
On Completing Latin Squares

Iman Hajirasouliha?, Hossein Jowhari?, Ravi Kumar??, and Ravi Sundaram? ? ?

Abstract. We present a (2

3
− o(1))-approximation algorithm for the

partial latin square extension (PLSE) problem. This improves the current
best bound of 1− 1

e
due to Gomes, Regis, and Shmoys [5]. We also show

that PLSE is APX-hard.

We then consider two new and natural variants of PLSE. In the first,
there is an added restriction that at most k colors are to be used in
the extension; for this problem, we prove a tight approximation thresh-
old of 1 − 1

e
. In the second, the goal is to find the largest partial latin

square embedded in the given partial latin square that can be extended
to completion; we obtain a 1

4
approximation algorithm in this case.

1 Introduction

Latin squares are elementary combinatorial objects that have been studied for a
long time. Informally, a latin square is an n×n grid, where each cell is filled with
a number in {1, . . . , n} and each number occurs exactly once in every row and
every column. A partially filled latin square (PLS) is an n×n grid, where each cell
is either empty or filled with a number in {1, . . . , n} and each number occurs at
most once in every row and every column. Besides being interesting objects from
a mathematical point of view, PLSs have found applications in statistical design,
error-correcting codes, and more recently, optical routing. Sudoku puzzles, one
of the current fads, are PLSs with additional properties.

To motivate an algorithmic study of PLSs, consider their applications in
optical routers [1]. Routers in an optical network are connected by fiber optic
links that support a certain number of wavelengths. Each router has some input
and output links and is capable of switching wavelengths to avoid conflicts in
fiber links. Suppose the router has n input and n output ports and each link can
carry n different wavelengths. The snapshot of an active router can be modeled
by a PLS as follows. Associate each input port with a row and each output port
with a column in the PLS and consider a light signal that comes from the input
port i and is routed to the output port j with the new wavelength of k. This
can be reflected by assigning k to the cell (i, j) in the PLS.

The question of how much can we increase the utilization of the router is pre-
cisely the problem of assigning numbers to the empty cells in a PLS; this is the
PLS extension problem (PLSE). Colbourn [2] showed that the decision version

? Simon Fraser University, {ihajiras,hjowahari}@cs.sfu.ca
?? Yahoo! Research, ravikumar@yahoo-inc.com

? ? ? Northeastern University, koods@ccs.neu.edu

of PLSE is NP-complete. Kumar, Russell, and Sundaram [9] presented two ap-
proximation algorithms for PLSE that achieves factors 1

3 and 1
2 . Gomes, Regis,

and Shmoys [5] obtained an LP-based approximation algorithm that achieves a
factor 1 − 1

e
, which is currently the best known.

We also consider two natural variants of the PLSE problem. In the k-PLSE
problem, the goal is to use at most k different numbers to fill the empty cells
in a PLS. This problem arises in optical routers when we wish to invest in at
most k new wavelengths, say because of resource considerations. In the c-PLSE
problem, the goal is to find the largest PLS embedded in the given PLS that can
be extended to completion. This problem arises naturally when we wish to build
out an existing network to completion while retaining as much of the existing
infrastructure as possible. To the best of our knowledge, neither k-PLSE nor
c-PLSE has been studied before.

1.1 Main results

We obtain a 2
3 − o(1)-approximation algorithm for the PLSE problem. This

improves the current best bound of 1 − 1
e

due to Gomes, Regis, and Shmoys
[5]. Our algorithm is based on local search and we analyze its performance by
appealing to a packing bound of Hurkens and Schrijver [7]. We also show that
PLSE is APX-hard, thereby strengthening the NP-hardness result of Colbourn
[2].

We then study the k-PLSE problem. For this problem, we first show a natural
greedy algorithm that achieves an approximation factor 1

2 . We also show that a
randomized rounding procedure applied on the LP formulation of the problem
achieves a factor of 1 − 1

e
− ε. Moreover we show that this is almost the best

possible, i.e. no polynomial-time algorithm for k-PLSE can achieve factor better
than 1 − 1

e
+ ε unless P = NP.

