tao
require time bounded by a polynaomial in the length of the input.
The belief in the inherent difficulty of these problems has been
strengthened by results of Cook and Karp [C071,KA72] . These show
that simple forms of the problems mentioned above, together with
a wide variety of other combinatorial praoblems, form a class,
the NP-complete problems(’’polynomial complete problems ’ in the
terminology of Karp [KA72]), of which no member is known to have
& polynomial time algorithm, but if any of these problems should
have such an algorithm then they all have.

These results have stimulated many researchers to examine other
combinatorial problems for which no polynomial time algorithms

- 3 _

are known, to determine whether they too are NP —omplete. Their
efforts have resulted in the discovery of additional members of
this class [SA72,8E73,UL73]. Such results have considerable
practical significance. If it is proven, that a problem is
NP complete and thus is unlikely to have any polynomial time

algorithm, it is possible to concentrate on the following more
hopeful alternative approaches.
First approach : Algorithms can be canstructed, which, although

admittedly exponential in the worst case, seem to work quickly
on most practical problems [KE?70,LI73].

Second approach ¢ It relates to the fact that the practical
situation of —concern often imposes additional restrictions on
the domain of the problem, which possibly makes it easier to
solve the problem [GAR74,RA74].

Third approach : Algorithms are sought , which, although they dao
not eactually find optimal solutions for the problem, are
guaranteed to yield solutions which are ‘‘close’’ to optimal
[eaR72, un72, J073, SA74]. This approach partially motivates
this paper.

Fourth approach ¢ Algorithms are developed which produce far
each input &a finite number of approximate solutions. This
sequence has the property that the last approximate solution is
the exact solution if there exists any . The algorithm can be run
until an approximate soluticn is found which is good enough.
This approach will be examined in tthiis paper.

We summerize here the basic definitiaons, referring the reader to
[KA72] for & more conplete discussion. Lot O={U0,1} and let B%
denote the set of all finite strings of elements from O, Any
subset L of B* is called a problem. Let Pi be the class of
functions f:B#*->0% which are computable in polynomial time by
one~tape deterministic Turing machines (or by random access

machines). If L and M are problems, we say that L is
polynomially reducible to M , written L<M, 1if there is =&
function f in Pi such that f{x) in M if and only if x in L.

The "‘problems’’ we shall censider in this paper shall be
presented as recognition problems although many are more
naturally regarded as optimization problems. The straightforward
details of the encoding of entities such as graphs and integers
into strings of 0°'s and 1°s are omitted.

The problem ‘‘satisfiability’’ (sat) is defined as follows:

Input: Set of clauses s = {c(1),c(2),c(p)} in variables
x (1), x(2), ees L,x{n), each clause being a set of
literals, where a 1literal is either a variable x (i) or

its negation -x (i),

Property: There 1is a truth assignment to the variables which
simultaneously satisfies all the clauses in s (a
clause is satisfied if any of its literals is x (i) for
some "“true’’ variable x (i), or -x(j) for some
"*false’’ x(3j)).

A formula F of the propositional calculus 1is said ta be a
conjunctive npormal form (cnf) 4iff F has the form F (1), ...
F(n}Y, n21, where each aof F(1),F(n) is a dis junction of

-4 -

literals. Remark that an element of sat is a conjunctive normal
form. GBiven a propositional formula G, let x (1), ... x{(n) be
the variables occuring in formula G. Then an interpretation of G
is an assignment of truth wvalues to x(1),,x(n). An
interpretation can be described by a set I containing for each
variable of G exactly one 1literal. If a variable x occurs
positively in I{(i.e. x is in I), then °“‘true’’ is assigned to x,
otherwise, if x occurs negatively in I (i.e. =x is in I), then
*’false’’ is assigned to x. If a formula G is true under an
interpretation I, we say that I is a model of G. A formula which
has & model is called satisfiable. Hence we can define an
element of sat as a cnf which has a model or as a satisfiable
cnf .

A problem L is ip NP iff L<sat: L is NP-hard iff sat<L. (NP-hard
means as hard as the most difficult problem in NP.) L is
NP-complete 4iff L is NP-hard and in NP, (NP-complete means
representative of the complete class NP with respect to
difficulty)

Instead of the problem sat any other NP-complete problem could
be used to define the concepts NP NP-hard and NP -complete.

The elements in the class of the NP-complety problems have all
the same degree of difficulty in the following sense ¢ If a
polynomial time recognition algorithm exists for any NP -complete
problem then they all have such an algorithm.

Let P be the class of problems recognizable in polynomial time
(e’vge by a deterministic Turing machine or by a random access
machine). The following +theorem holds : P=NP iff there is an
algorithm in P for the NP-complete problems.

Two clauses c1 and c2 are said to conflict if there are literals
in c¢1 which appear complemented in c2. The clauses c1 and €2 are
said to clash if there 1is exactly one literal in c1 which
appears complemented in e¢2. If the clauses c1 + {x} and c2 +
{-x} (x 4is a variable and + means union of sets) clash, then
their resglvent is the clause cl1+c2. We will say that c1+c2 is
obtained from c1+{x} and c2+{-x} by applying resolutiaon. c 1+{x}
and c2+{-x} are called parent clauses and x is the variable
resolved upon.

A resolution proof of unsatisfiability of a set s of clauses is
a sequence of clauses c(1),c(2), ... ,c{k) such that c(k) is the
empty clause and for 1<igk-1, c(i+1) is the resolvent of some
pairs from s+{c(1), ...,c(1)} . In [RO65] it is shown that a set
of clauses 1is unsatisfiable iff there is a resolution proof of
its unsatisfiability.

A clause cf gsubsumes a clause cd if c1 is a subset of c2. A cnf
s has the same models as the cnf s’ obtained from s by deleting
those clauses which are subsumed by other clauses. s’ is said to
be obtained by applying subsumption to s.

We shell use the following abbreviations :

abs abs (a) : absolute valué of a
card card(a) : the cardindlity of the set a

-5 _

cnf conjunctive normal form (= a set of clauses)

in a in B : a is an element of B

trunc for nonnegative reals trunc(a) is the greatest integer
which is smaller or equal to a

¥ 3% exponentiation

{1 the empty set

+ union of sets (and addition)

* intersection of sets (and multiplicatian)

end of a proof

1. The Approximation Algorithm j
LR TR T R TR LR R R R A R R IR vy

Let's be a finite set {c(1),c(2), ... ,c(p)} of clauses with set
of variables v,

Def: [weight of a clause c(k):iweight (c(k))]
waight (g (k)) = 2%#(.card(c(k)))

Def: [weight of a set s of clauses : weight(s)]

weight(s) = sum of the weights of the clauses which occur
in s

Johnson, in [J073], gives the following algorithm j. It computes
for each variable y a number which indicates whether y must be
set true or false, so that many of the remaining clauses can
still be satisfied.

Algorithm j

1. satis:={}; true:={}; var:=v; lefti=s: assign to each clause c
in s the weight w(c):=weight(c);

2. while there is a variable of var in any clause of left do
begin

a) Let vy be any variable occuring in both var and a clause
of left. Let yt be the set of clauses in left containing v
and yf the set of clauses in left containing =vy.

b) If the sum of the weights of the clauses in yt is greater
or equal to the sum of the weights of the clauses in yf
then
begin

true := true + { y} ; satis := satis + yt : left
left - yt ; for each c in yf set w(c) = 2 * w(c);
end else

begin
true := true + {-y} ; satis := satis + yf ; left :=
left - yf ; for each ¢ in yt set w{c) := 2 * w(c);
end
c) var := var - {y}
end

A slight modification of the proof of theorem 3 in [JD73] gives
the following result.

-6 -

.

Theorem [worst case behaviour j] .
Let s be a set of clauses and weight(s) its weight. Then

algorithm J leaves in the worst case at most
trunc (weight(s)) clauses unsatisfied, i.e. at least
card(s) - trunc(weight(s)) clauses are satisfied.

In [J073] the above theorem is proven only if in s each clause
contains at least k literals and weight(s) is set to 2#¥(-k).

Remark: The time required by algorithm J (if appropriately
implemented on a random access machine) is bounded by c¥#n#%
(n+1)*1, where c is some constant, n is the number of variables
and 1 the number of literals in s . With this bound it is even
possible to determine in statement 2.a) the variable for which
abs (weight (vt)= weight (yf)) is wmaximized.

