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Abstract

Privacy-preserving statistical data analysis addresses the general ques-

tion of protecting privacy when publicly releasing information about a

sensitive dataset. A privacy attack takes seemingly innocuous released

information and uses it to discern the private details of individuals,

thus demonstrating that such information compromises privacy. For

example, “re-identification attacks” have shown that it is easy to link

supposedly de-identified records to the identity of the individual con-

cerned. This survey focuses on attacking aggregate data, such as statis-

tics about how many individuals have a certain disease, genetic trait,

or combination thereof.

We consider two types of attacks: Reconstruction attacks, which ap-

proximately determine a sensitive feature of all the individuals covered

by the dataset, and tracing attacks, which determine whether or not a

target individual’s data is included in the dataset. We also discuss tech-

niques from the differential privacy literature for releasing approximate

aggregate statistics whilst provably thwarting any privacy attack.
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1. Introduction

Beginning in the mid-2000’s, the field of privacy-preserving statistical analysis of data has

witnessed an influx of ideas developed some two decades earlier in the cryptography com-

munity. These include formalizing the notion of a privacy adversary, the introduction

of a meaningful measure of privacy loss, the development of general and robust defini-

tions of privacy, development of a theory of how privacy loss compounds over reapeated

privacy-preserving data access (a process known as composition), the design of basic privacy-

preserving computational building blocks, techniques for combining these basic building

blocks in creative ways to obtain privacy-preserving algorithms for sophisticated analytical

tasks, and an investigation of the limits of what can be achieved while preserving privacy.

Privacy attacks, that is, algorithms for the privacy adversary to execute, are central to estab-

lishing fundamental limits of what is possible; they also play a seminal role in formulating

achievable privacy goals. Privacy attacks are the subject of this article.

We will focus on the simple scenario in which there is a dataset x containing sensitive

information, and the goal is to release to the public statistics about the dataset. These

statistics may be fixed in advance, or may be chosen by the analyst, who queries the

database. Speaking intuitively (because we have not defined privacy), the goal in privacy-

preserving data analysis is to protect the privacy of the individual records in the dataset,

even if the analyst maliciously chooses queries according to an attack strategy designed

to compromise privacy. We restrict our discussion to a single analyst, as a collection of

colluding analysts can be modeled by a single analyst.

To study a class of attacks we need to characterize the notion of success for the attacker,

that is, what it means for the adversary to “win”. This can make sense even before settling

on a formal definition of privacy. For example, we can set a ridiculously low threshold

for privacy, or, equivalently, a high threshold for what constitutes a privacy break, such

as “The adversary can correctly guess the sickle cell status of 99.999% of the members

in the database.” Most people would agree that success of this type is inconsistent with

any reasonable notion of privacy, so an attack that achieves this goal on arbitrary datasets

ostensibly protected by a given technique must be viewed as a repudiation of the protection
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technique. By the same token, if the protection technique provably satisfies a candidate

definition of privacy, then such an attack refutes the value of the definition.

This remainder of this article is organized as follows. We begin with a discussion of three

adversarial goals: re-identification; reconstruction, which is precisely the kind of 99.999%

correct guessing just described; and tracing, in which the adversary determines whether a

given individual is, or is not, present in a given dataset. Tracing can be significant if, for

example, the dataset comprises medical records of participants in a pharmaceutical trial,

or patient records from an abortion clinic. We will also present some basic definitions

that will be used throughout. Reconstruction and tracing attacks are then surveyed in

Sections 2 and 3, respectively. Finally, Section 4 discusses differential privacy, a definition

of privacy tailored to statistical data analysis, and highlights a variant that achieves the

limits established by the attacks.1

1.1. Adversarial Goals and Resources

To achieve different adversarial goals may require different resources, so to fully specify an

attack we must also specify the resources to which the adversary has access. Examples

of resources include computational capabilities and additional, or auxiliary, information

beyond what is supplied by interacting with the dataset. Examples of useful auxiliary

information might be personal details about an individual, known, for example, to a sib-

ling or co-worker, such as the approximate dates on which one has watched a few movies

on Netflix (Narayanan & Shmatikov 2008), and outputs from a product recommendation

system (Calandrino et al. 2011).

First, we formalize the computational model for interacting with a dataset. Roughly

speaking, the raw data remain hidden from the data analyst – who is also our adversary.