Finally, for the c-PLSE problem, based on a theorem of Ryser [13], we present
a 1

4 -approximation algorithm.

2 Preliminaries

Let [n] = {1, . . . , n}. A partial latin square (PLS) of order n is an n × n array
whose cells are empty or contain a color from [n]. with the restriction that no
color is repeated in a row or column. When the PLS has no empty cells it is
simply called a latin square (LS). We denote the content of the (i, j)-th cell in
the PLS L by L(i, j). The number of non-empty cells of L is denoted |L|.

A PLS L′ is an extension of a PLS L if L′(i, j) = L(i, j) holds for all non-
empty cells L(i, j); we denote this by L � L′. Naturally, L′ can be obtained by
coloring some of the empty cells in L.

The partial latin square extension problem (PLSE) is, given a PLS L, color
the maximum number of empty cells in L using colors in [n], i.e., find L′ such
that L′ � L and |L′| is maximized. The k-partial latin square extension problem
(k-PLSE) is, given a PLS L of order n, color the maximum number of empty

cells in L by colors in [n] such that at most k colors are used in the coloring. It
is clear that PLSE is the same as n-PLSE. The c-partial latin square extension

problem (c-PLSE) is, given a PLS L of order n with T filled cells, find the largest
c, 0 ≤ c ≤ 1, such that L contains a PLS with cT filled cells that can be extended
to completion. It is clear that when an instance of c-PLSE has c = 1 it means
that it can be extended to completion.

A ρ-approximation to these problems is to find a PLS L′ such that |L′| is
within ρ of the optimum solution to the problem, where 0 < ρ ≤ 1.

2.1 The 3EDM problem

To facilitate the presentation of our results, we define the following new problem
called 3EDM : given a tripartite graph, this problem corresponds to finding the
largest number of edge disjoint triangles in the graph. Similarly, in the k-3EDM

problem, the goal is to find the largest number of edge disjoint triangles in
a tripartite graph, with the constraint that at most k vertices from the third
partition are touched by the triangles. We argue that 3EDM and PLSE problems
are equivalent, i.e., there are value-preserving reductions from PLSE to 3EDM
and vice versa.

Theorem 1. The PLSE and 3EDM problems are equivalent.

Proof. The reduction from PLSE to 3EDM is straightforward. Given an n × n
instance L of PLSE, create a tripartite graph G with 3×n vertices as follows. The
first partition in G represents the n rows, the second represents the n columns,
and the third represents the n colors. For each empty cell (i, j) in L and each
candidate color k that can be assigned to this cell, place a triangle between the
vertices i, j, k in G. It is easy to see that L can be extended to t additional cells
if and only if G has t edge-disjoint triangles.

Conversely, we show that there is a value-preserving reduction from 3EDM to
PLSE. Let G = (U∪V ∪W, E) be a tripartite graph and let n = max{|U |, |V |, |W |}.
We construct a PLS L of order 3n such that maximum number of edge disjoint
triangles in G equals the maximum number of entries that can be filled in L and
vice versa.

First we assume that every edge in G is contained in at least one triangle,
since edges that are not present in at least one triangle can always be removed
without affecting the solution. Next we assume that |V | = |U | = |W | = n,
since isolated vertices can be added to G without changing the solution. Let
U = {u1, . . . , un}, V = {v1, . . . , vn}, and W = {w1, . . . , wn}. Let L be an empty
PLS of order 3n; think of L as being composed of square blocks A1, . . . , A9, each
of dimension n × n; here the blocks are numbered in the row-major order. Now
we turn L into a PLS such that the entry (i, j) in L is empty and can be filled
with color k ≤ n if the triangle (ui, vj , wk) exists in G.

Let Ri be the index set of vertices in W such that ui is not connected to
them. For each r ∈ Ri, we fill an empty entry in the i-th row of A2 with color r.
Note that we can do this for all i = 1, . . . , n without creating a conflict. Similarly

let Cj be the index set of vertices in W such that vj is not connected to them.
For each c ∈ Cj , we fill one of the empty entries in the j-th column of A4 with
c. Now it is easy to see that we can fill the entry (i, j) in L with color k ≤ n if
the triangle (ui, vj , wk) appears in G. However it is possible to fill these entries
with colors greater than n. To circumvent this problem, we use the additional
blocks in the following way.

