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Abstract

A common programmer experience is to execute a long-running
computation only to see a bug crash the program after hours or
days. While it is often easy to capture a “buggy” expression value
at the point of the crash, it is less easy to discover the point in
the program where the expression became buggy. For such “diffi-
cult” bugs, this work presents an automated tool based on binary
search through a process lifetime. The tool operates both in single-
threaded and multi-threaded program. The underlying algorithm
depends on on checkpoints, deterministic replay, and decomposi-
tion of debugging histories. The tool is scalable in the sense that the
running time is a small constant factor beyond the standalone run-
ning time. Further, it requires only a logarithmic number of probes
of the expression value — an advantage when the time to execute
the expression is large. The algorithm is demonstrated for such real-
world programs as MySQL.

1. Introduction

This work describes a new debugging technique, reverse expression
watchpoints, designed to find bugs whose cause appears in the mid-
dle of a long-running program, but which only manifest themselves
much later.

The goal here is the difficult bugs that do not show good tempo-
ral locality. The cause of the bug is far from when the bug manifests
itself. The technique used is

reverse expression watchpoints,
which employ a binary search both backward and forward in the
lifetime of the program.

The binary search through the program is based on maintain-
ing a history of GDB debugging commands, and using checkpoint-
based record-replay. The binary search is executed on the history
of GDB commands. This requires expansion of a “continue” com-
mand into repeated “next”, and “next” into repeated “step”. Algo-
rithms for doing this were previously described in our workshop
paper [28].

The expansion of debugging commands [28] makes it possible
to execute a variant of a binary search through the history of
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debugging commands. A key additional point of novelty is that the
algorithm correctly handles multithreaded programs.

Although the emphasis of the algorithm is on multithreaded pro-
grams, we are not aware of a similar approach in the literature,
even for the single-threaded case. The algorithm here is reminis-
cent of the “git-bisect” command for binary search through source
code revisions. The infrastructure presented here also relates to
Tralfamadore [15]. Tralfamadore presents a coarse execution trace,
while allowing programmers to interactively refine their view of
the execution, but it does not include any algorithm similar to the
reverse expression watchpoints presented here.

The efficiency of the algorithm is best explained by noting that
a binary search will require at most log

2
N probes (evaluations)

of the expression over the process lifetime. The cost of running on
the algorithm depends on the number of probes and the average
number of times each statement is executed. Each statement is
executed on average a small constant number of times. The number
of probes is logarithmic in N , the number of statements executed
by the program. For example, while a multi-core CPU can execute
one billion statements per second, or N = 8.64× 1013 statements
in a day, the number of probes is only log

2
N ≈ 46.

Outline of Paper. Section 2 describes reverse expression watch-
point and its implementation. Section 3 clarifies some limitations of
this approach, and some alternatives. Section 4 provides an experi-
mental evaluation. Section 5 describes the related work. Finally, the
conclusion is in Section 6.

2. Reverse Expression Watchpoints

Figure 1 provides a simple example for motivating reverse ex-
pression watchpoints. Assume that a bug occurs whenever a
linked list has length longer than one million. So an expression
length(linked list)<=1000000 is assumed to be true through-
out. Assume that it is too expensive to frequently compute the
length of the linked list, since this would require O(n2) time in
what would otherwise be a O(n) time algorithm, where n is the
length of the linked list. (A more sophisticated example might con-
sider a bug in an otherwise duplicate-free linked list or an otherwise
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Figure 1. Reverse expression watchpoint for the bounded linked
list example.



cycle-free graph. But the current example is chosen for ease of il-
lustrating the ideas.)

If the length of the linked list is less than or equal to one million,
call the expression “good”. If the length of the linked list is greater
than one million, call the expression “bad”. A “bug” is defined as a
transition from “good” to “bad”. There may be more than one such
transition or bug over the process lifetime. Our goal is simply to
find any one occurrence of the bug.

The core of a reverse expression watchpoint is a binary search.
In Figure 1, assume a checkpoint was taken near the beginning
of the time interval. So, we can revert to any point in the illus-
trated time interval by restarting from the checkpoint image and
re-executing the history of debugging commands until the desired
point in time.