Information is obtained by posing a “query”, which is simply a function mapping datasets

to a range, such as the real numbers, and receiving a response in the range. Note that the

queries may be specified ahead of time, for example, when a government agency decides

on a set of tables to release, or may be specified implicitly, for example, when a release of

synthetic data promises to preserve certain statistics of the original data. Regardless, the

algorithm that provides the response is called a “mechanism”. This survey focuses on linear

queries such as, for example, “What fraction of the rows in the dataset satisfy property P?”

(see Definition 4 below).

Definition 1 (Mechanism). A mechanism is a randomized algorithm, often denoted M,

mapping datasets to an arbitrary set of outputs. Let x be an arbitrary dataset. Because M
is randomized, M(x) yields a probability distribution on the range of M.

As noted above, databases will be collections of rows, and the mechanisms will provide

approximate answers to linear queries over the database. Each database row will correspond

to the data of a single individual.2 Thus, in a database containing information about

physical attributes of a collection of individuals, a row might hold the height, weight, and

age of a single individual, a query might ask, “What fraction of the members of the dataset

are over six feet tall?”, and the mechanism might compute the true answer to the query,

1While differential privacy is a worst-case notion of privacy, it is interesting that our attacks
require no strong assumptions either about the data or the information available to the adversary.

2In fact, the attacks we discuss are robust to a fair amount of noise in the data.
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and produce as output the sum of the true answer and some random noise. In this survey

the attacker’s access to the database will be exclusively through these mechanisms.

Re-Identification / De-Anonymization. The technical literature and popular press fre-

quently speak about re-identifying data. Such references implicitly assume an approach to

privacy protection in which individual data records, containing explicit “identifying” infor-

mation, are putatively “de-identified” or “anonymized”. “Re-identification” refers to revers-

ing this step, tracing an individual record back to its human source. While re-identification

may seem difficult in vitro, in real life anyone looking at supposedly de-identified data who

is also in possession of auxiliary information about a member of the dataset may well be in

a position to re-identify. By linking public, not anonymous records, such as voter registra-

tion records, with de-identified data, strangers can do this too (Sweeney 1997; Narayanan

& Shmatikov 2008). Indeed, the richer the dataset, the greater the set of possibilities for

useful auxiliary information, and a host of results suggest that “de-identified data isn’t”,

meaning, it is either not de-identified or no longer can serve as data. In the words of the

President’s Council of Advisors on Science and Technology (2014),

“Anonymization of a data record might seem easy to implement. Unfortunately,

it is increasingly easy to defeat anonymization by the very techniques that are

being developed for many legitimate applications of big data”.

For this reason we will focus herein on the privacy risks posed by the release of statistics.

Reconstruction. Reconstruction is most easily understood by thinking of the database as

a collection of rows, one per individual. Imagine that each row contains lots of non-private

identifying information and a secret bit, one per individual, for example, indicating whether

or not the individual has the gene for Alzheimer’s disease. The goal in a reconstruction

attack is to determine the secret bits for nearly all individuals in the dataset.

Definition 2 (Reconstruction). Consider an n-row database in which each row contains

a unique identifier and a single bit, possibly with additional information. For example, the

identifiers might be the numbers 1, 2, . . . , n and the bit might be the sickle cell status. Let b

be the column vector of the bits. The reconstruction goal is to produce a vector c of n bits

that agrees with b in all but o(n) locations.

A few remarks are in order. First, the identifier is an abstraction: individuals could be

identified, for example, by a collection of attributes. There is no need for the adversary

waging a reconstruction attack to know an ordering on the rows. Rather, the adversary will

learn that the individual with a given set of attributes has a given sickle cell status. At the

time of the attack, the attacker might not know “who” actually has this set of attributes.

This is scant comfort, however, as the attacker might learn such information at a later date.

Second, reconstruction attacks can be launched against a subset of the rows of a dataset,

for example, on the members of an extended family, by proper formulation of the linear

query, eg, “What fraction of the rows in the dataset correspond to members of family F

that are over six feet tall?”

There is by now a rich literature showing that any mechanism providing overly accurate

answers to too many linear queries is blatantly non-private, meaning that it succumbs to

a reconstruction attack. Indeed, there is a single attack strategy that succeeds against all

such overly accurate answering of too many queries. Here “too many” is quite small, e.g.,
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only n queries, and “overly accurate” means having fractional error on the order of o(1/
√
n).

This literature is the subject of Section 2.

