
CS7880: Rigorous Approaches to Data Privacy, Spring 2017
POTW #1

Instructor: Jonathan Ullman

Problem 1 (Random Subsampling). .
Given a dataset x ∈ X n, and m ∈ {0,1, . . . ,n}, a random m-subsample of x is a new (random)

dataset x′ ∈ Xm formed by keeping a random subset of m rows from x and throwing out the
remaining n−m rows.

(a) Show that for every n ∈N, |X | ≥ 2, m ∈ {1, . . . ,n}, ε > 0, and δ < m/n, the algorithm A(x)
that outputs a random m-subsample of x ∈ X n is not (ε,δ)-differentially private.

(b) Although random subsamples do not ensure differential privacy on their own, a random
subsample does have the effect of “amplifying” differential privacy. Let A : Xm→R be any
algorithm. We define the algorithm A′(x) : X n→R as follows: choose x′ to be a random
m-subsample of x, then output A(x′).

Prove that if A is (ε,δ)-differentially private, then A′ is ( (eε−1)m
n , δmn )-differentially private.

Thus, if we have an algorithm with the relatively weak guarantee of 1-differential privacy,
we can get an algorithm with ε-differential privacy by using a random subsample of a
dataset that is larger by a factor of 1/(eε − 1) =O(1/ε).

(c) (Optional.) We can also show that some sort of converse is true—for many tasks achieving
(ε,δ)-differential privacy requires Ω(1/ε) more samples than achieving (1,δ)-differential
privacy. Let q(x) = (q1(x), . . . , qk(x)) be a collection of statistical queries.1 Assume that there
is no (1,δ)-differentially private algorithm A : X n→R

k , such that

∀x ∈ X n E [‖A(x)−q(x)‖∞] ≤ 1/100.

Show that for some n′ = Ω(n/ε), there is no (ε,εδ/100)-differentially private algorithm
A : X n′ →R

k such that

∀x′ ∈ X n
′

E

[
‖A(x′)−q(x′)‖∞

]
≤ 1/100.

Solution 1. .

(a) Let X = {0,1} and consider the two datasets x = 0n and x′ = 10n−1. Now define S = {z ∈
{0,1}m | z , 0m}. Then for every ε and every δ < m/n

eεPr[A(x) ∈ S] + δ = δ <
m
n

= Pr[A(x′) ∈ S],

contradicting (ε,δ)-dp of M.

1Recall that a statistical query q(x) takes a dataset x = (x1,x2, . . . ) ∈ X ∗ of arbitrary size, and outputs Exi∼x[φ(xi )]
for some function φ : X → [0,1].
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(b) We’ll use T ⊆ {1, . . . ,n} to denote the identities of the m-subsampled rows (i.e. their row
number, not their actual contents). Note that T is a random variable, and that the
randomness of A′ includes both the randomness of the sample T and the random coins of
A. Let x ∼ x′ be adjacent databases and assume that x and x′ differ only on some row t. Let
xT (or x′T ) be a subsample from x (or x′) containing the rows in T . Let S be an arbitrary
subset of the range of A′. For convenience, define p =m/n

To show (p(eε − 1),pδ)-dp, we have to bound the ratio

Pr[A′(x) ∈ S]− pδ
Pr[A′(x′) ∈ S]

=
pPr[A(xT ) ∈ S | i ∈ T ] + (1− p)Pr[A(xT ) ∈ S | i < T ]− pδ
pPr[A(x′T ) ∈ S | i ∈ T ] + (1− p)Pr[A(x′T ) ∈ S | i < T ]

by ep(eε−1). For convenience, define the quantities

C = Pr[A(xT ) ∈ S | i ∈ T ]

C′ = Pr[A(x′T ) ∈ S | i ∈ T ]

D = Pr[A(xT ) ∈ S | i < T ] = Pr[A(x′T ) ∈ S | i < T ]

We can rewrite the ratio as

Pr[A′(x) ∈ S]
Pr[A′(x′) ∈ S]

=
pC + (1− p)D − pδ
pC′ + (1− p)D

Now we use the fact that, by (ε,δ)-dp, A ≤ eεmin{C′ ,D}+ δ. The rest is a calculation:

pC + (1− p)D − pδ
≤ p(eεmin{C′ ,D}+ δ) + (1− p)D − pδ
≤ p(min{C′ ,D}+ (eε − 1)min{C′ ,D}) + δ) + (1− p)D − pδ
≤ p(min{C′ ,D}+ (eε − 1)(pC′ + (1− p)D) + δ) + (1− p)D − pδ

(Because min{x,y} ≤ αx+ (1−α)y for every 0 ≤ α ≤ 1)

≤ p(C′ + (eε − 1)(pC′ + (1− p)D) + δ) + (1− p)D − pδ (Because min{x,y} ≤ x)

≤ p(C′ + (eε − 1)(pC′ + (1− p)D)) + (1− p)D

≤ (pC′ + (1− p)D) + (p(eε − 1))(pC′ + (1− p)D)

≤ (1 + p(eε − 1))(pC′ + (1− p)D)

≤ ep(eε−1)(pC′ + (1− p)D)

So we’ve succeeded in bounding the necessary ratio of probabilities. Note, if you are willing
to settle for (O(εm/n),O(δm/n))-dp the calculation is much simpler. All this algebra is
mostly just to get the tight bound.

(c) Assume for the sake of contradiction that there is an (ε,δ)-dp algorithm A′ : X n′ → R
k

such that
∀x′ ∈ X n

′
E

[
‖A′(x′)−q(x′)‖∞

]
≤ 1/100.

where n′ ≈ n/ε will be chosen later. We will construct a (1, eδ/ε)-dp algorithm A : X n→R
k

that satisfies
∀x ∈ X n E [‖A(x)−q(x)‖∞] ≤ 1/100,

which violates the assumption.
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Let n = n′/m for m = 1/ε. We will simply assume that n′/m is an integer. Given a dataset
x ∈ X n, we construct the dataset x⊗m ∈ X n

′
by making m identical copies of each row of x.

Now, two observations:

• If x,y are any two datasets in X n that differ on at most one row, then the resulting
datasets x⊗m, y⊗m are datasets in X n′ that differ on at most m rows. Therefore, if we
define the algorithm A : Xm→R

k to be A(x) = A′(x⊗m), then the resulting algorithm
A satisfies (ε′ ,δ′)-differential privacy for

ε′ =mε = 1 δ′ =meεmδ = eδ/ε

by the “group privacy” property of differential privacy.

• Since statistical queries are linear, for every q, we have q(x) = q(x⊗m). Therefore, by
assumption

∀x ∈ X n E [‖A(x)−q(x)‖∞] ≤ 1/100.

However, combining these two facts contradicts our assumption that no such (1, eδ/ε)-
differentially private algorithm A : X n→R

k exists.
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