Since the expression is “good” at the beginning of Figure 1
and it is “bad” at the end of that figure, there must exist a buggy
statement — a statement exhibiting the transition from “good”
to “bad”. A standard binary search algorithm converges to some
instance in which the next statement transitions from “good” to
“bad”. By definition, we have found the statement with the bug.
This represents success.

If implemented naively, this binary search requires that some
statements may need to be re-executed up to log

2
N times. How-

ever, we can also create intermediate checkpoints. In the worst case,
one can form a checkpoint at each phase of the binary search. In
that case, no particular sub-interval over the time period needs to
be executed more than twice.

2.1 Pre-requisites

To implement reverse expression watchpoint, the following four
systems are required:

1. A debugger;

2. A checkpoint-restart package that checkpoints the entire debug-
ging session, including with the debugger;

3. Deterministic record-replay with memory accuracy; and

4. The ability to decompose a history of debugging commands
(continue → next → step).

For the debugger, we use GDB. For checkpoint-restart, we use
the transparent, user-space checkpointing package, DMTCP (Dis-
tributed MultiThreaded CheckPointing) [2]. A simple deterministic
record-replay module is built to support this work, and an imple-
mentation is built based on the algorithms for decomposing debug-
ging histories presented in [28].

The checkpoints of an entire debugging session (debugger and
the target application) are taken at regular intervals. The history of
debugging commands is recorded (in addition to recording system
calls of the target application). Moving backwards in time consists
of restarting from an earlier checkpoint and replaying until the
desired time in the past history.

Decomposing debugging histories: Algorithms for decomposing
debugging histories of commands were developed [28]. If, for
example, the debugging history is [continue, next] and the
user issues a reverse-next, then this is the equivalent of an undo
command. However, if for the same debugging history, the user
issues a reverse-step command (therefore not an undo), then
the debugging history needs to be decomposed as in [28]. The
underlying principle is that a continue debugging instruction can
be expanded into repeated next and step. Similarly, a next can
also be expanded into repeated step.

2.2 The Simplified Algorithm

A reverse expression watchpoint is invoked by the programmer
when the target process has stopped in GDB at an “error”. The
programmer uses GDB to determine an error condition that caused
the program to stop. It may be as simple as “a pointer at this address
has NULL value and was dereferenced”. It may be more complex,
as in the examples: “a linked list is too long” or “a representation
of a dynamic graph is no longer connected”.

The programmer specifies a Boolean expression associated with
that error condition. The Boolean expression must be suitable for
printing by GDB’s “print” command. This Boolean expression is
called the watched expression. The watched expression has one
value (for example, “false”) at the time of the error. At an ear-
lier point in the program, before the error condition was met, the
watched expression has the opposite Boolean value. We care only
that the two Boolean values be opposite, and we will refer to the
earlier Boolean value as “good” (no error), and the Boolean value
at the error condition as “bad” (error observed).

The goal of a reverse expression watchpoint is to identify a
transition of the watched expression from “good” to “bad”. This
is a point in the timeline at which the expression is “good”, but
at the next statement execution by a single thread, the expression
becomes “bad”.

Since the program execution begins at a statement for which the
watched expression is “good”, and it ends at an expression which
is “bad”, there must be at least one transition by a single statement
from “good” to “bad”. If there are multiple such transitions, the
algorithm produces just one of those transitions. This is enough,
since each such transition is associated with an occurrence of a bug.

The algorithm assumes a single checkpoint was taken at the
very beginning of the debugging session. The programmer can take
additional checkpoints at any time during the debugging session.
Alternatively, additional checkpoints can be taken automatically at
regular intervals.

The simplified algorithm employs just two steps: Step A and
Step D. The missing Steps B and C will be described in Section 2.3.
These will be added for reasons of efficiency and to better present
the context of the bug to the programmer.

Step A searches for the bug at a coarse level, through a binary
search of the checkpoint images. This finds an interval between
consecutive checkpoint images during which the watched expres-
sion changes from “good” to “bad”. Step D then identifies the ex-
act thread and statement which caused the watched expression to
change value.

(A) Search-Ckpts: Binary search to find two successive checkpoint
images evaluated as “good” and “bad”. It can happen that all
previous checkpoint images were “good”. In this case, the de-
sired checkpoint interval is from the most recent checkpoint im-
age until the current point in time (when the watched expression
must be “bad”).