Tracing. Reconstruction represents spectacular success on the part of the adversary, or,

conversely, a spectacular failure of the putative privacy mechanisms. Tracing – that is,

determining whether or not a specific individual is a member of a given dataset – is a much

more modest3 adversarial goal4.

Tracing entered the popular consciousness when a group of researchers showed how to

use 1-way marginals, specifically, allele frequency statistics in a genome-wide association

study (GWAS), together with the DNA of a target individual and allele frequency statistics

for the general population, to determine the target’s presence or absence in the study Homer

et al. (2008). In response, the US National Institutes of Health and the Wellcome Trust

changed the access policy to statistics of this type in the studies they fund. Section 3

surveys results in tracing.

The Attack that Isn’t: Correlation Detection. We are interested in statistical analysis

of data, for example, learning facts about a population such as “smoking causes cancer.”

Learning the correlation between smoking and cancer may reveal sensitive medical infor-

mation about an individual known to smoke. However, we do not view this as a privacy

compromise, as facts of this type can be learned even if the given individual is not in the

dataset. These facts about the population as a whole are precisely what we seek to learn

in statistical data analysis. A number of works in the literature discuss “attacks” that in

fact consist of correlation detection. We discuss the distinction further in Section 4.

Differential Privacy. Differential privacy ensures that even a highly informed adversary,

knowing a dataset x and an additional data record r, and interacting with a dataset y ∈
{x ∪ {r}, x} through a differentially private mechanism, cannot determine whether y = x

or y = x ∪ {r} (see Section 4 for details). Thus, differential privacy by definition prevents

tracing; it also protects against reconstruction and re-identification. At the same time it

permits the analyst to learn precisely the type of statistical correlations just discussed.

Surprisingly, this very strong guarantee comes at no extra cost in accuracy, in the

following sense: the bounds shown in Section 4 for achieving differential privacy match the

limits imposed by reconstruction and tracing attacks in Sections 2 and 3.

2. Reconstruction Attacks

Suppose we have a data set of n individuals. For each individual i, we have information

(xi, si). There is one bit, denoted si, that is considered sensitive and unknown a priori

to an attacker (perhaps it indicates i’s political party affiliation, diabetes status, or lack of

interest in Bayesian decision theory). The remainder of the record, denoted xi, is public and

easily available—for example, the demographic information visible on i’s Facebook account.

3There are settings in which tracing attacks are possible, but reconstruction attacks are provably
imposible.

4The name has its roots in the close connection to the traitor tracing problem in cryptogra-
phy (Chor et al. 1994); see Dwork et al. (2009).
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A well-intentioned curator might want to release various statistics about how the secret

vector s = (s1, ..., sn) relates to the public variables x. For example, if each xi is a list of

d binary attributes, xi = (xi(1), ..., xi(d)) ∈ {0, 1}d, then one might want to release, for

example:

1. the joint marginal distribution of si with each of the attributes (that is, for each j, a

2 × 2 contingency table indicating how many records have each of the four possible

combinations for the pair si, xi(j));

2. the joint marginal of si together with every subset of k public attributes, for some

integer k > 1 (that is, a collection of
(
d
k

)
contingency tables, each with 2k+1 entries).

3. the coefficients of a logistic regression model fit to predict si from xi;

Under what conditions do such releases allow an attacker, who knows the xi’s and the

released statistics, to reconstruct all or most of the vector s? What if the curator releases

only approximate statistics? These questions are addressed by reconstruction attacks, as

introduced by Dinur & Nissim (2003) and developed by a large body of subsequent work.

Let M the denote the mechanism used by the curator to generate a vector of released

statistics q̂ =M(x, s).

Definition 3. A mechanism M is blatantly nonprivate for a public data set x if there is

an attack A such that for every vector s, we have Ham(s, ŝ) ≤ n
10

, where ŝ = A(x,M(x, s)).

Here Ham(s, ŝ) denotes the Hamming distance between two vectors (that is, the number of

positions in which they differ).

Thus, as discussed informally in the Introduction, a mechanism is blatantly nonprivate

if it allows an attacker to reconstruct almost all secret bits si. There is nothing special about

reconstruction of 9/10 of the entries of s; we could have used any other constant close to 1.

When we say that a class (or set or collection) of mechanisms is blatantly nonprivate, we

mean that there exists a single attack algorithm A that works against every mechanism in

the class.