Let A′
1 be the subset of entries in A1 such that (i, j) ∈ A′

1 if the edge (ui, vj)
does not appear in G. We fill in the entries in A′

1 with colors from the set
{n + 1, . . . , 2n}; this will ensure that the non-edge (ui, vj) does not contribute
to the PLSE solution. After this step, let A1j be the set of colors appearing in
j-th column of A1. For every r ∈ {n + 1, . . . , 2n}, if r /∈ A1j , then we place r in
an empty entry in the j-th column of A7. This way, we ensure that none of the
colors in {n+1, . . . , 2n} can be used to fill the empty entries of A1. Analogously,
the block A3 is used to ensure that none of the colors in {2n + 1, . . . , 3n} can
be used to fill the empty entries of A1; this can be easily achieved by setting A3

to be a complete latin square with entries from {2n + 1, . . . , 3n}. Now it suffices
to fill in the remaining entries greedily except that we have to avoid filling the
entries of A2, A4, and A7 with colors from {1, . . . , n}. We can block A2 and A4

w.r.t {1, . . . , n} by placing appropriate colors in A6 and A8. We fill the empty
entries in A7 with colors from the set {2n + 1, . . . , 3n}). Now all entries except
the empty ones in A1 are either filled or blocked and we can place k in (i, j) if
and only if the triangle (ui, vj , wk) exists in G. This completes the proof.

In a similar manner, we can show that

Corollary 1. The k-PLSE and k-3EDM problems are equivalent.

3 Improved bounds for the PLSE problem

In this section we obtain a 2
3 -approximation algorithm for the PLSE problem;

this improves the 1 − 1
e

algorithm of Gomes, Regis, and Shmoys [5]. We then
show that the PLSE problem is APX-hard.

3.1 A local search algorithm

First, we state a well-known result of Hurkens and Schrijver [7].

Theorem 2 (Hurkens–Schrijver Theorem [7]). Let m, n, k, t be positive in-

tegers with k ≥ 3. Let E1, . . . , Em be subsets of a set V of size n such that

1. each element of V is contained in at most k of the sets E1, . . . Em and

2. any collection of at most t sets among E1, . . . Em has a system of distinct

representatives.

Then we have m
n
≤ k(k−1)r−k

2(k−1)r−k
if t = 2r − 1 and m

n
≤ k(k−1)r−2

2(k−1)r−2 if t = 2r.

We present a simple local search-based approximation algorithm for PLSE by
obtaining an algorithm for 3EDM.

Theorem 3. For any ε ≥ 0, there is a 2
3 − ε-approximation algorithm for the

3EDM problem.

Proof. Let G be the given graph with n vertices. Fix a t ≥ 1. Start with any
collection of edge-disjoint triangles from G. Iteratively perform local search by
replacing any sub-collection of s ≤ t triangles with s+1 triangles from the graph
such that the collection continues to be edge disjoint.

It is obvious that the above heuristic run in polynomial time since the col-
lection grows by at least 1 in each step and its size is upper bounded by n2. Let
opt denote the largest collection of edge disjoint triangles in G.

Now, we apply Theorem 2 to our situation by taking the sets E1, . . . , Em to
be the edge disjoint triangles of opt and V to be the collection of edge disjoint
triangles found by our heuristic with edge intersection representing containment,
i.e., we say Ei contains vj , an element of V , when the intersection of the triangle
in opt corresponding to Ei with the triangle corresponding to vj contains at
least an edge of the original graph.

Observe that both the conditions of Theorem 2 are met:

1. since each of the two collections of triangles, the set corresponding to E1, . . . , Em

as well as the set corresponding to V are edge disjoint therefore it follows
that each Ei can intersect at most 3 vj and vice versa and

2. by the termination condition of the heuristic every collection of t elements
from E1, . . . , Em must have a system of distinct representatives in V , i.e.,
intersect at least t triangles from V for otherwise we could replace s ≤ t
triangles from V with at least s + 1 triangles from E1, . . . Em.