Proof

At statement 1 the clauses in left have weight weight(s). During
each iteration the weight of the clauses removed from left is,
by statement b) in the while loop, at least as large as the
weight added to those remaining clauses for which the current
literal is not satisfied. Thus the total weight of the clauses
in left can never increase and so when the algorithm halts’, it
still cannot exceed weight(s). But when the algorithm halts,
gach of the clauses in left must have had its weight doubled as
many times as it had literals and so must have final weight 1. #

If we have a look at the proof of theorem [worst case behaviour
jl, we see that algorithm j assumes its worst case behaviour
only, if the weight of a clause which is not satisfied by the
current 1literal is at 1least doubled, and if the total weight
does not exceed the original weight weight(s).

The following algorithm jj has the same worst case behaviour as
algorithm j. For obtaining algorithm jj replace the two
occurences of the statement “‘set w(c):i= 2% (c)’’ in the
statement b of the while 1loop by the statement "‘assign a
rational number e(c) to each clause ¢ and set w(c):=2%w(c) +
e(c), such that the sum of the w(c) for all clauses in left does
not exceed weight(s)’’. This means that at most the absolute
value of the difference of the weights of the clauses in yt . ¥f
respectively, can be additionally distributed.

The advantage of algorithm jj consists in the possibility of
preferring ‘“important’’ clauses (they express conditions which
should absolutely be satisfied) while the worst case behaviour
1s not made worse.

Algorithm j and the proven worst case behaviour can obviously be
generalized to sets of clauses where each clause has an integral
weight .

- 7 -

1.1. The Application of Algorithm j to
Other NP-Complete Problems
R X ST T T T T LY T gy

1.1.1 Introduction

Algorithm j has a surprisingly good worst case behavigur . On the
other hand there exists a large number of NP -completes problems
for which only approximation algorithms with a bad worst case
behaviour are known [J073]. Our aim is to detect NP -complete
problems for which good approximation algorithms are available.
The following definitions are from [J073].

Def: [optimization problem]

An cptimization problem p consists of

1. A set Input{p] of possible inputs

2. A map sollp] which maps each u in Input[p] teo a finite
set of approximate solutions ‘

3. A function m[p]:sollp] (Inputlpl) -> Q defined for all
possible approximate solutions., (@ is the set of
rational numbers.) mlp] is called a measure.

In addition, the problem p is specified as a maximization
problem or a minimization problem, depending on whether the goal
is to find an approximate solution with maximal or minimal
measure. For each u in Input{p]’] the optimal measure is defined
by ulpl®* = best {mlpl(x) : x in sollp] (u)]. where best stands
for max or min depending on whether p is a maximization or
minimization oproblem. If sollp](u) is finite, there must be at
least one solution x in sollp] (u) such that m{p]l(x) = ulpl*, and
such a solution will be called an optimal solutian.
An approximation algorithm for problem p is any method for
choosing approximate solutions, given u in Input[p]. Since the
algorithms we will study are not always completely determined,
more than one solution may be choosable for a given input. If A
is an approximation algorithm for problem p, then the
erformanc A(u)lp] of A for input u is defined by A{u)}{p] =
worst {mip}J (x) : x in sol{p](u) and x is choosable by A on input
ul, where worst is min if best is max, and vice versa,

Example

The optimization problem maximum satisfiability (opt max sat)

Input[opt max sat]l={s : s is a finite set {c(1),c(2),c(p)}
of clauses}

sollopt max satl(s)={s’ : s° is a subset of s such that there
exists a truth assignment t which satisfies every clause
in s’}

mlopt max sat] (s “)=card(s ‘)

Algorithm J 41is an approximition algorithm for °"‘opt max sat®’
with the performance
j(s)lopt max sat] = card(s) - trunc(weight(s)).

- H -

1.1.,2 The Optimization Problem °‘Graph Colouring”’

e e i e AU e A R et e D D S S S WD S WIS S e e S ke XM D P S e G e e o R it i A O M N B

Def: [opt graph col i]
Input =Graph G=(N,A); G is a finite undirected graph with

nodes N and arcs A ;

s01(6)={functions q:N=->{1,2, ... ,i'}, where 1’ is the
smallest power of two which is 2i ; (i is the number
of admissible colours)

m(q)=card({z in A : if z is an arc between nodes n1 and n2
then g(n1)=q(n2)}) + card({n in N / n has a colour
the number of which is > i}) . (m(q) counts the
number of colouring mistakes of q)

Comment ¢ The problem is to colour a graph with i’ colours so
that the number of adjacent nodes which have the same colour
plus the number of nodes which have a colour >i is minimized.

The following problem ‘‘graph col i°° is NP-complete for iX>3.

Def: [graph col i]
Input : Graph G=(N,A)
Property : There is a solution h with measure m(h)=0,

For applying algorithm J we translate ‘‘opt graph col i°’ tao
‘‘opt max sat’’ but first only for numbers i which are of the
form i=2%%k for saome integer k22.
Let 2z be an arc in A between nodes n1 and n2 (n1#n2). We assign
a set t of clauses to z.
1, k=2
To ni1 we assign the set of variables {a.,b} and to n2 the set
{c,d}. There are 4 +truth assignments for {a.b} which
correspond to the 4 colours for node ni.
t=
1t -a =~b —c -d
2: =ma b =-ec d
3: a=b c =d
4: a b ¢ d
Clause 1 expresses : if node n1 has the colour (1,1) then n2

cannot have the same colour (1,1); by a formula
(asb=>=(cad)). t has weight 4*1/(2%%¥4) = 1/4. Observe that
for each interpretation of t at most one clause is

unsatisfied.

2. General case
t consists of 2%% clauses which contain 2%k literals. Hence
the weight of t ds (2#%#k)/(2%%(2#%k)) = 1/(2%x%k).

Let h=card(A)}. If we translate the whole graph G with h arcs we
obtain a cnf s which contains h*(2#%k) clauses. s has weight
h/(2%%Kk), Hence algorithm 3 guarantees that at most
trunc(h/{2#%k)) clauses are not satisfied. To each unsatisfied
clause corresponds exactly one arc whose endpoints have the same
colour .

Therefore algorithm j induces an approximation algorithm B far
the optimization problem ‘‘opt graph col 2%%°°. B has the
performance B(G(N,A))[opt graph col 2%k] =

- 9 .

trunc(card(A)/(2%%k)), The time reguired by algorithm B is
bounded by

{({nwc)»x2) % he(2%xk)*2%k= c(k)* (card(N)#%2)%(card(A)),

where c(k) is some constant depending on k and n=card(N).
(Observe that n+* is the number of variables aof t and
h*(2%#k)*#2%Kk is the number of literals in t.)

Example

If we want to colour a graph G with 16 colours and G has 320
arcs then algorithm B guarantees that for at most 20 arcs the
endpoints have the same colour.

Now we give approximation algorithms for the general graph
colouring problem where the number of colours is not a power of
two. Let G=(N,A) be a graph and let n=card(N) and h=card(A).

i=3: Let n1,/n2 be two nodes which are incident with the sams
arc. We assign twa variables a and b to n1 and two
variables c and d to n2. We use the same technique as for
4egolourability but delete one clause, say —a ,~b.,~c ,~d.
Instead we express for the two nodes that they cannot have
the colour (1,1), i.e. we add the two clauses -a ,~b and
~c,~d. If we translate G we obtain a cnf the weight of
which is h*3/16 + n%*1/4,
Therefore algorithm Jj induces an approximation algorithm
C(3) for “"opt graph col 3°°. C(3) has the performance
C(3)(B(N,A))= trunc(h*3/16 + n*1/4),

i=7: With +the above method we obtain an algorithm C(7) the
performance of which is C(7)(G(N,A))= trunc(h*?7/64 +
n*1/8),

i=6: We have to forbid two colours for each point . This is
possible with a clause which contains two literals . Hence
the performance of C(6) is C(6)(GB(N,A))= trunc(h*6/64 +
n*1/4) .,

i=5: We forbid three colours for each point with two clauses the
weight of which 1is 3/8. Hence the performance of C(5) is
C(5)(G(N,A))= trunc(h*5/64 + n*3/8),

General case
With the above method the performance of C(i) is :

C(i)(B(N,A))=
trunc(h*i/(2%%(2%1og (1)))+ n*(i’=i)/(2%*1og(i”))) =

trunc (h#i /(1 %*%¥2)en*(i"=1)/1") .
where i° is the smallest power of two which is 2i and log
is the logarithm to base two.
The running time of C(i) is bounded by c#n¥*n#*h, where o is
some constant depending on i.