Note that since the attack works for every secret vector s, it cannot rely on detecting

underlying statistical correlations between x and s. It is not an instance of “correlation

detection” (see the end of Section 1),5 but rather an attack learning information highly

specific to this particular data set.

2.1. Reconstruction from Linear Statistics

The releases discussed above all share a particular structure, namely that the exact statistics

are linear functions of the secret vector s: for each one, we can interpret the released

statistics q̂ as an approximation to Bs for some matrix B, whose rows correspond to queries.

For example, releasing the pairwise marginals of s with each public column (the setting in

Example 1, above) reveals, in particular, Bs where B = xᵀ and x is the matrix of public

values. Releasing (k + 1)-way contingency tables (2, above) reveals Bs, where the rows

of B consist of all
(
d
k

)
entry-wise products of subsets of k columns of x. Less obviously,

releasing the logistic regression coefficients also corresponds to a linear release, by viewing

5In particular, this means that reconstruction attacks are fundamentally different from the sta-
tistical literature on constructing good predictors from aggregate statistics and “ecological” corre-
lations, as in the problem of learning from label proportions (see, e.g., Quadrianto et al. (2009) et
sequelae).
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the released coefficients as a vector where the gradient of the logistic loss function, summed

over all pairs (xi, si), is 0d.

In all these settings, the task of the attacker A is to solve a noisy system of linear

equations. To allow comparing results, we’ll normalize the matrix B so that entries lie in

[0, 1], and divide the result by n to obtain an answer in [0, 1].

Definition 4. A fractional linear query is specified by a vector b ∈ [0, 1]n; the exact answer

is qb(s) = 1
n
bᵀs (which lies in [0, 1] as long as s is binary). An answer q̂b is α-accurate if

|q̂b − qb(s)| ≤ α.

If a collection of fractional linear query statistics, given by the rows of a matrix B, is

answered to within some error α, we get the following problem:

Definition 5 (B-reconstruction problem). Given a matrix B and a vector q̂ = 1
n
Bs + e,

where ‖e‖∞ ≤ α and s ∈ {0, 1}n, find ŝ with Ham(ŝ, s) ≤ n
10

. The reconstruction error is

the fraction Ham(ŝ,s)
n

.

Understanding reconstruction attacks based on linear statistics thus boils down to un-

derstanding when the B-reconstruction problem can be solved, and how efficiently. The

theory of noisy linear systems is deep and well-developed, with extensive connections to

numerical analysis, geometry, compressed sensing and the theory of streaming algorithms.

In the remainder of this section, we give a taste of how it applies to reconstruction.

2.2. An Exponential Attack

An important class of linear statistics are sums of subsets of the bits of s, which correspond

to matrices B with entries in with entires in {0, 1}. As a warm-up, consider what happens

when approximations to all possible subset sums are released, that is, when B has 2n rows,

one for every vector in {0, 1}n. Since the normalised subset sums lie in [0, 1], the accuracy

parameter must be less than 1
2

for the answers to convey any information at all about s (if

α ≥ 1
2
, simply releasing 1

2
as the approximation to each normalised subset sum, regardless

of s, satisfies the accuracy requirement).

In this case, we can get nontrivial reconstruction attacks whenever the accuracy param-

eter α goes to 0 (that is, when error in answer the queries is a vanishing fraction of the

queries’ maximum possible value).

Theorem 6 (Dinur & Nissim (2003)). When B ∈ {0, 1}2
n×n has all possible rows in

{0, 1}n, there is an attack A that solves the B-reconstruction problem with reconstruction

error at most 4α (given α-accurate query answers), for every α > 0. In particular, every

mechanism that releases such statistics is blatantly nonprivate when α < 1/40.

Proof. This brute-force attack simply enumerates all vectors s̃ ∈ {0, 1}n and picks one that

agrees, within α, with all entries of q̂, meaning
∥∥q̂ − 1

n
Bs̃
∥∥
∞ ≤ α. We know such an s̃ exists

because s is a solution. Let us call it ŝ.

We now argue that Ham(ŝ,s)
n

≤ 4α. Let b0 = s, and let b1 denote the bit-wise complement

of s (that is, the n-bit vector with zeros in positions where s has ones, and ones where s has

zeros). Since ŝ agreed with q̂ in the position corresponding to b0, we have
∣∣∣ 〈b0,ŝ〉n

− q̂b0
∣∣∣ ≤ α.