Hence, when the heuristic terminates, the size of the collection as a fraction
of |opt| is at least (2− 3

2r)/(3− 3
2r) if t = 2r− 1 and (2− 2

2r)/(3− 2
2r) if t = 2r.

The proof is complete.

Note that the running time of the heuristic increases the closer we wish to get to
2
3 . In particular to beat the existing bound of 1− 1

e
[5], we can run the heuristic

with any t ≥ 7. Naively implemented, the running time of the heuristic in this
case is O(n26) since we are picking upto 8 triangles at a time from a maximum
possible collection of O(n3) triangles upto O(n2) times.

Corollary 2. For any ε > 0 there exists a polynomial time algorithm that ap-

proximates PLSE to within 2
3 − ε.

3.2 APX-hardness

In this section we show that 3EDM is APX-hard. We prove that in the reduction
of Holyer [6], if we restrict the input 3SAT instances to the instances of 5-OCC-
MAX-3SAT—each variable occurs exactly five times in the formula—then the
reduction becomes gap preserving. Feige [4] proved that there is a constant ε
such that it is not possible to distinguish between satisfiable instances of 5-OCC-
MAX-3SAT and ones where at most ε fraction of clauses are satisfiable, unless

P = NP. (Holyer’s reduction was also used in [8] to prove the APX-hardness of a
variant of cycle covering. For sake of completeness here we repeat the definitions
(to avoid confusion we use the notation used in [6, 8]).)

Theorem 4. 3EDM is APX-hard.

Proof. Let the graph H3,p be a graph with p2 vertices where V = {(x1 + x2 +
x3) ∈ Z3

n | x1 + x2 + x3 ≡ 0(mod p)} and two vertices (x1, x2, x3), (y1, y2, y3)
are connected if there are distinct i, j, and k such that xi ≡ yi(mod p), xj ≡
yj + 1(mod p) and xk ≡ yk − 1(mod p). As has been pointed out in [2], if we
choose p so that p ≡ 0(mod 3) the graph becomes tripartite. The crucial point
is that there is just two ways to partition H3,p into triangles; this will serve as a
switch for modeling a truth assignment. We call one partitioning a T -partition
and the other an F -partition. We define a patch to be an induced subgraph in
H3,p that consists of a triangle in center with three other triangles surrounding
it. When the central triangle belongs to a T -partition, we call it a T -patch and
otherwise an F -patch.

Let ℵ be an instance of 5-OCC-MAX-3SAT that consists of m = 5/3n clauses
C = (C1, . . . , Cm) defined over n variables x1, . . . , xn where each Cj consists of
three literals `j,1, `j,2, and `j,3. For each variable xi in ℵ we create a graph Xi

that is a copy of H3,6. Also corresponding to each literal `j,k we create a graph
Cj,k that is a copy of H3,6. Now we glue the graphs in the following way. If
`j,k = xi, then we glue an F -patch of Xi with an F -patch of Cj,k and otherwise
(when `j,k = x̄i) we glue an F -patch of Xi with a T -patch of Cj,k. We also glue
Cj,1, Cj,2, and Cj,3 together at an F -patch from them and then remove the edge
of the central triangle in the F -patch. Note that we have chosen p = 6 so that we
have enough disjoint number of patches, also to ensure that the resulted graph
is tripartite, we glue the vertices with the same color. Let Gj be the graph after
gluing together the graphs Cj,1, Cj,2, and Cj,3. The following facts have been
shown in [6].

1. In order to partition all of the edges in Gj , exactly one of the graphs
Cj,1, Cj,2, and Cj,3 should be F -partitioned.

2. If `j,1 = xi, then it is not possible that Cj,k and Xi are both F -partitioned.
If `j,k = x̄i then it is not possible that Cj,k is F -partitioned and Xi is
T -partitioned.

These facts imply

Lemma 1. The edges of the graph Gj can be partitioned into triangles if and

only if one of the literals in Cj is true.