We shall have a 1look at another method for (polynomially)
reducing ‘‘graph col i°" to “‘satisfiability’’. We introduce a

- 10 -

variable for each colour of each node . We express for each node
that only one colour can be assigned to it. This 1s possible
with i#*(i-1)/2 clauses of length two (expressing : at most 1)
and "a clause of length 1 (expressing : at least 1) . With 1
clauses of 1length 2 we indicate that two nodes which are
incident with an edge cannot have the same colour.

Example :
We choose a graph with 1 arc and 2 nodes which we want to colour
with i=3 colours. The following cnf is obtained :
1: —~a ~b
-a -c
=hb =c
b c

1]

~f

k|
o

J
o

= OV TNV EW
)
o
J
[u]

s 95 28 cs 86 eo o¢ ©s o8 eo

- -

- - f

If we translate a graph with n nodes and h arcs, we obtain a cnf
the weight of which is

n¥(i%*(i-1)/842%%(-1i))+h*i/4,

Observe that this weight is greater than n+h if i24. Hence we
see that not each polynomial reduction of an NP-complete problem
to “’‘satisfiability’’ vyields an approximation algorithm C such
that the wupper bound proven for j gives an interesting upper
bound for C. Note that, however, nothing is used of the special
structure of the input cnf’s., Thus a better worst case behaviour
of C can perhaps be proven.

1,1.3 The Optimization Problem °‘Hitting Set’’

Def: [opt hit set 1]
Input = family f= {u(1),u(2), ... Ju(n)} of subsets of a
finite set v such that card(u(k))<1, 1£k<n,
sol(f) = {v’ ¢ v’ is a subset of v}
m{v’) = number of sets u(k) (1<k<n) such that
card (u (k)#v ")#1,
(recall : * means interssction)

ggmmenﬁ' ¢t The problem consists of finding & set which is as
near as possible to & selection set. opt hit set 1 is a
minimization problem,

We conjecture that the following problem ‘‘hit set 1°° is
NP-complete for 123,

Def: [hit set 1]
Input : family f= {u(1),u(2), .. ,u{n)} of subsets of a
finite set v such that card (u(k))<1l, 1£k<n.
Property : There is a solution v’ with measure m(v ')=0.

- 11 -

Remark : If 1 is infinite then the problem is NP-complete as
proven in [KA?72] .,

We cannot yet prove that °‘hit set 1°° is NP-complete for all
123 but look for an approximation algorithm. Therefore we
translate ’"‘opt hit set 1°° to ‘‘opt max sat’’.

Choose a set u(k), 1<k<n. We assign a set t of clauses to u (k).

1. card(u(k))=1
Let u(k)={al. Then set t = a.

2, card{(u(k))=2
Let u(k)={a,b}. Then set t=
1t a b
2: =a -b

)=

{a,b,c}. Then set t =
1 a b c
2: ma -b ¢
3: =& b -c
4: a =b -c
5: =~a -b -c

Remark: t is satisfied iff exactly one variable of {a.b.cl is
set true. If t is not satisfied then exactly one
clause is not satisfied., t contains 1+ C(3,2)+ C(3.3)
clauses. (The numbers C(n,k) are the binomial
coefficients defined by

Cln,k)= ne(n=1)% .. #*({n=k+1)/(1%2% .., *k).)

4, card(u (k)=4
Let u(k)={a,b,c.d}. Then set t =
a b ¢ d
P ta b ¢ d
:ma b —~c d
:ma b ¢ ~d
t a -b -~c d
—“b c —d

a b =c ~d
¢ "a ~b —¢c d
=b c —d
=a b —c -d
—h —c ~d
12: -a —~b -c -d
Remark : t contains 1+C(4,2)+ C(4,3)+ C(4,4) clauses.

O TNV LN -
Q

-
-

.

o]

J
o

5. General case
Let h=card(u(k)). t conmsists of 1+C(h,2)+ C(h,3)+ ... +C{h,h)
clauses. Since 1+c(h,1)+ C(h,2)+ ... +C(h,h)=2%%h, t consists
of 2%%h-h clauses. Each clause of t contains 2%*h literals.
Hence t has weight (2%%h-h)/(2%#h)= 1=h/(2%%h)

Let us translate the whole family f. Let h(i)= card(u(i)),
1€i<n. We obtain a cnf s with weight

w=1lah (1)/(2%%h (1))+1=h (2)/(2%*h (2})+ ... +1=h(n)/(2%*h(n)).

- 12 -

Hence algorithm J guarantees that at most trunc(w) clauses are
unsatisfied. To esach unsatisfied clause corresponds exactly one
set u(i) with card(u(i)*v")#1, (v' is an approximate solution)
Therefore algorithm J induces an approximation algorithm B for
the optimization problem ‘‘opt hit set 1°°. B has the
performance B (f)=trunc(w), where w is defined as above.

Example
Let f be a family of 80 sets each set containing exactly 3
elements. The weight of the c¢nf associated with f is

80%#(1-3/8)=50, Hence for at most 50 sets the intersection with
v’ contains not exactly one element. :

2. The Problem °‘Maximum Satisfiability '’
S 300 6 3 B30 I SEH 26 36 36 030 36309 30 3 30 336 3 R

Let s be a finite set {c(1),c(2),....c(p)} of clauses.

Def: [max sat]
Input for max sat : s and a natural number k.
Property : There exists an interpretation (truth
assignment) t which satisfies at least k clauses.

For k=p this is the classical satisfiability problem. By theorem
[worst case behaviour j], for

k=card (s)~trunc {(weight (s))
there always exists an interpretation which satisfies at least k
clauses . Hence this problem is computable in constant time.

In [GAR74] the following problem max sat2 1is proven to be
NP-complete.

Def: [max sat?2]

Input for max satl2 : s with the restriction that each
clause may contain at most two literals; a natural number
k.

Property : There exists an interpretation t which satisfies

at least k clauses,

Observe that, if k=p, this problem can be solved in polynomial
time [CO71].

Def: [sat=1i]
sat=1 (satisfiability with exactly i literals per clause)
is the same problem as sat with the restriction that each
clause must contain exactly i literals.

sat=1 is NP-complete for i23 [KA72].
We describe the reduction sat=3 < max sat? sketched in [GAR74].

Let s1 be a set of m clauses with exactly three literals in each
clause.

- 13 -
b (1) e (1)
b(2) c(2)

a(m) b(m) o(m)

Define s2 as follows : replace each of the m clauses a(i) b(i)
c(i) by the 10 clauses

s1 =a(1)
a(2)

1) a(i)

2) b (i)

3) c(i)

4) d(i)
5) ~a(i) -b{i)

6) —~a(i) =~c (i)

7) =b (i) ~c (i)

8) a(i) ~d (i)
9) b(i) ~d (i)
10) c(i) ~d(i).
Let k=7%m.

Theorem [reduction sat=3 < max sat 2]
a1 is satisfied, if and only if s2 has an interpretation
such that at least k clauses are satisfied.

Proof
a(i) b(i) c(i) has the following eight interpretations

a(i) b(i) e(i)
1

COa202C -
OO0

JJO Yyooaoooo
COC a2 O = o>

In the following table we examine the influence of these eight
interpretations on the 10 clauses 1),.,..,10).

a b c d e f g h
d(i)=1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

1) s s s u s u u u
2) s s u s u s u u
3) s u s s u u) u
4) s/fus/usfusfusfus/usif sh
5) u u s s s s s s
6) u s u s s s s s
7) u s s u s s s s
8) s s s u/fs s u/s u/fs u/s
9) s s u/s s u/s s u/fs u/s
10) s u/s s s u/sufs s u/s
nsc 7/6 7/7 7]7 7/7 67 67 6/7 4/6

¢ satisfied
3 3 unsatisfied
s/u : if d(i)=1 then s else u
nsc ¢ number of satisfied clauses

- 14 -
72/6 : if d(i)=1 then 7 else 6, etc.

Thus 7#*m=k clauses in s2 can be satisfied simultaneously, if and
only if s1 is satisfiable. For, if we have any satisfying
assignment for s1, then either one, two or three of
a(i),b(i),c(i) must be set true for each i. In all three cases,
there is a truth setting for d(i) causing precisely seven of the
clauses in 52 arising from clause 1 to be satisfied.
Furthermore, no setting of d{(i) will permit more than seven
clauses of the ten clauses to be satisfied, and at most six of
the clauses can be satisfied, if all a(i) b(i) and c(i) are
false. #

If we analyze the proof of theorem [reduction sat=3 < max sat2]
we see that P=NP depends on 1/20 for max sat2 in the following
sense. 52 contains 10#m clauses, if s1 contains m clauses. The
weight of 82 is : m#(4%#1/24+6%1/4)=3.,5%m, Thus algorithm j
satisfies at 1least 10¥m=trunc (3.5%m) clauses. We want to know
whether it is possible to satisfy 7#%m clauses. Therefore we only
have to decide, in the worst case, whether 1/2%m of 10#m
clauses, that wmeans whether 1/20 of the clauses of s2 can be
satisfied additionally.

