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Abstract:

A complete proof system, called Suverresolution, for wunsatis-
fiable formulas of the propositional calculus is introduced
and compared with Resolution on conjunctive normal forms
(enf“s). It is shown that Superresclution is shorter and more
restrictive than Resolution, semantic Resolution, Hyperresolu-
tion, linear Resolution etc.

The length C(R(s)) of a Superresolution (Resolution) prootf
R(s) for the cnf s is the number of different superresolvents
(resolvents) in R(s). For eagh enf s (except for thogse with &
Resolution proof of length 1) there is a Superresolution proof
SR (s) such that ot all Resolution proofs R(s) =
C(SR(s))<C(R(s)). A decision procedure SR for Satisfiability
is introduced which, by definition, only generates normal Su-
perresolution proofs on unsatisfiable cnf’s. The concept "nor-
mal® is motivated by the fact that each Superresolution proof
can be abridged to a normal Superresolution proof. Since each
normal superresolvent is a resolvent and no input resolvent
(except the empty clause) can be a superresolvent, normal Su-
perresolution is a strong restriction of Resolution. Neverthe-
less one application of the deduction rule “normal Superreso-
lution” and its checking only need linear time. Superresolu-
tion and Resolution are shown to be polynomially eguivalent on
cnf s, and an exponential lower bound for a special kind of
Superresolution is proven.
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B. Introduction

In khe field of automatic thearem proving seweral restrieticrs
(refinements) of Resolution are investigated which are still
complete [CH73, RO68, LOV7#]. These investigations are motiva-
ted by the following experience: When automatic theorem pro-
ving programs are applied unbridled to a given theorem they



can not prove immediately, they produce floods of useless de-
ductions generating useless clauses which in turn participate
in yet more useless deductions (see e.qg. [CH73(0188),
MAR75(p137))). If the number of possible deductions is smal-
ler, this danger is diminished, but restrictive deduction sy-
stems may lengthen the proofs [KI72, ME71, SHO76]. Normal Su-
perresolution has the favourable property that it allows shor-
ter proofs than Resolution, although it is a strong restric-
tion of Resolution. Superresolution, contrary to Resolution,
is defined on all well-formed formulas of the propositional
calculus. Hence transformation into normal form is not neces-
sary for the application of Superresolution.

We shall use the following notations:
in a in B: a is an element of B
=% exponentiation
{} empty set
- union of sets (and addition) - )
# intersection of sets (and multiplication)
[J end of a proof
v disjunction (or)
& conjunction (and)
negation (a  1is the negation of a)
Sguare brackets [ and ] are used for subscripting.

1. Superresolution

In this section I introduce Superresolution and I ©vrove that
it is a complete proof system for proving the unsatisfiability
of well-formed formulas (wff) of the propositional calculus.
Upper bounds for the complexities of proof checking and proof
generation are given.

Superresolution is an efficient realization of the generali-
zed Resolution introduced in [RO68]. It associates a generali-
zed resolvent with each failed model construction.

For the definition of Superresolution we need the following
notions: Let F be a wff. An interpretation of F is described
by a set I containing for each variable of F exactly one lite-

ral. If a variable x occurs positively in I (i.e. x is in I),
"true" is assigned to x, otherwise, 1if x occurs negatively in
I (i.e. x° is in I), "false" is assigned to x. A partial in-

terpretation of F is a subset of an interpretation of F.

Let LIT(F) be the set of literals of F and let I be a par-
tial interpretation of F. A literal k in LIT(F) is called
simply determined by I in.the formula F, if F is unsatisfied
under the interpretation I+{k’} or if k is in I (we write
(F,I)->k). A formula F is said to be unsatisfied under a par-
tial interpretation I, 1f the result "false" is obtained after
the elimination of the constants introduced in F by I. A lite-
ral k in LIT(F) is called determined in F by an interoretation




I, 1if there are literals g(1], g([2], ... g[n]=k (in LIT(F),
n>#) of F, such that (F,I+{g[1], 9[2], ... gli-11}) => g[i]
for 1<i<n (we write (F,I) >k). Let D(F,I) be the set of all
literals of F determined by I. D(F,I) may contain a complemen-
tary pair of literals, i.e. a variable v and its _complement
v

Definition 1.1 : Let F be a wff and ¢ a clause with literals

in F. Let I be the set of complemented literals in c. Then c¢

is a superresolvent of F, if

1. D(F,I) does not contain a complementary pair of literals
and

Z. there 1is a wvariable v in F, such that D(F,I+{v}) and
D(F,I+{v"}) contain a complementary pair of literals.

v is called the learning varlable of 1E.