Let t1 be the number of edge-disjoint triangles in H3,6 and let t2 be the number
of edge-disjoint triangles in Gj . Lemma 1 indicates that if ℵ is satisfiable, then
there are nt1 + 5/3nt2 = c1n edge-disjoint triangles in the final graph, where c1

is a constant. On the other hand if ℵ is not satisfiable, then for each unsatisfiable
clause Cj we have two possibilities: there is one edge that has been left or the
there is one edge left in one of graphs corresponding to the variables involving

in Cj . Since each variable is in at most two unsatisfied clause (otherwise we can
switch it), we can conclude that if there are (1−ε)5/3n unsatisfiable clauses in ℵ,
then we can have at most t1n+5/3t2n−5/6(1−ε)n = c2n edge-disjoint triangles,
where c2 < c1. This shows that there is a constant α < c2/c1 such that if we
can α-approximate the number of edge-disjoint triangles in tripartite graphs,
then we can distinguish between satisfiable instances of 5-OCC-MAX-3SAT and
instances that at most ε fraction of them are satisfiable. This completes the
proof.

Corollary 3. PLSE is APX-hard.

4 The k-PLSE problem

In this section we study the k-PLSE problem. First we present a simple greedy
algorithm that approximates to within a factor of 1

2 . Next we show a randomized
approximation algorithm that achieves a factor 1− 1

e
− ε. Finally, we prove that

k-PLSE is hard to approximate to within a factor of 1 − 1
e

+ ε.

4.1 A greedy algorithm

Let Mi be the largest matching that extends color i. Pick color j such that
|Mj | = max{|M1|, . . . , |Mn|}, breaking ties arbitrarily. Fill the cells in Mj with
color j and repeat until k colors are used.

Theorem 5. The greedy algorithm approximates k-PLSE to within a factor 1
2 .

Proof. Let opt = {Mx1
, . . . , Mxk

} be the optimum solution where Mxi
is the

set of cells that have received color xi. Accordingly let S = {M ′
y1

, . . . , M ′
yk
} be

the solution produced by the greedy algorithm. For each cell (i, j) ∈ opt we
determine a cell (i′, j′) ∈ S as accountable. If (i, j) ∈ S ∩ opt, then (i, j) is
accountable for itself, otherwise we distinguish two cases. Suppose (i, j) ∈ Mxc

.
First case: xc has been used in S. In this case, we can determine a cell (i′, j′)
such that (i′, j′) ∈ M ′

xc
and i′ = i or j = j′. Note that this can make a cell

accountable to two cells but not more. Second case: xc has not been used in S.
Let txc

be the number of cells in opt with color xc such that these cells are
left unfilled in S. For each unused color xc in opt we can determine a color yc′

in S such that yc′ does not appear in opt. For each 1 ≤ c ≤ k, |M ′
yc
| ≥ txc

for otherwise xc should have been selected in the algorithm. Therefore, for each
unfilled cell in Mxc

we can determine a cell in M ′
y

c′
as accountable. The cells

that have been chosen as accountable are at most accountable to one cell (itself).
Hence in overall each cell is accountable to at most two cells in the optimum
solution and this completes the proof.

Let k = 3 and consider the PLS

2 3
2 1
3 2

1 2

. The greedy algorithm first

chooses color 4 and if it decides to color the main diagonal. By this choice, at

most 4 cells can be filled while the optimum solution can be shown to color 8
cells. This example shows that the above analysis is tight.

4.2 A 1 −

1
� − ε approximation algorithm

In this section we modify the LP formulation for PLSE problem defined in [5] to
get a (1 − 1

e
− ε)-approximation for the k-PLSE problem. Let Mc be the set of

all matchings that extend the matching associated with color c and ycM be the
indicator variable associated with matching M ∈ Mc. The modified formulation
is:

maximize

n
∑

c=1

∑

M∈Mc

|M |ycM (1)

subject to ∀c = 1, . . . , n :
∑

M∈Mc

ycM = 1

∀i, j = 1, . . . , n :
n

∑

c=1

∑

M∈Mc:(i,j)∈M

ycM ≤ 1

n
∑

c=1

∑

M∈Mc:|M |>0

ycM ≤ k

ycM ≥ 0

We follow the same rounding technique used in [5] except that before applying
the rounding procedure on the LP solution, we multiply each variable in the
solution by 1− ε. Given that, we can use the Chernoff bound to guarantee that
at most k matchings with different colors have been picked with some constant
probability.