(D) Local-Search-With-Scheduler-Locking: Replay the code with
GDB’s scheduler-locking parameter on. Switch deterministi-
cally in a round-robin fashion among the threads of the target
application. Execute “step” commands in the active thread. If
executing a “step” in the active thread causes the expression to
transition from “good” to “bad”, this must be the target thread
and statement. Else, reaching the end of the interval or a dead-
lock, repeat the process in each other thread.

Step D (Local-Search-With-Scheduler-Locking) requires a more
detailed explanation. Its purpose is to provide a deterministically
replayable series of GDB commands that allows the end user to
observe which thread caused the transition from “good” to “bad”
occurred.



The algorithm of Step D makes the reasonable assumption that
there exists exactly one statement modifying exactly one datum
which causes the expression evaluation to change. It follows that if
an expression changes value, a single “step” instruction by a single
thread must be enough to do it.

Deterministically assigning blame to a culprit thread and state-
ment is done by using GDB’s scheduler-locking parameter. In this
mode, a single “step” command causes just one thread to execute.

In this mode, the algorithm deterministically single steps through
a single active thread. Because no background threads execute
in this mode, there are only two possible outcomes. Either some
statement execution by the active thread will cause a good-to-bad
transition, or else some single step execution will block on a lock,
causing deadlock. The deadlock is detected via a timeout of the sin-
gle step. At this point, the last single step is “undone” (for example,
by replaying from the previous checkpoint until the previous step),
and another thread is then chosen as the active thread.

The actual details of Step D differ for reasons of efficiency:

(D.1) Select a thread as the “active” thread, and do repeated “next”
commands to that thread (without scheduler locking) un-
til the expression changes. Then determine if this is the
correct thread by re-executing the same series of debugger
commands and enabling GDB scheduler locking on the last
“next” command and observe if the expression still changes.
If it does, we are guaranteed that this is the correct thread. If
we see a deadlock, we don’t know if this is the right thread.
If the expression doesn’t change, this is the wrong thread.

(D.2) Undo the last “next”, and replace by a single “step” followed
by repeated “next” (without scheduler locking). If the expres-
sion changes on that first step, go to step D.3 below. If the
expression does not change, then go to step D.4.

(D.3) The expression changed on this “step”. We must verify that
it is due to the active thread. Undo “step”, enable GDB
scheduler locking, and redo the “step.” If the expression
changes, this is the right thread, and exit. If the expression
does not change, or if deadlock ensues, then this is not the
right thread. Go to step D.4.

(D.4) Not the right thread: choose the next thread in step D.1 above,
and try again.

The algorithm uses a timeout (currently 20 seconds) in order to
decide if a deadlock occurred inside step (D.1) or step (D.3).

2.3 The Full Algorithm

The full algorithm inserts Steps B and C into the simplified algo-
rithm of the previous section. Step B is essentially a simplified ver-
sion of Step D. As in Step D, the purpose of Step B is to provide
a series of GDB commands that the programmer can replay to ob-
serve the good-to-bad transition and determine the cause of the bug.
Step B does not require scheduler-locking and suffices in the case
of a single-threaded application. Even in the multi-threaded case,
Step B brings the programmer closer to the bug, while postponing
the need for the sometimes confusing use of scheduler-locking.

The purpose of Step C is greater efficiency. This is important
when the portion of the program begin debugged has many system
calls — and especially when there are many manipulations of locks.
Without this, the use of scheduler-locking in Step D would incur
many instances of deadlock, each one requiring us to restart and
replay.

Step C consists of a binary search through the event log (similar
to the binary search through the checkpoint images of Step A). The
sequence of checkpoint images and the event log both provide a
deterministic overview of a portion of the execution.

(A) Search-Ckpts: described in Step A of Section 2.2.

(B) Search-Debug-History: Step A identified a checkpoint interval,
with a “good” checkpoint image, followed by a point in time
with a “bad” watched expression. The “good” checkpoint image
has associated with it a history of debugging commands until
the following checkpoint image. Execute a binary search in
the debug history between the “good” checkpoint image and
the “ bad” point in time. In the debugging history, expand
GDB “continue” command into repeated “next” and “step”
commands as needed to identify a transition from “good“ to
“bad” when a single GDB “step” command is executed. (Visan
et al. [28] shows how to expand the GDB commands.)