By definition a superresolvent sr of a formula F is a clause
which 1is satisfied by each existing model of F. Hence sr is
implied by F.

Whether a «clause sr is a superresolvent of a formula F de-
pends mostly on the whole F. Therefore Superresolution, cont-
rary to Resolution, Natural Deduction, Frege Systems etc., is

a "global" proof system.

Example:
Each line of the following cnf describes one clause.
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The empty clause is the only superresolvent of this cnf. An
arbitrary variable is a learning variable.

Definition 1.2 : A Superresolution proof for a formula F is a
sequence of clauses <c¢[1], <¢[2], ... «¢[m], such that c[m]
equals the empty clause ({}) and for 1<i<m the clause cli+1]
1s a superresolvent of F & c[1] & c(2T & ... & c[i]

Example:

F = not[{((a & b)=-=->b)-->((a & b)==->c)}-->

{(8 & B)-—2185—=3a)]]

{a",pb"} 1is a superresolvent of this formula, because
D(F,{a,p}) does not contain a complementary pair of literals.

Observe that D(F,{a,b,c}) and D(F,{a,b,c’}) contain a comple-



mentary pair of literals. {} is the next superresolvent. Note
that a 1is a 1learning variable in the formula Fl=F&(a'vb").
Hence this Superresolution proof for F consists of two super-
resolvents. .

Remarks:

1. Note that for a cnf s no superresolvent of s can be ecual
to or subsumed by a clause in s. Hence Superresolution,
contrary to Resolution, makes subsumption and equality
tests automatically.

2. Note that for a satisfiable wff F a model of F is found af-
ter the generation of at most 2%*n superresolvents (n is
the number of variables in F).

Lemma 1.1 : Superresolution is a complete proof system for un-
satisfiable formulas of the propositional calculus.

Proot:
1. Let F be a wff and let R(F) be a Superresolution proof for
F. Then F is unsatisfiable, because each superresolvent of

F is implied by F.

2. Let F be an unsatisfiable wff. Then a Superresolution proof
for F can be constructed by the algorithm SRO, which is
described in the following: SR@ tries to construct a model
for F by constructing interpretations of F repeatedly. One
interpretation construction of F corresponds to one step of
SRO. If SRP does not find a model in the current step, a
superresolvent r 1is added to F. r has the task to prevent
that in a further step the same interpretation is construc-
ted again. SRO stops when r is empty. On a satisfiable wff
Sk would find a model after a finite number of steps. Now
SRY 1s described in detail.

Let F be the input wff.

Repeat the following statements 1) and 2) until the empty

clause is generated:

1) Construct a superresolvent of F: Put I={} and CHOSEN={}.
repeat the following statements a}, b) and «¢) until a
superresolvent is found:

a) choose an arbitrary variable v of F, which is not 1in
i
CONTR is a predicate on the literals of v, which 1is
detined in the following:
If D(F,I+{v}) contains a complementary pair of lite-
rals, CONTR(v) is true, otherwise CONTR(v) is false.
If D(F,I+{v’'}) contains a complementary- pair of lite-
rals, CONTR(v') is true, otherwise CONTR(Vv") is fal-
se.

b) Four mutually excluding cases are possible:
A) CONTR(v) and CONTR(v’) are true: Choose an arbit-

rary literal k of v and set CHOSEN := CHOSEN +

{k}.



B) CONTK(v) and CONTR(v") are false: v is a learning
variable and the complemented literals of CHOSEN
are a superresolvent sr. Choose an arbitrary lite-
ral k of v,

C) CONTR(v) is true and CONTR (v ") is false: Set
k=g
D) CONTR(v) is false and CONTR(v") is true: Set k:=v,
c) I :=1 + D(F,I+{k})

2) Add the conjunction sr to F.

By definition the same superresolvent cannot be generated twi-
Cé. For a given wff F there exists only a finite number of su-
perresolvents and therefore algorithm SR# has to produce the
empty clause after a finite number of steps, iff F is unsatis-
fiable. .

d

Let F be a wff and let the length L(F) be the number of occu-
rences of literals in F.

Lemma 1.2 : Let ¢ be a clause with literals which occur in a
formula F and let v be a variable of F. Then the checking
whether c¢ is a superresolvent with learning variable v can be

done in time O(L(F)) On a random access machine.
Lemma 1.3 : A Superresolvent of a wff F can be generated in

time O(L(F)) on a random access machine.