Theorem 6. Let k ≥ 2
ε2

(1 − ε)(ln 1
δ
), 0 < ε ≤ 1

2 , and 0 ≤ δ ≤ 1. There is a

randomized (1 − 1
e
− ε)-approximation algorithm for k-PLSE that succeeds with

probability at least 1− δ.

Proof. Let y∗ be the optimal solution for the above LP and ȳ be the solution
obtained from y∗ after multiplying each variable by 1 − ε. Now for each color
c, we pick a matching from the set Mc such that matching ycM is picked with
probability ȳcM . If two or more mathcings share cell (i, j) we color (i, j) arbitrary
with the color of one those matchings. Let opt and opt

′ be the cost of y∗ and ȳ
respectively. According to the argument in [5], the cost of solution produced by
the above rounding procedure is at least (1 − 1

e
)opt

′. Since opt
′ = (1− ε)opt,

we conclude that the cost of final solution is at least (1 − ε)(1 − 1
e
)opt ≥ (1 −

1
e
− ε)opt. It remains to prove that the solution is feasible, i.e., at most k

different colors have been picked. Let s =
∑n

c=1

∑

M∈Mc:|M |>0 ȳcM . We have

E(s) ≤ (1− ε)k and since s is the sum of a set of independent random variables,

we can apply the version of Chernoff bound used in [10] to bound the tail of s.
Given 0 ≤ ε′ ≤ 1 such that ε′ = ε

1−ε
, we have,

Pr[s > k] = Pr[s > (1 + ε′)(1 − ε)k] ≤ exp

(

−
(1 + ε)(1 + ε′)2k

2

)

≤ δ.

After simplification, we have Pr[s > k] < δ when k ≥ 2
ε2

(1 − ε)(ln 1
δ
). This

completes the proof.

Note that if we settle for some constant probability of success, we can use brute-
force search for values of k less than 2

ε2
(1 − ε)(ln 1

δ
).

4.3 Hardness

We show that the k-PLSE problem is hard to approximate to within 1 − 1
e

+ ε,
unless P = NP.

Theorem 7. For any ε > 0, k-3EDM is not approximable to within 1−1/e+ ε,
unless P = NP.

Proof. We use the Max-k-Cover problem for the reduction. In the Max-k-Cover

problem, we are given several subsets of a ground set and we are asked to pick
k subsets that cover most of the ground set elements. Feige [4] proved that no
polynomial time algorithm for Max-k-Cover can have approximation ratio better
than 1 − 1

e
, unless P = NP.

Given an instance of Max-k-Cover with the ground set {e1, . . . , en} and sub-
sets S1, . . . , Sm, we construct the tripartite graph G = (U ∪ V ∪ W, E) in the
following way. Let |U | = |V | = n and |W | = m. We place a perfect matching
between U and V where the edge (ui, vi) correspond to the element ei. Now if
ei ∈ Sk we connect ui and vi to wk , thereby creating the triangle (ui, vi, wk). It
is easy to see that every solution to the given instance of Max-k-Cover problem
corresponds to a solution to the k-3EDM problem and vice versa.

Corollary 4. For any ε > 0, k-PLSE is not approximable to within 1− 1/e+ ε,
unless P = NP.

5 The c-PLSE problem

In this section we present a 1
4 approximation algorithm for the c-PLSE problem.

Theorem 8. There exists a polynomial-time algorithm that approximates the

c-PLSE problem to within a factor 1
4 .

Proof. In fact we show a stronger result, namely that: every partial Latin square
with T filled cells has a subset with size of at least T/4 filled cells that can be
extended to completion.