The above result can be improved to ''P=NP depends on 1/80 faor
max sat2’’. In the proof of theorem [reduction sat=3<max sat2]
d(i) can be chosen such that at least 6 clauses are satisfied.
Therefore one unsatisfied clause in s1 ‘‘corresponds’’ to at
most one unsatisfied clause in s2,
Hence if it 1is possible to decide in polynomial time whether
1/80 of the clauses ((1/8)*m/(10%m)) can be satisfied
additionally in s, then P=NP,
The result “‘P=NP depends on 1/80 for max sat2’'’ must be looked
at as a property of the given reduction sat=3<max satld.
Otherwise this result is trivial for the following reason :
If 51 contains m clauses then add to s2 k*m new variables and
k¥#m new clauses. These clauses shall express that a literal 11
of s2 implies & literal 12 of the additional k*m variables so
that the new k*m clauses are satisfiable. (This can easily be
done.) Therefore, if for a fixed k it is possible to decide in
polynomial time whether (1/2#m)/(10#%m+k*m)= 1/(2%(104+k)) of
the clauses of s2 can be satisfied additionally, then P=NP, k
can be arbitrarily large and thus we obtain the trivial
result: ‘‘P=NP depends on an arbitrarily small number >0 for
max sat2’’,

3. Complete Algorithms
W I KK KR KN

We examine learning algorithms for sat. An algorithm for sat is
complete if it halts after a finite number of steps with the
result "‘satisfiable’’ if the input cnf is satisfiable, and with
the result "‘unsatisfiable’’ otherwise.

First we describe informally the complete algorithm A presented

-~ 15 -

in this section., The idea originates in the completeness oraof
for resoclution in [RO6&5] .

Let 5 be a cnf. Let v{1),v(2),. .,v!k) bes all the variables
which occur in s. Algorithm A tries to find an interpretation I
for s such that, if it fails to find a model, it ‘°‘learns '’ a
resolvent c¢. This clause c is added to the set s of clauses and
the presence of c will guide algorithm A in the next step to a
"‘better’’ interpretation in the following sense. If s is
satisfiable then algorithm A will find a model after a finite
number of steps, 1if s 1is unsatisfiable, then after a finite
number of steps an o0ld clause (a clause which occurs originally
in s) will be learned, If algorithm A learns an old clause then
we can prove that the input cnf must be unsatisfiable.

Now we give the formal definitions.

Def: [interpretation construction method R°‘]

Let s be a cnf. Let v(1),v(2),...,v(k) be all the variables
which occur in s. LlLet I be the interpretation defined as
follows. I(0) is the empty set; and for O<i<k, I(j) is the
set I(i-1)+{v (i)}, unless same clause in s consists
entirely of complements of literals in the set
I(5-1)+{v(j)}: in this case I(j) is the set I (j-1)+{-v(j)}.
Finally, I is I(k).

Def: [interpretation construction method R]

Let s be a cnf, Let v(1),v(2),...,v(k) be all the variables
which occur in s. Let 1(1),1(2),....1(k) be a sequence of k
literals containing each one of the k variables v (1), ...
(k) exactly once. Let I be the interpretation defined as
follows. T (0) is the empty set; and for 0<j<k, I(j) is the
set I(j=-1)+{1(3)}, unless some clause in s consists
entirely of complements af literals in the set
I(i-1)+{1(3)} : in this case I(3§) is the set
I(3=-1)+{-1(J)}. Finally, I is I(k).

Def: [learning variable]
If in the above construction R’ (R, respectively)., in the
case where I(j) dis set I (J-1)+{-v(3)} (I (3-1)+{-2(3)},
respectively) a clause consists entirely of complements of
literals in the set I(i-1)+{~v(3)} (I(5=-M)+{=1(3)},
respectively) then v(j) (v(p(J)), respectively) is a
learning variable.

Example for R’

s=
1: =a =b =¢
2: b —e
3: ma c
4: a b
S: ~b ¢
6: “ b

I(0)={}; I(1V)={al; I(2)=fa.,~b} (if b is set true then clause 6
is unsatisfied); I(3)={a.~b.,~c}. _ .
¢ is a 1learning variable. If ¢ is set true then clause 2 is

- 16 -

unsatisfied, otherwise, 1if ¢ is set false then clause 3 is
unsatisfied.

Example for R

We choose the same cnf as in the previous example. Let -a,c,b be
the chosen sequence of literals.

I(0)={}; I(1)={~a}l: I(2)={~a,c}: I(3)={-a,c,~bl}.

b is a learning variable. If b is set true, then clause 6 is
unsatisfied, otherwise, 1f b is set false ,clauses 2 and 4 are
unsatisfied.

Remark : I is a model iff there is no learning variable.

Algorithm A

Let s be a cnf.

repeat
find an interpretation I with method R’ for the cnf s ; for
the first learning variable v(j) learn the set t of clauses
defined as follows : 1let c{1),c(2), ... ,c{g1) be the g1
clauses which were unsatisfied when v(j) was set : let
d(1),d(2), «ss .d(h1) be the h1 clauses which would have been
unsatisfied if v (j) had been set cpposite.
t := {resolvents of c(g) and d{h) with 1<g<g1 and 1<h<h1} ;
s:i=s+ (at this point the algorithm learns the clauses in t.)

until there is no clause learned or an old clause is learned;

if I is not a model then s has no model.

Remark
For all g (1€g€g1) and for all h (1€h£h1) resoclution is
slways possible between c(g) and d(h) since c(g) and d(h)
clash because of the learning variable.

Theorem [completeness of A]
Let s be a cnf. If s is unsatisfiable, then A learns the
empty clause; otherwise A finds a model.

Proof

A terminates after a finite number of steps because there exists
only a finite number of clauses on the given set of variables.
If A finds the empty clause then s is unsatisfiable, because
there exists a resolution proof for the unsatisfiability of s.
Let wus suppose that the empty clause has not been learned when
the algorithm halts. If t is empty then I must be a model
because there does not exist a learning variable. Let us suppose
t contains a clause c of s. Then there cannot exist a learning
variable, for ¢ would already be unsatisfied when the first
learning variable is set. #

{Proof structure
1. empty clause in s when A halts : s is unsatisfiable
2. empty clause not in s when A halts

2.1 t=empty set : then I is a model

- 17 -
2.2 t contains an element of s : contradiction}

If, in each step of the repeat loop, only one clause of the set
t (see definition of A) is learned, then this new algorithm,
called A1, still is complete. For, if this learned™~clause is
old, a contradiction to the assumption that it was learned with
the first learning variable can be deduced as above.

Let A2 be algorithm A1 where B’ is replaced by R. A2 is also
complete.

There are different forms of the termination condition of
algorithms A ,A1,A2 which give the same result, but require
different numbers of repetitions of the repeat loop. They can be
composed of the following conditions .

1. Conditions implying that I is a model
1.1. there is no clause learned
1.2, I is a model

2. Conditions implying that the input enf is unsatisfiable
2.1, an old clause is learned
2.2, the empty clause is learned

3. A condition implying that if I is not a model then there is
no model

3.1. no new clause is learned (This means that t is empty or
a subset of s)

Some examples of equivalent termination conditions are :
1. until there is no new clause learned

2. until the empty clause is learned or I is a model
etc.

4, Combination of R and j

The Interpretation Construction Method RjJ
336 3 36 3 3 3 96 36 3 36 9 3 9 36 96 36 36 3 36 336 36 36 30 36 3 36 36 36 36 3 3 3 3636 36 HH K

Let us suppose that there exist seguences of unsatisfiable cnf 's
such that the length of the refutations by resolution grows more
rapidly than any polynomial in the lengths of the cnf’s. Then it
is unfavorable to use a resolution methad for proving the
unsatisfiability of cnf’s. The many well-known resolution
methods are complete proof methods, i.e. for each unsatisfiable
cnf they find a (relatively 1long) resolution proof. If the
resolution methods do not find a proof then the cnf 1is
satisfiable.
Perhaps it is better to use camplete interpretation methods . An
interpretation method is complete if for each satisfiable cnf it
finds a madel. If it does not find a model then the cnf is
unsatisfiable. There are several experiences which indicate that
complete interpretation methods ©ossibly are superior to
resolution.