2. Restriction

In this section I prove that a large class of resolvents can-
not be superresolvents. Later we shall see that for cnf’s each
“interesting" Superresolvent is a resolvent,

Given a cnf s, since s is the original lnput set, we shall
call each member of s an input clause. An input resolvent of s
is a resolvent in the set E(s), which is defined in the follo-

wing: -
1. All input clauses are in E(s).,
2. If ¢l is a clause in E(s), c2 an input clause and if the

resolvent r of cl and c¢2 exists, r is in E(s).
3. There are no other clauses in E(s).

Theorem 2.1 : Let s be a enf. Then no clause in E(s), except
the empty clause, can be a superresolvent of s,




p}’GOfZ
Let DS(s,I) be an arbitrary subset of D(s,I) such that each
variable in D(s,I) occurs in DS(s;I)s but DS(s,I) does not

contain a complementary pair of literals. vie prove the follo-
wing with induction on the structure of E(s): Let I be a par-
tial interpretation of s such that a clause in E(s) 1is. unsa-
tisfied wunder I. Then a clause in s 1s unsatisfied under each
interpretation DS(s,I1).

This statement is true for input clauses. Let c] be a clause
in E(s) and c2 an input clause of s such that the resolvent r
of c] and c2 exists. Let v be the variable resolved upon. Sup-
pose that r is not empty. Let I be the partial 1interpretation
such that r is unsatisfied. Then (s,I)->V and (s,I)->v . Hence
the following two cases are possible under the interpretation
DS(s,1):

A) c1 is satisfied and c2 is unsatisfied or

B) ¢l is unsatisfied and c2 is satisfied.

In case A) a clause of s is unsatisfied and hence the state-
ment . to be proven is true. In case B) we apply the induction
hypotneses.

Therefore no clause ¢ (#{}) in E(s) can be a superresolvent
since a clause in s is unsatisfied under on interpretation
which is determined by I={complemented literals gf s

a

3. Abridgement

In this section it'is proven that each Resolution vroof can be
properly abridged to a Superresolution proof (except in tri-
vial cases). The length of the Superresolution proof may be
much shorter than the length of the Resolution proof since no
input resolvent can be a superresolvent. The length C(R{s)) of
a Superresolution (Resolution) proof R(s) for the cnf s is the
number of different superresolvents (resolvents) in R(s).

A Resolution proof is called trivial, if the empty clause 1is
the first resolvent. Let UNSATNT be the set of unsatisfiable
cnf’s for which no trivial Resolution proof exists.

Lemma 3.1 : Let s be a cnf in UNSATNT and let R(s) be a Reso-
lution proof for s. Then there is a Superresolution proof
AR(s) for s, such that C(AR(s))<C(R(s)) . Furthermore AR(S) can
be obtained in time O(C(R(s))**2) on a random access machine.

In the tollowing I prove that Superresolution allows shorter
proots than semantic Resolution [SL67], Hyperresolution
[KOB65] and linear kesolution [LOVT8] .

Lemma 3.2: Let s be a cnf which has not a semantic Resolution
proot of length 1, i.e. the empty clause is not the first se-



mantic resolvent., Let R(s) be a semantic Resoluion proof of s,
Then there is a Superresolution proof of s which contains less
superresolvents than R(s) contains semantic resolvents.

Note that lemma 3.2 remains true if Hyperresolution is used
instead of semantic Resolution, for Hyperresolution is a spe-
cial case of semantic Resolution.

Superresolution allows shorter proofs than Resolution, since
tne tirst linear resolvent of a cnf s is in E(s).

4. Normal Superresolution

It will be shown that each Superresolution proof can be trans-
lated polynomially into a Resolution proof. For this purpose
we introduce a decision algorithm SR for Satisfiability, which
by definition generates normal Superresolution proofs for un-
satisfiable c¢nf’'s. Each Superresolution proof can be abridged
to this normal form. The normal Superresolution proofs are po-—
lynomially reducible to Resolution proofs. Since each Resolu-
tion proof can be abridged to a Superresolution proof (lemma

2.1), Superresolution and Resolution are polynomially eauiva-
lent [CO74).
We use algorithm SRO of the proof of lemma 1.1. for the exp-

lanation of algorithm SR. SR and SRO are essentially the same

algorithms except that SR constructs superresolvents more ca-

refully. Recall that SR@ takes the whole set of complemented

literals in CHOSEN as the next Superresolvent. SR determines a

possibly proper subset of CHOSEN as the next superresolvent.

Now we describe how SR chooses this subset. Let s be a cnf
and let I be a partial interpretation of s constructed by SR@
in statement 1). Let k be a literal of s and suppose that

(s,I)->k. By definition, if (s,I)->k , a clause c of s is un-

satisfied wunder the interpretation I+{k"}. This clause c may

contain literals in CHOSEN and literals which are determined
by CHOSEN. Note that CHOSEN=>k, but possibly CH=>k for a pro-

per subset CH of CHOSEN. Therefore we assign to each literal k

which is determined by CHOSEN a subset P(k) of CHOSEN, such

that P(k)=>k. P(k) is called a set of preconditions for k.