(*) REMARK: In a single-threaded program, the algorithm stops at
Step (B) above, with the desired transition. In a multi-threaded
program, further work is needed. GDB may execute multiple
threads in a single “step” command, the transition from “good”
to “bad”.

(C) Search-Determ-Event-Log: Binary search through the por-
tion of the deterministic replay log corresponding to the last
“step” command, as identified by Step B. Identify two consec-
utive events, such that the watched expression transitions from
“good” to “bad” when replaying the events. [ Since multiple
threads may have executed, multiple log events may have oc-
curred. ] (Note that a background thread in the target application
may be responsible for the transition of the watched expression
to “bad”. Since the background thread may not yet have been
created, a binary search through the event log will guarantee
that the execution progresses far enough to guarantee that the
background thread exists, since thread creation is one of the
events that is logged.)

(D) Local-Search-With-Scheduler-Locking: described in Step D of
Section 2.2.

2.4 Correctness of the Algorithm

By default, the end user interactively creates checkpoint images
at points of interest while executing within GDB. If a GDB “con-
tinue” command executes for a long time, the user may not be able
to create a checkpoint during such a long period of time. To han-
dle that case, this work supports the ability to transparently create
intermediate checkpoints during the execution of a long-running
“continue”. This is particularly important in Step B, in which a
“continue” command may be expanded into repeated “next” and
“step” commands. The intermediate checkpoints ensure that one
needs to search over only a moderate number of “next” and “step”
GDB commands between checkpoints.

Note that the transition from “good” to “bad” may occur due to
a background thread of the target application. This executes asyn-
chronously with the primary thread (the current thread, responsi-
ble for executing the GDB commands). Hence, the transition from
“good” to “bad” may be asynchronous with respect to the debug
history. The algorithm makes two assumptions to account for this:

1. Stability: If a transition from “good” to “bad” is observed dur-
ing the original record phase or during a replay phase, then dur-
ing any replay phase, one will see a transition from “good” to
“bad” within a reasonable time. (In cases of replaying a debug
history, if the transition was caused by a background thread of
the target application, the transition may occur only after the
primary thread has replayed the entire debug history.)

In a binary search, at each iteration one must execute until a
midpoint. Due to an asynchronous background thread, there is no
guarantee that the watched expression will be deterministic after
replaying the debug history until a midpoint. It could be “good”
one time, and “bad” another time. The solution is to checkpoint



when an expression evaluates to “good”. This is the essence of a
progress condition.

2. Progress: In binary search, assume that at the current iteration
one replays from a checkpoint image that evaluates to “good”.
One replays until the midpoint of the debug history under con-
sideration. If an evaluation of the watched expression at the
midpoint evaluates to “good”, then one checkpoints and makes
that midpoint the left endpoint of the next iteration in the bi-
nary search. If an evaluation of the watched expression at the
midpoint evaluates to “bad”, then one discards the second half
of the debug history (the portion after the midpoint), and con-
tinues to the next iteration in the binary search. In each case,
a progress condition guarantees eventual termination of the bi-
nary search with a “good” left endpoint, and a “bad” right end-
point, separated by a single GDB “step” command.

Note that while the stability condition and progress condition
are described in terms of binary search over the debug history in
Step B, the condition applies equally well to the binary search over
the event log in Step C.

3. Analysis and Limitations

The size of a typical checkpoint image, for example for MySQL, is
60.5 MB. The event log requires 5.6 MB storage. Today’s terabyte
disks allow one to store many checkpoint images. However, where
storage is limited, an aging policy can be used to remove older
checkpoint images. Only the last two checkpoint images and their
associated event logs are needed for the algorithm of Section 2.
This is useful in the case of such applications as MySQL, where
the many locks incurred during initialization result in large event
logs.

Because only the last two checkpoint images are required for
the reverse expression watchpoint algorithm, it is tempting to use
the “checkpoint” command of GDB version 7. This command
essentially uses copy-on-write to fork a copy of the target process
being debugged. However, GDB’s “checkpoint” command is valid
only for single-threaded target processes. This appears to be related
to the restriction that the Linux fork() system call preserves only
one thread in the child process.