Since by assumption
∣∣∣ 〈b0,s〉n

− q̂b0
∣∣∣ ≤ α, we have that s and ŝ disagree on at most 2αn

locations in which s is zero. An analogous argument shows they disagree on at most 2αn

locations in which s is one (based on their mutual agreement with q̂b1).
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Theorem 6 has important implications: there is no way to construct of a “noisy table”

that will permit highly accurate answers to be derived for computations that are not specied

at the outset, even if only a relatively small number of linear queries will ever be of interest.

Because we do not know in advance which queries will be of interest, the table must permit

the analyst to learn accurate answers to all queries. Theorem 6 tells us that any such table

providing answers to all 2n queries described in the theorem will succumb to a reconstruction

attack. As a result, when releasing information about sensitive data, we must make choices:

since no method can accurately and privately provide answers to everything, thought must

given to the use of the resource.

2.3. Attacks Requiring only Polynomially Many Queries

The attack of the previous section runs in exponential time, and requires a release of ex-

ponentially many statistics. What can we do when the number of released statistics and

the time available to the attacker are more limited? Before giving a general answer to this

question, we consider a few special cases.

Theorem 7 (Dwork & Yekhanin (2008)). There exists a matrix B ∈ {0, 1}2n×n and

an attack A running in time O(n logn) that solves the B-reconstruction problem with re-

construction error at most 16α2n when the answers are α-accurate. In particular, every

mechanism that releases such statistics is blatantly nonprivate when α < 1
13
√
n

.

A similar result is known to hold when the entries of B are chosen uniformly at random,

though the number of rows must then be larger than n by a constant factor and the attack

takes longer (about the time required to multiply two n×n matrices), and even if a certain

constant number of responses have unbounded error (Dinur & Nissim 2003; Dwork et al.

2007). Furthermore, one can interpolate smoothly through Theorems 6 and 7. The following

slightly generalizes a result of Dinur & Nissim (2003):

Theorem 8. There exists an attack A such that, if B is chosen uniformly at random in

{0, 1}m×n and 1.1n ≤ m ≤ 2n then, with high probability over the choice of B, A(B, q̂),

given any α-accurate answers q̂, solves B-reconstruction with error β = o(1) as long as

α = o
(√

log(m/n)
n

)
. In particular, there is a c > 0 such that every mechanism for answering

the queries in B with error α ≤ c
√

log(m
n

)/n is blatantly nonprivate.

The constant 1.1 in the theorem is somewhat arbitrary. It suffices that log(m/n) be

bounded below by a positive constant. We omit the proof of Theorem 8, though we outline

below a general connection to discrepancy theory on which the proof is based.

2.4. Reconstruction, Spectral Bounds and Discrepancy

Understanding linear reconstruction attacks boils down to understanding the geometric

properties of the query matrix B. We start by describing a very efficient attack, due to

Dwork & Yekhanin (2008), which provides a proof of Theorem 7. The attack relies on

bounding the eigenvalues of B.

Proof of Theorem 7. Suppose for now that n = 2` is an integer power of 2. To simplify

computations, we allow the coefficients of the query matrix to lie in {−1, 1}, instead of

{0, 1}. (One can always simulate a query with {−1, 1} coefficients using two queries with

{0, 1} coefficients, at the cost of doubling the allowed error α).
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We take B to be the Hadamard matrix H`, defined recursively by the formula H0 = (1)

and Hi+1 =

(
Hi Hi
Hi −Hi

)
. H` is a n×n matrix (since n = 2`) with entries in {±1} with the

property that H2
` = nI where I is the identity matrix. This means that the inverse of H`

is
(
1
n
H`
)
, and that the eigenvalues of H` are all ±

√
n.

Given q̂ = 1
n
H`s+ e, the attacker first multiplies by H` = ( 1

n
H`)

−1 to obtain

r = H`q̂ = H`(
1
n
H`)s+H`e = s+H`e .

Now the `2 norm of e is at most α
√
n since each of its entries has absolute value at most α.

Because the eigenvalues of H` are ±
√
n, the `2 norm of H`e is at most αn. Thus, we have

‖r − s‖22 ≤ α2n2.

In the second step, the attacker rounds each entry of r to the nearer of {0, 1} to obtain

a candidate data set ŝ ∈ {0, 1}n. We’ll use the following claim (proved below).

Claim 1. Let s ∈ {0, 1}n and r ∈ Rn be arbitrary, and let ŝ be obtained by rounding the

entries of r to {0, 1}. Then Ham(s, ŝ) ≤ 4‖r − s‖22.