1., The proof that & cnf is satisfiable is very short (it

.

- 19 -

consists in writing out a satisfying interpretation).
2. There exist fast algorithms for finding relatively good
interpretations (algorithm j).
3, There exist complete learning algorithms for guiding the
algorithm j,.
4, Empirical results obtained by implementing Rj.
In this section we shall describe a refinement of the
interpretation construction method R.

Let s be a finite set {c(?),c(2), ... ,c(p)} of clauses with set
of variables v. Let y be a variable in v which is set at step k
of algorithm R. Let yt be the set of clauses containing the
literal y and yf the set of clauses containing the literal -y,
Set wp:= weight (yt) and wni= weight(yf).

The methods R and j are not “‘compatible’’. To combine them we
need the following definition for describing algorithm Rj.

Def: [conflict variable at step k of R]
A variable y is a conflict variable if it is not a learning
variable and
if y 1is set true and wn<wp then a clause hecomes
unsatisfied or
if y 1s set false and wn>wp then a clause becaomes
unsatisfied.,

Example

0

=a =h
-a -c
-a ~-d
-bh -¢
-h -~d
-~c =d

OVITNDUVMH W -

s as wu ve we

1

Let a,b,c.,d be the chosen sequence of literals. Variable a is a
conflict wvariable. It is nat a learning variable, for if a is
set true then no clause is unsatisfied. The literal a occurs
only in clause 1. Hence wp=1/2., =~a occurs in clauses 5,6 and 7.
Hence wn=3/4. Therefore wn>wp and if a is set false then clause
1 becomes unsatisfied. Thus a is a conflict variable.

This 1is an example of an unsatisfiable cnf where each variable
is a conflict variable. There are also satisfiable cnf ‘s where
each variable is a conflict variable.

- 19 -

The interpretation construction method Rj

repeat

1., satis:= {}; I:= {}; var:= v; left:= s; assign to each clause
¢ in the present s the weight w(c) := weight(c);

2. for k:=1 to card(v) do

begin
a) for each element y of var do
begin
let yt be the set of clauses in left containing vy
and yf the set of clauses in left containing =y
compute the sum wp(y) of the weights of the clauses
in yt and the sum wn(y) of the weights of the
clauses in yf ; determine whether y is a learning or
a conflict variable
end

b) if there are variables which are not conflict variables
then choose among these a variable y for which
abs(wp (y)=wn(y)) is maximized (the weight of the
cnf when y 1is set 1is diminished as much as
possible)

else
choose a variable y for which abs (wp (y)-wn(y))
is minimized ; (the weight of the cnf when y is
set is enlarged as least as possible)

c) if v is not a conflict variable then

begin
if wp(y)>wn(y) or if wp(y)=wn(y) and y is not a
learning variable and no clause becomes unsatisfied
if y is set true, then bi=true else b:i=false

end else
if wp(y)>wn(y) then bs:=false else b:i:=true

d) if b then

begin
I:=I + { yl: satis:=satis + yt; left:=left - yt; for
each c in yf set w(c):= 2% (c):

end else

begin
I:=I + {~yl: satis:i=satis + yf: left:i:=left - yf; for
each c in yt set w(c):= 2% (c) :
end ;
e) var := var - {y}

end
3, a) for the first learning variable v compute the set t of
clauses defined as follows : let c(1),c(2), ... ,c(g?)
be the g1 clauses which were unsatisfied when v was set;
let d(1),d(2),,d(h1) be the h1 clauses which
would have heen unsatisfied if v had been set opposite:

t := {resolvents of c(g) and d(h) with 1£g<g1 and
1<hgsh 1} ;
) choose an element c of t; s:=s + {c}: (at this point =

new clause is learned)
until there is no new clause learned or I is a model;
if I is not a model then there exists no model.

Theorem [completeness of Rj]
The interpretation construction algorithm RJ is a

- 20U -

complete interpretation construction method.
Proof ..
Use the fact that AZ with the termination condition there is
no new clause learned or I is a model’’ is complete. Algorithm
R3i produces an unsatisfied c¢lause if and only if a learning
variable is set. #

Rj learns in each step of the repeat loop only one clause. Hence
the weights change very slowly and the convergence of I to a
model (if one exists) takes a long time. In the sequel we need
an algorithm Rj1 (which 1learns more clauses) for stating a
theorem and describing some experimental results. If we replace
2.d), 3.a) and 3.b) of algorithm RJ by the following statements
and additionally initialize tunsat(:={}) in statement 1 we
obtain algorithm Rj1.

2.d1) if b then

begin
I:=I + {y};: satis:=satis+yt; left:=left-yt: for each
c in y7¥ set w{c)s= &#w{c); if y is & iearning

variable then put each element of yf which is
totally unsatisfied in the set tunsat:

end else
begin
:=sI+{~y}:; satis:=satis+yf; left:=left-yf; for each
c in yt set w(c):= 2%w(c):; if y is a learning

variable then put each element of yt which is
totally unsatisfied in the set tunsat;
end;
3.21) for each element c of tunsat put the resolvents of c and
all other clauses of s in the set t
3.61) s =85 + t :
while a clause c¢ occurs twice in s, eliminate one
occurence of c.

Theorem [completeness of Rj1]
Rj1 is a complete interpretation construction method.

Proof
R3j1 learns at least the clauses which Rj would learn in the same
situation. #

There are different forms of +the termination condition of
algorithm Rj1 which give the same result

1. until there is no new clause learned;

2. until the empty clause is learned or I is a model:

3. until there is no new clause learned or I is a model ;

Observe that the condition "‘an old clause is learned’’ does nao
longer imply unsatisfiability.

After some steps of the repeat loop of algorithm Rj1, s can
contain clauses d1,d2 so that d2 subsumes d1, e.g. di1={a b c}
and d2={a,b}l. If s is satisfiable then it has a model in which
a1 is satisfied not only by c. But the occurrence af c in d1 may
change the weight information, so that c is set true although
this might be wrong. Therefore d1 misleads the weight

- 21 -

information and }t is better to delete d1. Hence a version of
Rj1, called RJj1.subl which uses subsumption is usually faster.
It can be wused 1if we want to test for satisfiability . If we

replace 3.b1) of algorithm Rj1 by the following statements we
obtain algorithm Rjt.sub1,

3.82) s =35 + t
eliminate in s those clauses that contain other clauses ;

Theorem [completeness of Rj%.sub1]

Rilt.sub1 is a complete interpretation construction
algorithm.

Proof

Each model of a cnf s is also a model of the cnf which results
when subsumption is applied to s. #

Now we define a version of Rj1, called Rjl1.sub2, which uses

subsumption and the ‘‘resolution history’’. We have a look at

the statement : “‘eliminate in s those clauses that contain

other clauses '’ in algorithm Rj1,sub1,

1. Suppose that a learned clause ¢ in t subsumes an old clause d
in s. d is replaced by c. Suppose that resclution was applied
between d and a clause d1; let d2 be the resolvent of d and

d1 and 1let 1 be the resolved literal., We distinguish two
cases @

1. c does not contain 1.
Then each clause learned with d is subsumed by c.

Example :
c=a b

d= a b c

di= ~c d e
d2= a b d e

ne
°

c contains 1.

Now & smaller clause would be learned. Let d3 be the
resolvent of ¢ and d1, d2 contains at least one literal
more than d3. Without affecting the satisfiability of s it
is possible to replace d2 by d3.

Example :

c=a b

d= a b ¢

d1= =b d e
dé= a cde
d3= a d e

2. Suppose that a learned clause ¢ is subsumed by an old clause
d. (Observe that this is not possible in algorithm Rj.) Then
the clause c need not be learned.

The cases 1.1 and 2 are detected by algorithm Rjl.subil,
Algorithm Rj1.sub2 is able to treat case 1.2 too. It stores for
each clause the resolution history, i.e. where the parent
clauses and the resolvents are stored. (A parent clause d of a
clause d% is a clause such that resoclution was applied between d

i
i
i
i
|
|

- 22 -

and d1.) If a 1learned clause subsumes an old clause then the
possihle abridgements can be executed according to 1.2,

, s . .
5. The Dehaviour of Algorithm Rj1 for Unsatisfiable Cnf s
336 36303 36 36 336 36 36 36 36 2696 2696 36 36 3630 30 36 36 06 6 R 26 6 36 330 3363 I 20 030330 N

For satisfiable cnf’s -algorithm R j1 finds an interpretation I
which satisfies the maximal number of clauses that can be
satisfied. FANe] call such an interpretation s maximal
interpretation. Let max s5at2.1 be the subproblem of max sat 2
chtained by the reduction sat=3 < max sat2 in chapter 2. max sat
2.1 has the following definition

Input: Set s of clauses, each containing at most £ literals. s
must have some additional properties which are described
in chapter 2.