Another limitation of the current approach is for applications
that employ shared memory variables that are unprotected by a
lock. In this case, the event log fails to enforce determinism. Some
programs use reads unprotected by a lock in an attempt to avoid the
need for locks.

4. Experimental Evaluation

4.1 Methodology

All experiments were carried out on on a 16-core computer
with 128GB of RAM. The computer has four 1.80 GHz Quad-
Core AMD Opteron Processor 8346 HE and it runs Ubuntu ver-
sion 11.10. The kernel is Linux kernel 3.0.0-12-generic. We used
GDB version 7.3-0ubuntu. The kernel, glibc, gdb and gcc were un-
modified. For DMTCP, we used svn revision 1956 and for FReD,
we used git revision 62c7edd2.

First, the performance of reverse expression watchpoints is ex-
amined in Subsection 4.2 in a controlled benchmark program to
demonstrate logarithmic runtime with exponential problem size
growth.

Next, the reverse expression watchpoint feature was used to di-
agnose two real-world MySQL bugs (see Subsections 4.3 and 4.4),
and one real-world pbzip2 bug (see Subsection 4.5). These bugs do
not satisfy the temporal locality property and they require examin-
ing the state of the process at least two points in time that were far
apart.

For each of the following MySQL examples, the average num-
ber of entries in the deterministic replay log was approximately 1.2
million. The average size of an entry in the log was approximately
4.03 bytes.

4.2 Scaling with increasing computation time

This experiment is meant to represent a typical application that a
developer might run on a desktop or laptop computer. It differs
from the remaining sections, which are meant to show the use of
reverse expression watchpoint to analyze bugs concerning large,
real-world multi-threaded programs.

A C program was developed that adds edges to a large graph.
The imagined application assumes that the graph will always be
acyclic. In this scenario, the program is found to crash, and the de-
veloper must discover when in the program a cycle was created.
Efficient algorithms for cycle detection exist based on implement-
ing connecting components, but in this scenario the developer as-
sumed this was not necessary, since cycles should never appear. A
cycle has now appeared, and the developer wishes to find when this
occurred.

For the initial graph, we used a large literature citation graph
with 34,546 nodes and 421,578 edges from [10]. For multiples of
this size, the graph was duplicated N times with a single edge
connecting each duplicate to maintain the connected property.

Three debugging options are available. One option is to run the
program under GDB using its software watchpoint facility to check
for a cycle upon executing each statement. Because a hardware
watchpoint cannot be used here, this approach is too slow to finish
in less than a day, and so is not represented in our results.

A second option is to add an assert statement into the program
to check for the existence of a cycle after each edge is added.
The third option is to use reverse expression watchpoint to find
the point in program execution when a cycle was added. In both
cases, the developer writes a small, straightforward function that
does a depth-first search in testing for the existence of a cycle. This
is invoked either in the assert statement or for reverse expression
watchpoint.

Graph Runtime Rev-Watch Ckpt Rstr Ckpt Rstr Eval Expr
Size w/ Assert (s) (#) (#) (s) (s) (s)
N 93.458 15.125 4 28 2.52 9.28 0.603
2N 228.094 15.159 4 25 2.74 7.61 0.925
4N 525.594 18.748 2 23 2.49 7.77 1.358
8N 1058.033 19.143 3 21 4.50 7.30 2.751

Table 1. The time (in seconds) required to find the faulty statement
that inserted a cycle in a directed acyclic graph. N is the graph size
with 34,546 nodes and 421,576 edges. 2N , 4N and 8N represent
graphs with a multiple of this number of nodes and edges.

The results for the latter two debugging strategies are summa-
rized in Table 1. As shown, the runtime with assert statements
grows approximately linearly with the problem size. However, due
to binary search, the runtime with reverse expression watchpoints
grows logarithmically with the problem size.

The number of checkpoints for larger graphs in this experiment
is counterintuitively lower. Due to disk space constraints in the test-
ing environment, the algorithm was adjusted to take fewer check-
points as the size of the graph increased.

