CS7880: Rigorous Approaches to Data Privacy, Spring 2017
POTW #2 Solution

Instructor: Jonathan Ullman

Problem 1 (Noisy Histograms).

In this problem you will see how to accurately answer exponentially many statistical queries
on a dataset x = (x1,...,x,) € X" when |X| is reasonably small. The histogram representation of
a dataset x is a |X|-dimensional vector where the j-th entry is the fraction of x’s rows that are
equal to j.

h(x):= (hy(x),- o g(x)  hj(x) = 11l € [n] |2 = ).

Consider the following noisy histogram algorithm: output
h(x) = (hy () + Z1, . i (%) + Z121)

where every Z; ~ N (0, 0?) is an independent Gaussian.

(a) For what value of ¢ does this algorithm ensure (¢, 0)-differential privacy? Justify your
answer using results we’ve seen (you don’t need to rederive any results).

To achieve differential privacy using Gaussian noise, it suffices to add noise N(0,0?) to

each coordinate where
o O[Gsz(h) - \/log(l/é)]
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where GS;(h) is the global £;-sensitivity of the function h. If x, x” differ on one row, then h
can go down by 1/n in one coordinate and up in another coordinate, so
, 2
max|Jh(x) — h(x')> < =
X~x n

Thus it suffices to set o = O(k’g(l/é)).
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(b) Consider a statistical query g(x) = %Z?:] ¢(x;) for some ¢ : ¥ — [0,1]. Suppose you
are given a (possibly noisy) histogram h. How would you estimate g(x) using h? That

is, design a function est(h, q) such that for every statistical query g and every dataset x,
est(h(x),q) = q(x).
By definition we have
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Now if we define the vector 7 = (¢(1),...,$(X)), we can write g(x) = (7, h(x)). Thus we
define est(h(x),q) = (h(x), q).



(c) Let Q ={q1,9,...} be a set of statistical queries. Given a noisy histogram hi(x), how
accurately can you estimate the answers to every g € Q? Show that for some a as small as
possible,

Vx,Q IP|max|Est(f(x),q) - q(x)| < a| > .99,

q€Q

where a is a function of n,|X|,|Q|,¢,6, and the probability is taken over the random
Gaussian noise added to ensure privacy.!

Consider any query gq. By our definition from part (b), we have

est(h,q) = (@)= ) h(x);-d() =) (h(x);+Z)- () =)+ ) _Z;-$(j)
jeX jeX jeX
Since every Z; is an independent sample from N (0, 02), the distribution of YiexZj-¢(j)is

precisely N(0,9?) for ¢? = Yiex o2P(j)* < o?|X| = O(IXllog(l/é)).

£2n?

The Gaussian distribution has the property that if Y ~ N(0,¢?), then for some ¢ > 0 (I

think ¢ = 1)
P[lY| < cp/in(1/8)] < 28.

Thus, for any single query g € Q we have

\/|X|ln(1/6)ln(1//3))

P < H’[Iest(ﬁ,q) —q(x)| > c1p\/ln(1/ﬁ)] <2p
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By taking a union bound over all queries g € Q, we have

VIXIIn(1/6)In(1/B)
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Now setting f = WIQI gives

I

IeQ lestlh q)-q)l> O[JIXIInu/é)lmqﬂ 1

En ~ 1007
as desired.

(d) For what values of |X| does this algorithm provide a non-trivial accuracy guarantee? For
what parameters does this algorithm improve on the approach of adding independent
Gaussian or Laplacian noise to each query?

Since the answer to a statistical query is in [0, 1], to obtain non-trivial accuracy we need

the error to be <« 1. Comparing to the error bound from part (c), we see that non-trivial
2,2

. . e2n . .

error is possible only when [X| < Tog(1/5)" For reasonable choices of the privacy parameters
— — 2 R n?

e =1/10,6 = 1/n*, we get non-trivial error when |X| <« Tog()"

IHint: A very useful fact about Gaussians is that if Z; ~ N(yl,af) and Z, ~ N(/lz,o’zz) are independent Gaussians,

then their sum Zq + Zy ~ N(p1 + po, 012 + 022) is also a Gaussian, and the means and variances add up.
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If we compare to Gaussian noise, which requires error O - ), we see that the noisy

histogram does better when |Q| > |X|, and does much worse otherwise. So, specifically,
this algorithm is an improvement of Gaussian noise roughly when the universe is small
and the number of queries is large, i.e. |X| < min{|Q|, n?}.