The attacker’s reconstruction error β is thus Ham(ŝ, s) ≤ 4α2n. The constant claimed

in the theorem statement is slightly higher than 4, since we must take into account the

conversion from ±1 to {0, 1} in the query coefficients, and also the padding required to get

n to the next largest power of 2.

The running time of the attack, perhaps surprisingly, is less than the time it takes to

write down the matrix H`. Because of the recursive form of H`, we can use a divide-and-

conquer algorithm similar to the Fast Fourier Transform to multiply any n-entry vector

by H` in time O(n logn). (Multiplication by H` is in fact a Fourier transform over an

appropriate group.)

Finally, we prove Claim 1. Notice that ŝ and s differ only in positions j where |r(j) −
s(j)| ≥ 1

2
(and hence (r(j) − s(j))2 ≥ 1/4). The average of (r(j) − s(j))2 over all entries

is ‖r − s‖22/n. By Markov’s inequality, the fraction of squared entries over 1/4 is at most

4‖r − s‖22/n, which proves the claim.

A careful inspection of the proof of the previous theorem shows that B-reconstruction

is possible roughly whenever B ∈ [0, 1]m×n has at least n rows, and its least singular value

is bounded below by a known quantity σmin. The attack simply multiplies q̂ by nB†, where

B† is the left pseudoinverse of B, and rounds the result to {0, 1}n. The reconstruction error

is then at most 4α2nm/σ2
min, since the maximum singular value of the pseudoinverse is

1/σmin.

This general connection was used by Kasiviswanathan et al. (2010, 2013) to get results

for k-way marginal releases and several more general kinds of releases, including the logistic

regression example at the beginning of this section.

For k-way marginal releases, the number of released statistics is 2k
(
d
k−1

)
(since each

released contingency tables gives marginal statistics for a set of k − 1 public attributes

and the secret attribute). The question raised by Kasiviswanathan et al. (2010) was, how

large does d have to be to carry out meaningful reconstruction? So far, the attacks we

considered used matrices B with m > n rows, but the rows were selected independently

(as in Theorem 8 or to be far apart from each other (as in the proof of Theorem 7). Such

query matrices can arise with 2-way statistics (setting 1 from the beginning of this section,

on page 6), but require high-dimensional data: d must be at least n. To get matrices with
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n independent rows in the setting of k-way statistics would also require d > n, effectively

wasting many of the released statistics. Building on results from random matrix theory,

Kasiviswanathan et al. (2010) showed that in fact, it suffices that the total number of

released statistics 2k
(
d
k−1

)
be at least ckn for a constant ck > 1 (that depends on k but not

d or n); in particular, the dimension of the data d need only grow as n1/k.

Though the spectral argument is very useful, it has limitations. A more sophisticated

argument, based on restricted isometry properties, was used by Dwork et al. (2007) (and

later generalized by De (2012)) to handle releases where most statistics are answered α-

accurately, but the error on some fraction (bounded by a parameter η) of statistics is

arbitrarily high. For various classes of random matrices, the attack runs in polynomial time

as long as η is a sufficiently small constant. In fact, the attack works as long as η < 1
2
−Ω(1)

(that is, as long as a strict majority of statistics are α-accurate), though it takes exponential

time in general.

2.4.1. Discrepancy-based bounds. We can in fact characterize when reconstruction from

linear statistics is possible, using a combinatorial analogue of the spectral argument. The

framework we use here was formulated by Muthukrishnan & Nikolov (2012), abstracting

the idea in the proof of Theorem 6. Consider an attacker who knows B and an α-accurate

answer vector q̂, and wants to decide if a particular data set ŝ is a plausible candidate for

the true data set s.

A natural approach is simply to check if all the entries of 1
n
Bŝ are within α of the

entries of q̂ (that is, if ‖q̂ − 1
n
Bŝ‖∞ ≤ α), and “accept” ŝ as plausible if that is the case.

This procedure will always accept the true vector s; under what conditions will it accept an

incorrect vector ŝ? By the triangle inequality, if this procedure accepts ŝ then every entry

of 1
n
B(s− ŝ) must be at most 2α:∥∥ 1

n
B(s− ŝ)

∥∥
∞ ≤

∥∥ 1
n
Bs− q̂

∥∥
∞︸ ︷︷ ︸

≤α since q̂ accurate

+
∥∥ 1
n
Bŝ− q̂

∥∥
∞︸ ︷︷ ︸

≤α since ŝ accepted

≤ 2α .