4.3 MySQL Bug 12228 — Atomicity Violation

In order to reproduce MySQL bug 12228, a stress test scenario
was set in which ten threads issue concurrent client requests to the
MySQL daemon. In our experience, this bug occurs approximately
1 time in 1000 client connections. This bug was reproduced using
MySQL version 5.0.10.



The buggy thread interleaving and the series of requests issued
by each client are presented in Figure 2. The bug occurs when
one client, “client 1” removes the stored procedure sp 2(), while
a second client, “client 2” is executing it. The memory used by
procedure sp 2() is freed when client 1 removes it. While client 1
removes the procedure, client 2 attempts to access a memory region
associated with the now non-existent procedure. Client 2 is now
operating on unclaimed memory. The MySQL daemon is sent a
SIGSEGV.

This bug was diagnosed in the following way: the user runs
the MySQL daemon under this system and executes the stress test
scenario presented in Figure 2. The debug session is presented
below. Some of the output returned by gdb was stripped for clarity.

(gdb) break main
(gdb) run
Breakpoint 1, at main().
(gdb) checkpoint
(gdb) continue
Program received signal SIGSEGV.
in sp_cache_routines_and_table_aux at sp.cc:1340
sp_name name(rt->key.str, rt->key.length)
(gdb) print rt
$1 = 0x1e214a0
(gdb) print *rt
$2 = 1702125600
(gdb) reverse-watch *(0x1e214a0) == 1702125600
’reverse-watch’ took 406.24 seconds.
(gdb) list
344 memcpy(pos,str,len);

When the SIGSEGV is hit, gdb prints the file and line number
that triggered the SIGSEGV. The user prints the address and value
of the variable rt. The value of rt is “bad”, since dereferencing it
triggered the SIGSEGV. From there it is a simple conceptual prob-
lem: at what point did the value of this variable rt change to the
“bad” value? Reverse expression watchpoint (or reverse-watch
as abbreviated above) is used to answer this question. In the case of
this bug, an unchecked memcpy() call was overwriting the region
of memory containing the rt pointer, leading to the SIGSEGV.

The time for reverse expression watchpoint, as well as other
useful information, are shown in Table 2.

4.4 MySQL Bug 42419 — Data Race

In order to reproduce MySQL bug 42419, two client threads which
issue requests to the MySQL daemon (version 5.0.67) were used, as

drop procedure if exists sp_2;
drop procedure if exists sp_1;
create procedure sp_2 (in var2 decimal)

set var2 = 808.16; 
create procedure sp_1()

call sp_2(var1)
declare var1 decimal default 999.99;
select var1

call sp_1()

dispach_command("drop procedure sp_2") { dispatch_command("call sp_1()") {
...
sp_cache_routines_and_add_tables() {

...
Sroutine_hash_entry *rt=start;
/* the address of rt is 0x2639db0 */

...
db_find_routine()
/* search for sp_2 */
...
yyparse() {

...
p = malloc();
/* the address of p is 0x2639db0 */
memcpy (p, "...", ...)
...

rt = rt−>next /* SIGSEGV */

}
}

}

Client 2Client 1

...
db_find_routine()
...
free(0x2639db0)
...

}

(*)

Figure 2. MySQL Bug 12228: the thread interleaving that causes
the MySQL daemon to crash with SIGSEGV; (*) the sequence of
instructions executed by each thread, in pseudo-SQL

Rev-Watch Ckpt Rstr Ckpt Rstr Eval expr
Bug Number (s) (#) (#) (s) (s) (s)
MySQL 12228 406.24 4 60 3.45 24.49 1.69
MySQL 42419 161.68 6 55 6.17 22.59 1.06
pbzip2 29.22 1 17 0.99 5.60 0.41

Table 2. The bugs and the time it took to diagnose them, by per-
forming reverse expression watchpoint (in seconds). The number of
checkpoints and restarts and the total times for checkpoint, restart
and evaluation of the expression (in seconds) are also shown.

indicated in the bug report. The debug session is shown next (some
of the output returned by gdb was removed for clarity):