Property: There exists an interpretation which satisfies 7/10 of
the clauses of s,

We make a slight change of algorithm Rj1. A variable max is
introduced which must be set at the beginning of the algorithm.
It indicates the maximal number of clauses of the input cnf
which can be satisfied. If we want to recognize whether a cnf s
belongs to sat we set max:= card(s) and if we want to recognize
whether a cnf s belongs to max sat2.1 we set max:= 7/10 *
card(s). The termination condition of Rj1 *’until there is no
new clause learned or I is a model”” is replaced by the
condition ‘‘until there is no new clause learned or max clauses
of the input cnf are satisfied’’. The 1last statement of
algorithm R31 : °'if I is not a model then there exists no
model’’ is replaced by °“°if I does not satisfy max of the
clauses of the input cnf then there 1s no interpretation which
satisfies max of the clauses of the input cnf’’. Call this new
algorithm Rjl.

L emma
If algorithm RJj2 finds a maximal interpretation for
each element of the problem max sat2.1, then P=NP,.

Proof

Since each clause of an element of max sat2.% contains at most 2
literals, algorithm R Jj2 can learn clauses only of length £2. 8ut
the number of clauses of length £2 is a guadratic function of
the number of variables. Therefore algorithm Rj2 halts after
O(n*n) steps, if n is the number of variables of the input cnf.
If algorithm Rj2 always finds a maximal interpretation then it
finds an interpretation I which satisfies 7/10 of the clauses of
the input c¢nf if there is one. Hence Rj2 is a polynamial time
algorithm for the NP-camplete problem max sat2.1, if it always
finds a maximal interpretation. #

Lemma

Algorithm Rj2 finds a maximal interpretation for each
satisfiable cnf s.

- 23 -

Proof

Set max=card(s). Then BRj2 finds a model because it is complete
and s is satisfiable., #

From the above lemmas we conclude:

T heorem

If algorithm Rj2 finds a maximal interpretation for
each cnf in sat + max sat2.1 then P=NP.

So far, using a PASCAL—implementation, we have found no element
in max sat2.1 for which an interpretation I exists which
satisfies 7/%0 aof the clauses but so that I is not found by Rj2.

But the input cnf’s used are not relevant because they contain
at most 29 variables .

Ohserve the interesting fact that the following problem is

NP —complete. .

Input: Set s of clauses which is saturated by resolution(i.e.
each resolvent of two clauses in s belongs to s): integer
k and a subset t of s,

Praoperty: There is a truth assignment which satisfies at least k
clauses of t.

6. Restricted Learning
FH A3 3 0 30 0 00 0 30 56 36 I B

We suppose that the input c¢cnf’s for the following class of

algorithms, called Rjt.subl.x , k=4,5,6, .v. are in sat3.

Rjl.subt.,k is the same algorithm as Rj1, except that the set t

can contain clauses of at most length k.

Algorithm Rj1.sub 1.k generates at most O (m**k) distinct clauses,

where m is the number of variables. Hence Rjl1.sub1.k runs in

polynomial time.

We would like to know :

(1) Does the procedure work correctly for some constant integer
k=24 and if not

(2) Does it work correctly for k=k(n), some slowly growing
function of n, where n 1is the size of the dinput 7?7
(Obviously k=m is sufficient)

A positive answer to (1) would imply P=NP, A positive answer to

(2) would yield a subexponential algorithm for sat (and hence

for all NP-complete problems) provided k(n) is asymptotically

slower than n*#*e for every e>0.

It follows from [GA75] that for each k and for infinitely many

unsatisfiable cnf’s in sat3 ARAj1.subt.k will not generate the

empty clause. But this does not imply that for each k algorithm

Rjl.subi.k will not find a model for infinitely many satisfiable

cnf’s .

If the answer to question (1) is negative we would like to know:

a) For which cnf’s does the procedure work correctly ?

b) How good 1is the best approximation which is found for the
cnf’s for which Rj1.subl1.k does not work correctly 7

- 24 -

c) What is the improvement if we use Rjl.subl.k+1 instead of
Rjl.subl.k ?

7. Conclusions and Open Problems
336 3 3 3 36 36 36 330 3 3636 36 3636 36 3 3 3 36 36 36 5 36 3 3 3 36 3

We have considered new procedures for determining whether a set
of clauses is satisfiable: algorithms A and Rj and their related
versions. For proving the completeness of these algorithms we
used methods of resolution proof theory, i.e. we used the fact
that for wunsatisfiable cnf’'s the above algorithms generate a
resolution proof and therefore decide correctly if a cnf is
unsatisfiable'. But we believe that for algorithm Rj1 there exist
other proof techniques. We conjecture that even incomplete
resolution strategies, perhaps even polynomial ones , generate
enough clauses such that the weight information is sufficient
for finding an interpretation if the input cnf is satisfiable,
If, 1n fact, there exists an incomplete polynomial resolution
strategy with this property then P=NP, If our conjecture is true
then the lower bounds and similar results for resolution as
obtained in [GA74.,GA75] and [TS68] will not apply to algorithm
Rj1. For example, if we restrict the length of clauses which can
be 1learned by a resolution method for some c¢nf in sat3
(*‘satisfiability’’ with at most three literals per clause) by a
constant k24, then it is known that all these resoclution methods
are incomplete. But with the same restrictions on the length of
clauses learned by algorithm Rj1.subl1, we have so far found no
satisfiable c¢nf for which the restricted algorithm Rj1 decided
incorrectly . (We used a sample of about 30 cnf’'s each cantaining
25 wvariables and 200 clauses. These cnf’s were constructed such
that the °‘weight information’’ was bad for many variables, i.e.
there existed no model if such a variable was set according tao
the ‘"‘weight infarmatiaon’’ of the input cnf.)

Finally some interesting open guestions are mentioned. Let s be
a satisfiable cnf.

(1) Which is the minimal set m of resolvents that must be added
to s so that RJ computes a model in one step, i.e. the
repeat loop has to be executsed cnly once ? (Remark : All
resolvents are sufficient [RO65]. If all resolvents are
added we can choose an arbitrary variable which must be set
50 that no clause becaomes unsatisfied. This alpgorithm must
yield @ model.)

Which functions of the length of s give an upper hound for
card(m) for all cnf’s ?

{(2) The same question as (1), but abs{(wn(y)-wn(y)) is replaced
in =2lgarithm Ri by max(wp(y)/wn(y).,wn(y)/wp(y)). (if
wn(y)=0 or wo(y)=U then max(wp(y)/wnly),wn(y)/wp(y))=0a)

(3) Are there other interesting functions than wn aprd wn
detined on the literals ? What is the influence of the
functions maximization and minimization in statement 2.b)
of algaorithm Rj on the running time ?

- 25 -

Let us assume the following answer to questiaon (1). For each
satisfiable cnf s of length n there have to be learned at most
n#**k resolvents for some fixed k, i.e. the minimal number of
resolvents to be learned for each cnf of length n is bounded by
n#*¥k, Then the minimal set can be computed nondeterministically
in polynomial time. This would onrly yield a new polynomial
nondeterministic procedure for sat.

A set f of resolvents of a cnf s is said to be sufficient if Rj
finds the model in one step for s+f. The minimal set m mentioned
above 1is the smallest sufficient set. If we are able to compute

a sufficient set for each satisfiable cnf s deterministically in
polynomial time, then P=NP,

Acknawledgements
3E 3 3 3 3 36 369 3 3 33 MK ¢ R

I wish to thank Professor £ .Engeler who made this work possible
through his support and encouragement. I am also grateful to
E .Marmier and E .Graf for their interest and many helpful
discussions and suggestions,

REFERENCES *
LR 2 223X 2% T

Co71. COOK S.A,., THE COMPLEXITY OF THEOREM-PROVING PROCEDURES,
3.8T0C (1971), 151-158.

GA74. GALIL Z ., ON THE COMPLEXITY OF RESOLUTION PROCEDURES FOR
THEOREM PROVING , TECHNICAL REPORT , DEPARTMENT OF
COMPUTER SCIENCE, CORNELL UNIVERSITY, 1974.

GA75, GALIL Z., ON THE VALIDITY AND COMPLEXITY OF BOUNDED
RESOLUTION PROCEDURES, 7.5TOC (41975).