1. For a literal k in CHOSEN let P(k) = k.

2. Let k be a literal which is simply determined by CHOSEN and
let ¢ be the clause which is unsatisfied under the inter-
pretation CHOSEN + {k'}. Let COMP (c) be the set of comple-
men?ed literals in «¢. Then P(k) = (COMP(c) = CHOSEN) -
{le 7 §a

3. Let k be a literal which is determined by CHOSEN and let ¢
be a clause which is unsatisfied wunder an interpretation
DS (s,CHOSEN + {k"}). P(k) is the union of the preconditions
P(h) for all h (4k°) in COMP (c) .

By this recursive definition a subset P(k) of CHOSEN is defi-

nea for eacnh k in s.



Suppose that algorithm SR@ is in statement 1)b)B), i.e. a
sSuperresolvent 1is found. Let v be a learning variable and let
Cl be a clause which is unsatisfied under an interpretation
DS (s,CHOSEN+{v}). Let c2 be a clause which is unsatisfied un-
der an interpretation D3(s,CHOSEN + {v'}). Let Pcl be the
union of the preconditions P(h) for all h (i#v") in COMP (c1) .
Let Pc2 be the union of the preconditions P(h) for all h (fw)
in COMP(c2). Algorithm SR chooses Pc = COMP (Pcl + Pc?) as the
next superresolvent. Note that there may exist several Pc, be-
cause c¢l,c2,P and DS are not unigue.

Lemma 4.1: Let R(s) be an arbitrary Superresolution proof for
S. R(s) can be abridged to a Superresolution proof which is
generated by SR.

Because of Lemma 4.1 we call a Superresolution proof which is
generated by SR a normal Superresolution proof and a a super-
resolvent, which is constructed by SR a normal superresolvent.

Theorem 4.2: Let s be a cnf. Each normal superresolvent of s
is the result of a sequence of Resolution operations.

Lemma 4.3: Let s be an unsatisfiable cnf with m clauses and
let sr be a normal superresolvent. Then sr can be obtained by
the application of at most 2*m+] Resolution operations.

Theorem 4.4: Let s be an unsatisfiable cnf and let R(s) be a
normal Superresolution proof for s. Then there exists a Reso-
lution proof R1(s) for s, such that C(R1 (s)) < ClR{s)) ¥ 2,

Theorem 4.5: Superresolution and Resolution are polynomially
equivalent.

ProOmE @

By lemma 3.1 each Resolution proof can be abridged to a Super-
resolution proof. Each Superresolution proof can be abridged
to a normal Superresolution proof (lemma 4.1) and each normal
Superresolution proof can be translated polynomially into a
Resolution proof (theorem 4.4),

(

Lemma 4.6: A normal superresolvent of a cnf S can be generated
in time O(L(s)) on a random access machine,



5. Lower bound

In this section I prove an exponential lower bound for a spe-
cial kind of Superresolution, called simple Superresolution.
We give a polynomial translation of simple Superresolution
proofs into enumeration trees and use a result of Galil
[GAL76] on enumeration procedures.

Given a set s of clauses and a partial interpretation I, we
obtain another set of clauses s[I] by substituting all values
given by I: s[I] is the set of clauses c’, such that c’ is a
subset of a clause ¢ in s which is not satisfied by I. ¢’ con-
tains all literals of ¢ which are not assigned by I, and all
literals in c-c’ are assigned false by I.

A set s of clauses c[1], c[2], ... c[n] is said to be tree
embeddable, if there is a numbering (v[1], v[2], ... v[m]) of
the variables in s such that the following holds:

1. Each nonempty clause in s contains a literal of vi[il].

2. Let I be an arbitrary interpretation of the variables vi[l],
v([(2], ... v[i-1] (1<i<n). Every nonempty clause in s[I]
contains a literal of variable sl gl

Definition 5.1: A Superresolution proof R(s)=sr (1], sr[2],
srn] of a cnf s is simple if R(s) is tree embeddable.

A proof system BW for UNSAT is called exponential, if there is

a sequence s[1], s[2], ... of cnf’s, such that for each se-
guence of proofs BW(s[1]), BW(s[2]), ... the lengths grow ex-
ponentially, 1i.e. there are constants i and ¢c>@, such that
for all i>i#: C(BW(s[i])) > 2**(c*length(s[i])). C denotes the

proof length.

Corollafy 5.3: Simple Superresolution is exponential.
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