
CS7880: Rigorous Approaches to Data Privacy, Spring 2017
POTW #2 Solution

Instructor: Jonathan Ullman

Problem 1 (Noisy Histograms). .
In this problem you will see how to accurately answer exponentially many statistical queries

on a dataset x = (x1, . . . ,xn) ∈ X n when |X | is reasonably small. The histogram representation of
a dataset x is a |X |-dimensional vector where the j-th entry is the fraction of x’s rows that are
equal to j.

h(x) :=
(
h1(x), . . . ,h|X |(x)

)
hj(x) := 1

n |{i ∈ [n] | xi = j}| .

Consider the following noisy histogram algorithm: output

ĥ(x) :=
(
h1(x) +Z1, . . . ,h|X |(x) +Z|X |

)
where every Zj ∼N (0,σ2) is an independent Gaussian.

(a) For what value of σ does this algorithm ensure (ε,δ)-differential privacy? Justify your
answer using results we’ve seen (you don’t need to rederive any results).

To achieve differential privacy using Gaussian noise, it suffices to add noise N (0,σ2) to
each coordinate where

σ =O

GS2(h) ·
√

log(1/δ)
ε


where GS2(h) is the global `2-sensitivity of the function h. If x,x′ differ on one row, then h
can go down by 1/n in one coordinate and up in another coordinate, so

max
x∼x′
‖h(x)− h(x′)‖2 ≤

2
n
.

Thus it suffices to set σ =O
( log(1/δ)

εn

)
.

(b) Consider a statistical query q(x) = 1
n

∑n
i=1φ(xi) for some φ : X → [0,1]. Suppose you

are given a (possibly noisy) histogram h. How would you estimate q(x) using h? That
is, design a function est(h,q) such that for every statistical query q and every dataset x,
est(h(x),q) = q(x).

By definition we have

q(x) =
1
n

n∑
i=1

φ(xi) =
∑
j∈X

φ(j) ·

1
n

∑
i:xi=j

1

 =
∑
j∈X

φ(j) · h(x)j .

Now if we define the vector ~q = (φ(1), . . . ,φ(X)), we can write q(x) = 〈~q,h(x)〉. Thus we
define est(h(x),q) = 〈h(x),~q〉.
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(c) Let Q = {q1,q2, . . . } be a set of statistical queries. Given a noisy histogram ĥ(x), how
accurately can you estimate the answers to every q ∈ Q? Show that for some α as small as
possible,

∀x,Q P

[
max
q∈Q

∣∣∣Est(ĥ(x),q)− q(x)
∣∣∣ ≤ α] ≥ .99,

where α is a function of n, |X |, |Q|, ε,δ, and the probability is taken over the random
Gaussian noise added to ensure privacy.1

Consider any query q. By our definition from part (b), we have

est(ĥ,q) = 〈ĥ,~q〉 =
∑
j∈X

ĥ(x)j ·φ(j) =
∑
j∈X

(h(x)j +Zj ) ·φ(j) = q(x) +
∑
j∈X

Zj ·φ(j).

Since every Zj is an independent sample from N (0,σ2), the distribution of
∑
j∈X Zj ·φ(j) is

precisely N (0,ψ2) for ψ2 =
∑
j∈X σ

2φ(j)2 ≤ σ2|X | =O
( |X | log(1/δ)

ε2n2

)
.

The Gaussian distribution has the property that if Y ∼ N (0,ψ2), then for some c > 0 (I
think c = 1)

P

[
|Y | ≤ cψ

√
ln(1/β)

]
≤ 2β.

Thus, for any single query q ∈Q we have

P

|est(ĥ,q)− q(x)| > O
√|X | ln(1/δ) ln(1/β)

εn

 ≤ P

[
|est(ĥ,q)− q(x)| > cψ

√
ln(1/β)

]
≤ 2β

By taking a union bound over all queries q ∈Q, we have

P

∃q ∈Q |est(ĥ,q)− q(x)| > O
√|X | ln(1/δ) ln(1/β)

εn

 ≤ 2β|Q|.

Now setting β = 1
200|Q| gives

P

∃q ∈Q |est(ĥ,q)− q(x)| > O
√|X | ln(1/δ) ln |Q|

εn

 ≤ 1
100

,

as desired.

(d) For what values of |X | does this algorithm provide a non-trivial accuracy guarantee? For
what parameters does this algorithm improve on the approach of adding independent
Gaussian or Laplacian noise to each query?

Since the answer to a statistical query is in [0,1], to obtain non-trivial accuracy we need
the error to be� 1. Comparing to the error bound from part (c), we see that non-trivial
error is possible only when |X | � ε2n2

log(1/δ) . For reasonable choices of the privacy parameters

ε = 1/10,δ = 1/n2, we get non-trivial error when |X | � n2

log(n) .

1Hint: A very useful fact about Gaussians is that if Z1 ∼N (µ1,σ
2
1 ) and Z2 ∼N (µ2,σ

2
2 ) are independent Gaussians,

then their sum Z1 +Z2 ∼N (µ1 +µ2,σ
2
1 + σ2

2 ) is also a Gaussian, and the means and variances add up.
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If we compare to Gaussian noise, which requires error Õ
(√
|Q| ln(1/δ)
εn

)
, we see that the noisy

histogram does better when |Q| � |X |, and does much worse otherwise. So, specifically,
this algorithm is an improvement of Gaussian noise roughly when the universe is small
and the number of queries is large, i.e. |X | �min{|Q|,n2}.
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