GAR72. GAREY M.A., GRAHAM R.L., ULLMAN J.D., WORST CASE

ANALYSIS OF MEMORY ALLOCATION ALGORITHMS, 4.SToc (1972),

GAR?74. GAREY M.R., JOHNSON D.S5., SOME SIMPLIFIED NP -COMPLETE
PROBLEMS , 6.5T0C (1974), 47-63.

Jo72. JOHNSON D.S., FAST ALLOCATION ALGORITHMS, 13.SWAT
(1972), 144-154,

J073, JOHNSON D.S., APPROXIMATION ALGORITHMS FOR COMBINATORIAL
PROBLEMS, 5.5TOC (1973), 38-49.

+ The used abbreviations are explained in the bibliography.

KA?2,

KE?78.

LI?3,

RA74 .

RO 65 .

SA72.

SA74 .,

SE73,

uL73.

KARP R .M., REDUCIBILITY AMONG COMBINATORIAL PROBLEMS, IN
"‘COMPLEXITY OF COMPUTER COMPUTATIONS » RE o MILLER
AND J.W. THATCHER, EDS., PLENUM PRESS, NEW YORK, 1972,
85-184 .

KERNIGHAN B.W., LIN S., AN EFFICIENT HEURISTIC FOR
PARTITIONING GRAPHS, BELL . SYST.TECH.J. 49 (1978),
291=-388.

LIN S., KEANIGHAN B.W., AN EFFECTIVE-HEURISTIC ALGORITHM
FOR THE TRAVELING SALESMAN PROBLEM , BELL SYST.TECH.J.
52 (1973), 498-516.

RABIN M0y THEORETICAL IMPEDIMENTS TO ARTIFICIAL
INTELLIGENCE, IFIP 74, 615-619.

ROBINSON J.A., A MACHINE-QORIENTED LOGIC BASED ON THE
RESOLUTION PRINCIPLE, J.ACM, VOL 12, NO 1, 23-41.

S5AHNI S ., SOME RELATED PROBLEMS FROM NETWORK FLOWS, GAME
THEORY , AND INTEGER PROGRAMMING , 13.SWAT (1972),
130"’1385

SAHNI Sy GONZALES T., P-COMPLETE PROBLEMS AND
APPROXIMATE SOLUTIONS, 15.SWAT (1974)

SETHI R., COMPLETE REGISTER ALLOCATION PROBLEMS, 5.5STOC
(1973), 182-195,

TSEITLIN G6.5., ON THE COMPLEXITY OF DERIVATIONS IN THE
PROPOSITIONAL CALCULUS, STRUCTURES 1IN CONSTRUCTIVE

1QTHEMATICAL LOBIC, PART II, A.0. SILENKO(ED), 1968,
5-125.

ULLMAN J.D., POLYNDMIAL COMPLETE SCHEDULING PROBLEWS ,
4TH SYMPOSIUM ON OPERATING SYSTEM PRINCIPLES (1973),

96=181 AND IN J.COMPUTER + SYSTEM SCIENCES 18, (1975),
384-393, :

APPENDIX
33 4 AR

BIBLIOGRAPHY OF ‘‘P<fiP AND RELATED PROBLEMS °°
*!i*lﬂlli*i*i******ﬁ*l'liﬂ*l*l***l&l*ﬁ*‘l-}i****i

THE BIBLIOGRAPHY IS DIVIDED INTO TEN PARTS,

PART A

COMPLETENESS PROOFS OF PROOF PROCEDURES FOR
PROPOSITIONAL LOGIC

BIBLIDGRAPHY
PART B8

APPROXIMATION ALGORITHMS FOR NP-COMPLETE PROBLEMS
PART C : NP -COMPLETE LANGUAGES, CLASSIFICATION OF NP
PART D : LENGTH OF PROOFS IN THE PROPOSITIONAL CALCULUS

PART E : POLYNOMIAL TIME ALGORITHMS FOR PROBLEMS WHICH ARE
NEARLY °° NP -COMPLETE

PART F : POLYNOMIAL -TIME REDUCIBILITIES

PART G : CLASSIFICATION OF P

PART H

ss

(MACHINES FOR WHICH 0BVIQUSLY Ps=NP

PART J

oa

ALGORITHMS FOR NP-COMPLETE PROBLEMS WHICH WORK QUICKLY
ON PRACTICAL PROBLEMS

PART K : COMBINATIONAL COMPLEXITY OF BOOLEAN FUNCTIONS

ABBREVIATIONS

sTOC PROCEEDINGS OF THE ANNUAL ACM SYMPOSIUM ON THEORY OF
COMPUTING

SWAT PROCEEDINGS OF THE ANNUAL IEEE SYMPOSIUM ON SWITCHING

AND AUTOMATA THEORY (FOUNDATIONS OF COMPUTER SCIENCE)

MI MACHINE INTELLIGENCE (B. MELTZER AND D . MICHIE, EDS.),
AMERICAN ELSEVIER, NEW YORK

J ACM JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY

BELL SYST.TECH.J.
BELL SYSTEM TECHNICAL JOURNAL

EIK ELEKTRONISCHE INFORMATIONSVERARBEITUNG

J .COMPUTER + SYSTEM SCIENCES
JOURNAL OF COMPUTER AND SYSTEM SCIENCES

- e oo e

ANG68 . ANDREWS P .B ., RESOLUTION WITH MERGING, J .ACM, VOL 15, NO

AND7@ .,

CH73.

ME 68.

RO 65 .

J073.

K075,

ROS 74,

SA74.

SA75.

CON74.

BIBLIOGRAPHY
3, 367-381.

ANDERSON R, BLEDSOE W.W., A LINEAR FORMAT FOR
RESOLUTION WITH MERGING AND A NEW TECHNIQUE FOR
ESTABLISHING COMPLETENESS, J.ACM, VOL 17, NO 3, 525-534.

CHANG C.l <, LEE R.C., SYMBOLIC LOGIC AND MECHANICAL
THEODREM PROVING, ACADEMIC PRESS, NEW YORK AND LONDON ,
1973, ’

. MELTZER B., SOME NOTES ON RESOLUTION STRATEGIES, MI

3,71=76.

ROBINSON J.A., A MACHINE-ORIENTED LOGIC BASED ON THE
RESOLUTION PRINCIPLE, J.ACM, VOL 12, NO 1, 23-41,

"GAREY M.R., GBAHAM R.L ., ULLMAN J.D., WORST CASE

ANALYSIS OF MEMORY ALLOCATION ALGORITHMS, 4.S5T0C (1972),
143-158.,

JOHNSON D.Sss» FAST ALLOCATION ALGORITHMS, 13.SWAT
(1972), 144-154.

JOHNSON D .5 ., APPROXIMATION ALGORITHMS FOR COMBINATORIAL
PROBLEMS , 5.5T0OC (1973), 38-49.

KOHLER W.H., STEIGLITZ K., EXACT, APPROXIMATE, AND
GUARANTEED ACCURACY ALGORITHMS FOR THE FLOW-SHOP PROBLEM
N/2/FF, J.ACM, VOL 22, NO 1, 186-114.

ROSENKRANTZ D .J., STEARNS R.E ., LEWIS P.M., APPROXIMATE
ALGORITHMS FOR THE TRAVELING SALESPERSON PROBLEM,
15.8WAT (1974)

SAHNI Sy GONZALES Ty P-COMPLETE PROBLEMS AND
APPROXIMATE SOLUTIONS, 15.SWAT (1974)

SAHNI §S., APPRDXIMAfE ALGORITHMS FOR THE @/1 KNAPSACK
PROBLEM , J.ACM, VOL 22, NO 1, 115-124,

BOOK R.V., COMPLEXITY CLASSES OF FORMAL LANGUAGES, IN
AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS OF A
SYMPOSTIUM DRGANIZED BY IRIA, FDITED BY M.NIVAT. 1972.

CONSTABLE Rl oy HUNT BH., ON THE COMPUTATIONAL
COMPLEXITY OF SCHEME ERQUIVALENCE, TECHNICAL REPORT TR
74-281, DEPARTMENT OF COMPUTER SCIENCE, CORNELL
UNIVERSITY, ITHACA, NEW YORK 14854,

C07%.

D074 .

pu74.

FA73,

GAR74,

KA72,

RA74.

BA72.

SC75.

SE73.

8P75.

UL 73.

PART D

i o < e @

co74.

cao75.

GA74 .