(gdb) break main
(gdb) run
Breakpoint 1, at main().
(gdb) checkpoint
(gdb) continue
Program received signal SIGABRT
at sql_select.cc:11958.
if (ref_item && ref_item->eq(right_item, 1))
(gdb) where
at sql_select.cc:12097
(gdb) print ref_item
$1 = 0x24b9750
(gdb) print table->reginfo.join_tab->ref.items[part]
$2 = 0x24b9750
(gdb) print &table->reginfo.join_tab->ref.items[part]
$3 = (class Item **) 0x24db518
(gdb) reverse-watch *0x24db518 == 0x24b9750

The crash (receiving a SIGABRT) was caused by the fact that
the object ref item did not contain a definition of the eq()
function. In gdb, the value of ref item seemed to be reason-
able and thus the problem was not as immediately obvious as
dereferencing a garbage value, for example. Then we looked
at how the pointer ref item was being created. The pointer
ref item was returned from a function part of refkey().
Therefore, we printed the address and value of the pointer re-
turned by part of refkey(). reverse-watch takes us to the
place where the pointer ref item was assigned the incorrect value
(i.e. the current value). This happens during a call to the function
make join statistics():sql select.cc:5295 at instruction
j->ref.items[i]=keyuse->val.

We then step through make join statistics() with next
commands as in a regular GDB session and watch MySQL en-
counter a “fatal error.” As part of the error handling, the thread frees
the memory pointed to by &ref item. But, crucially, it does not re-
move it from j->ref.items[]. When a subsequent thread comes
along to process these items, it sees the old entry, and attempts to
dereference a pointer to a memory region that has previously been
freed. The time for reverse expression watchpoint, as well as other
useful information, are shown in Table 2.

4.5 Pbzip2 — Order Violation

pbzip2 decompresses an archive by spawning consumer threads
which perform the decompression. Another thread (the output
thread) is spawned which writes the decompressed data to a file.
Only the output thread is joined by the main thread. Therefore, it
might happen that when the main thread tries to free the resources,
some of the consumer threads have not exited yet. A segmenta-
tion fault is received in this case, caused by a consumer thread
attempting to dereference the NULL pointer. The time for reverse
expression watchpoint is shown in Table 2. The debugging session
is presented below:

(gdb) break pbzip2.cpp:1018



(gdb) run
Breakpoint 1, at pbzip2.cpp:1018.
(gdb) checkpoint
(gdb) continue
Program received signal SIGSEGV at
pthread_mutex_unlock.c:290.
(gdb) backtrace
#4 consumer (q=0x60cfb0) at pbzip2.cpp:898
...
(gdb) frame 4
(gdb) print fifo->mut
$1 = (pthread_mutex_t *) 0x0
(gdb) p &fifo->mut
$2 = (pthread_mutex_t **) 0x60cfe0
(gdb) reverse-watch *0x60cfe0 == 0

5. Related Work

5.1 Reverse Expression Watchpoint

Both IGOR [9] and the work by Boothe [5] support a primitive
type of reverse expression watchpoint for monotonically varying
single variables only. It is detected when the variable value exceeds
a threshold, but there is no support for decomposing histories.
The work of King et al. [11] is similar, but limited to going back
to the last time a variable was modified, by employing virtual
machine snapshots and event logging. Whyline [12] allows the
programmer to ask “why” or “why not” questions about program
execution, but does not allow specification of general expressions.
The authors also state it is unintended for debugging program
executions exceeding several minutes.

The idea of a general reverse expression watchpoint was first
developed by the authors in a technical report [27]. Precise algo-
rithms for decomposing debugging histories (continue → next →
step) were then developed to produce a robust algorithm [28].

5.2 Deterministic Replay

Deterministic replay is a prerequisite for any reversible debug-
ger that wants to support multithreaded applications. There are
many systems that implement deterministic replay in the literature,
through a variety of mechanisms: [1, 4, 7–9, 13, 14, 16, 18, 19, 21,
22, 24–26, 29–31]. There are also many systems whose goal is to
make the initial execution deterministic [3, 6, 17, 20, 23].

6. Conclusion

A reverse expression watchpoint algorithm has been presented for
automating a binary search through a process lifetime. The end
user must determine an expression that is associated with the bug
being diagnosed. Using this expression, the system places the user
in GDB just when the expression indicates a bug.
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