Let P be a partial Latin square of order n with t filled cells. We distinguish
two cases. n = 2m: we divide the square into four blocks of size m × m and
then pick the block that have more filled cells (≥ t/4). By permuting rows and
columns, we exchange the picked block with the left upper hand block and then
clear the other cells. It is easy to see that we can complete the upper-left block in
any order. And for completing the square we invoke a famous theorem of Ryser
([11], also [13, Theorem 17.4]) that we state for the sake of completeness:

Theorem 9 (Ryser’s Theorem [11]). Let A be a partial Latin square of order

n in which cell (i, j) is filled if and only if i ≤ r and j ≤ s Then A can be

completed if and only if N(i) ≥ r + s − n for i = 1, . . . , n, where N(i) denotes

the number of elements of A that are equal to i.

By Ryser’s theorem (letting r = s = m), the square is guaranteed to be
extendable to completion.

The proof for the situation when n = 2m + 1 is similar except that here we
divide the square into four blocks of size m × (m − 1) with one cell left in the
center of square. If the cell which is left in the center is not empty, we permute
the rows and columns so that it becomes an empty cell. Again we pick the block
with more filled cells and using the above lemma (let r = m, s = m + 1), we are
done.

We make the following remarks on the above theorem. Using the above ap-
proach it is not possible to get better than a 1

2 approximation. Consider a square
of order 2n. Put a LS from the colors {1, . . . , n} in the upper left section of the
square and similarly, put a LS from colors {n + 1, . . . , 2n} in the bottom-right
section. It is easy to see that this is a blocked PLS and moroever in order to

obtain a completable subset of the filled cells, we have to cancel at least n2

4 of
the filled cells (In order to put a number in the empty cells at least one filled cell
should be canceled). In fact the combinatorial version of the c-PLSE problem is
in of itself a very interesting problem — what is the largest fraction f , 0 < f < 1
such that every PLS with T filled cells contains a PLS with at least fT filled
cells that can be extended to completion? We conjecture that the right answer
is f = 1

2 .

6 Conclusions

We defined two new and natural problems - k-PLSE and c-PLSE. We obtained
simple approximation algorithms for the PLSE, k-PLSE and c-PLSE problems.
We also showed APX-hardness for PLSE and a (1− 1

e
)-hardness of approximation

for k-PLSE. Our result for PLSE is an improvement over the best known and
our result for k-PLSE is the best possible.

The main open problem is to improve the approximation ratio for PLSE.
Obtaining an explicit constant hardness of approximation is also an interesting
problem. Although there is a (1− 1

e
) hardness result for k-PLSE, the improvement

for approximation of PLSE is not unlikely as the hardness of k-PLSE seems to

be of a different origin—for example, the worst-case instance for k-PLSE is an
easy instance for PLSE.

Embedding PLSs in LSs with the same order and with minimum loss of
elements poses many new directions and open problems. We conjecture that the
tight constant in Theorem 8 is 1

2 .

References

1. R. A. Barry and P. A. Humblet. Latin routers, design and implementation.
IEEE/OSA Journal of Lightwave Technology, pages 891–899, 1993.

2. C. J. Colbourn. The complexity of completing partial latin squares. Discrete
Applied Mathematics, 8:25–30, 1984.

3. T. Evans. Embedding incomplete latin squares. American Mathematical Monthly,
67:958–961, 1960.

4. U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
1998.

5. C. P. Gomes, R. G. Regis, and D. B. Shmoys. An improved approximation algo-
rithm for the partial latin square extension problem. Oper. Res. Lett., 32(5):479–
484, 2004.

6. I. Holyer. The NP-completeness of some edge-partition problems. SIAM J. Com-
put., 10(4):713–717, 1981.

7. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discret. Math., 2(1):68–72, 1989.

8. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Cycle cover with short cycles. In
STACS, pages 641–653, 2005.

9. R. Kumar, A. Russell, and R. Sundaram. Approximating latin square extensions.
Algorithmica, 24(2):128–138, 1999.

10. P. Raghavan, C.D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4): 365-374, 1987.

11. H. J. Ryser. A combinatorial theorem with an application to latin rectangles. Proc.
Amer. Math. Soc., 2:550–552, 1951.

12. B. Smetaniuk. A new construction on Latin squares I. A proof of the Evans
conjecture. Ars Combinatoria, XI:155–172, 1981.

13. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge Univer-
sity Press, 1992.