BIBLIOGRAPHY

COOK S .A,, THE UMPLEXITY OF THEOREM-PROVING PROCEDURES ,
3.8T0C (1971), 151 158,

DOBKIN Do, LIPTON Rod., ON SOME GENERALIZATION OF BINARY
SEARCH , 6.5T0C (1974}, 318=316.

DUNHAM 8., WANG H., TOWARD FEASIBLE SOLUTIONS OF THE
TAUTOLOBY PROBLEM, RC 4924, IBM THOMAS J. WATSON
RESEARCH CENTER, YORKTOWN HEIGHTS, N.Y. 18598,

GENEHALIZED FIRST-DADER SPECTRA AND POLYNOMIAL TIME
RECOGNIZABLE SETS, SIAM-AMS PROCEEDINGS., VOLUME 7,
EDITED BY R M., KARP,

GAREY MBR., JOHNSON D.S5., SOME SIMPLIFIED NP-COMPLETE
PROBLEMS ; 6.5T0C (1974), 47-63,

KAHP R 4., REDUCIBILITY AMONG COMBINATORIAL PROBLEMS, IN
‘COMPLEXITY OF COMPUTER COMPUTATIONS ® , R.E. MILLER

AND J.W. THATCHER, EDS., PLENUM PRESS, NEW YORK, 1972,
85-184.

RABIN o0 oy THEORETICAL IMPEDIMENTS TO ARTIFICIAL
INTELLIGENCE , IFIP 74, 615=619,

SAHNI 5., SOME RELATED PROBLEMS FROM NETWORK FLOWS, GAME

:ggoqvé AND INTEGER PROGRAMMING, 13.SWAT (1972),
haad 3 o

SCHNORR C P o, SATISFIABILITY IS QUASI-LINEAR COMPLETE IN
NQL » UNIVERSITAET FRANKFURT, 1975,

SBETHI R., COMPLETE REGISTER ALLOCATION PROBLEHS, 5.8T0C
(1973), 182-195,

SPECKER E oo STRASEEN Vs KOMPLEXITAET VON
ENTSCHEIDUNGSPROBLEMEN , SPRINBER, 1975.

ULLMAN J.0., POLYNOMIAL COMPLETE SCHEDULING PROBLEWNS,
4TH SYMPDSTUM ON OPERATING SYSTEM PRINCIPLES (1973),
96-1@1 AND IN J LCOMPUTER + SYSTEM SCIENCES 18, (1975),
384-~393, : _

CODK S., RECKHOW R.,, ON THE LENGTH OF PROOFS IN THE
PROPOSITIONAL CALCULUS, 6.ST0C (1974), 135-148.

COOK SA., FEASIBLY CONSTRUCTIVE PRDOFS AND THE
PROPOSITIONAL CALCULUS, 7.5TOC (1975),

GALIL Z., ON THE COMPLEXITY OF RESOLUTION PROCEDURES FOR
THEOREM PROVING , TECHNICAL REPORT , DEPARTMENT OF
COMPUTER SCIENCE , CORNELL UNIVERSITY, 1974.

GA75.

TS68.

HAR?72,

HO 74 .

- — g

1

BIBLIOGRAPHY

GALIL Z., ON THE VALIDITY AND COMPLEXITY OF BOUNDED
RESOLUTION PROCEDURES, 7.STOC (1975).

TSEITLIN G.S5., ON THE COMPLEXITY OF DERIVATIONS IN THE
PROPOSITIONAL CALCULUS » STRUCTURES IN CONSTRUCTIVE
MATHEMATICAL LOGIC, PART II, A.D. SILENKD(ED), 1968,
115-125,

BATNI A.., AUSSELL J.D., KIME CH.R., AN EFFICIENT
ALGORITHM FDR FINDING AN IRREDUNDANT SET COVER, J.ACM,
VoL 12, ND 3, 351-355,

HARRIS R .., A POLYNOMIAL BOUND ON THE COMPLEXITY OF THE
DAVIS PUTNAM PROCEDURE AS APPLIED TO SYMMETRIZABLE
PROPOSITIONS, PHD. THESIS, DEPT. OF COMPUTER SCIENCE
CORNELL UNIVERSITY, AUGUST 1972.

HOPCROFT J.E ., WONG J.K., LINEAR TIME ALGORITHM FOR
ISOMORPHISM OF PLANAR GRAPHS, 6.570C (1974), 172-184,

GILL J.T., AXIOMATIC INDEPENDENCE OF THE RUESTION NP=P,
DEPARTMENT OF ELECTRICAL ENGINEERING, STANFORD
UNIVERSITY , STANFORD, CALIFORNIA 94305,

L ADNER Ry LYNCH N., SELMAN A.L ., COMPARISON OF
POLYNOMIAL -TIME REDUCIRILITIES, 6.5T0OC (1974), 11B-122,

LADNER R.E., ON THE STRUCTURE OF POLYNOMIAL TIME
REDUCIRILITY, J.ACM, VOL 22, NO 1, 155-171.,

MEHLHORN K oy POLYNOMIAL AND ABSTRACT SUBREC!HRSIVE
CLASSES, 6.5T0C (1974), 96-109,

JONES N.D ., LAASER W.T uy COMPLETE PROBLEMS FO0OBR
DETERMINISTIC POLYNOMIAL TIME , 6.570C (1974), 40-46.

LADNER R.E., THE CIRCUIT VALUE PRORLEM IS LOG SPACE
COMPLETE FOR P, SIGACT NEWS, JANUARY 1975, 18-28.

PART J

L P ——

KE78.

LI?3.

PART K

FI74,

PA 74 .

UH 72,

BIBLIOGRAPHY

HARTMANIS J., SIMON J., ON THE POWER OF MULTIPLICATION
IN RANDDM ACCESS MACHINES, 15.SWAT(1974).

PRATT VR, RABIN Moy STOCKMEYER L oJ s A
CHARACTERIZATION OF THE POWER OF VECTOR MACHINES, 6.STOC
(1974), 122-134,

KERNIGHAN B .W., LIN S., AN EFFICIENT HEURISTIC FOR
PARTITIONING GRAPHS , BELL SYST.TECH.J. 49 {(41978),
291-308,

LIN S., KERNIGHAN B .W., AN EFFECTIVE HEURISTIC ALGORITHM
FOR THE TRAVELING SALESMAN PROBLEM , BELL SYST.TECH.J.
52 (1973), 498-516.,

FISCHER M.J., LECTURES ON NETWORK COMPLEXITY UNIVERSITY
OF FRANKFURT , JUNE 1974,

PAUL W.J., 2,25*N - 0GER BOUND ON THE COMPUTATIONAL
COMPLEXITY OF BOOLEAN FUNCTIONS, TR74-222, DEPARTMENT OF

COMPUTER SCIENCE, CORNELL UNIVERSITY, ITHACA, NEW YORK
14853,

UHLIG, UEBER DIE ANZAHL DER UNTERFUNKTIONEN EINER
BOOLESCHEN FUNKTION ZUR CHARAKTERISIERUNG DER
KOMPLIZIERTHEIT IHRER REALISIERUNG, EIK 8 (1972)5,
255=-268.

Berichte des Instituts fir [nformatik

Nr. 1
Nr. 2
Nr. 3
Nr. 4
Nr. 3
Nr. 6
Nr. 7
Nr. 8
Nr. 9
Nr.10
Nr.11
Nr.12
Nr.13
Nr.14

Niklaus Wirth:
Niklaus Wirth:
Peter L&uchli:
Wslter Gander,
Andrea Mazzario:
Niklaus Wirth:
C.A.R. Hoare,

Niklaus Wirth:

Andrea Mazzario,
Luciano Molinari:

E. Engeler,

E. Wiedmer,

E. Zachaos:
Hans-Peter Frei:
K.V. Nori,

U

H.H. N&geli:

I. Ugron,
LR. Lithi:

G.
F
Niklaus Wirth:

U. Ammann:

Karl Lieberherr:

The Programming Language Pascal (out of print,

Program development by step-wise refinement
(out of print)

Reduktion elektrischer Netzwerke und
Gauss'sche Elimination

Numerische Prozeduren I
The Programming Language Pascal (Revised
Report)

An Axiomatic Definition of the Language
Pascal (out of print)

Numerische Prozeduren II

€in Einblick in die Theorie der Berechnungen

Computer Aided Instruction: The Author
Language and the System THALES

The PASCAL 'P' Compiler: Implementation Notes

. Ammann, K. Jensen,

Das Informations-System ELSBETH

PASLAL-5: A Subset and its Implementation
Code Generation in a PASCAL Compiler

Toward Feasible Solutions of NP-Complete
Problems