If ŝ differs from s in more than βn positions, then (s − ŝ) is a vector with entries in

{−1, 0, 1} of which at least βn entries are not zero. We can therefore ensure that no vector

ŝ that at Hamming distance βn from s gets accepted if we ensure that Bz is large for all

appropriate z.

Definition 9. The β-partial discrepancy of a matrix B ∈ Rm×n, denoted disc∞,β(B), is

disc∞,β(B)
def
= min
z∈{−1,0,1}n,
‖z‖1≥βn

‖Bz‖∞.

If the partial discrepancy is at least 2αn, then no candidate ŝ which is at Hamming

distance more than βn from s will be accepted by the procedure above, that is, the re-

construction attack succeeds. We can thus define an (exponential-time) attack which has

reconstruction error at most β whenever the accuracy α satisfies

α ≤ disc∞,β(B)/2n .

This idea underlies, among other results, the proof of Theorem 8.

Conversely, if the partial discrepancy is less than 2αn, then we can find vectors s, ŝ and

q̂ such that s and ŝ are far apart (at Hamming distance at least βn), but q̂ is α-accurate for
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both data sets. Thus, no reconstruction attack based on q̂ can reliably have reconstruction

error less than β
2

; reconstruction attacks work if and only if the partial discrepancy of the

query matrix exceeds the error parameter α of the mechanism releasing the statistics.

The partial discrepancy generalizes the spectral arguments, since the smallest singular

value of B gives a lower bound on its partial discrepancy: disc∞,β(B) ≥ σmin
√
βn√

m
(since

every z in {−1, 0, 1}n with at least βn nonzero entries has Euclidean norm at least
√
βn).

At the end of this survey, we describe differential privacy, a class of algorithms that

resist reconstruction attacks (and enjoy other important properties). Perhaps surprisingly,

when the size n of the data set is very large, one can in fact answer a batch of linear queries

with error roughly comparable to a slight generalization of the partial discrepancy, called

the hereditary discrepancy (Nikolov et al. 2013). We omit the exact statement here.

3. Tracing Attacks

Reconstruction attacks are devastating when they occur, but simply avoiding reconstruction

is not a satisfactory guarantee of privacy on its own. For example, consider the “subsampling

algorithm:” subsample a random τ fraction of the dataset and release those samples. The

reconstruction attacks from Section 2 will fail when given only this subsample, since the

released subsample is completely independent of the data of a (1− τ) fraction of the rows6,

and yet a large number of individuals lose all privacy.

We remark that subsampling ensures that very few people—only those unlucky enough

to be in the subsample—can possibly have their privacy compromised. We have often

heard objections of the form “only a few people will be hurt” in defense of weak privacy

protections. When such risks are acceptable, subsampling provides a crisp privacy solution,

accompanied by a plethora of utility results.

Tracing is a more subtle privacy breach than reconstruction. In a tracing attack, the

attacker has (possibly noisy) statistics about the dataset and the data of a target individual,

and wants to determine if that target individual is present in the dataset or not. As we have

discussed, mere presence in the dataset can be highly sensitive information. By weakening

the attacker’s goal to tracing, we will be able to reason about the privacy risks of very

simple statistics, perturbed with a large amount of noise, even when the attacker has very

limited auxiliary information.

As we will demonstrate, in a rather general model of a tracing attack, not only does

the subsampling algorithm allow an attacker to trace a τ fraction of the individuals in the

dataset, but so does any algorithm of comparable utility!

3.1. Tracing from Exact Statistics

Sankararaman et al. (2009) presented a formal model of tracing attacks based on hypothesis

testing. Their model is well suited to capturing the attack of Homer et al. attack on Genome-

Wide Association data, with one difference noted below. The dramatis personae of their

model are as follows.

1. We model our population by a distribution P over {±1}d. We call d the dimension

6Note that the subsampling algorithm introduces error proportional to 1√
τn

> 1√
n

, so there is

no contradiction with the results in Section 2.
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of the data. We assume that P is a product distribution and we let

p = E
x∼P

[x]

be the population mean. We call pj the j-th marginal of the population. Note that

P is entirely described by p.

2. There is a dataset x = {x1, . . . , xn} consisting of n i.i.d. samples from P .

3. The sample mean

q =
1

n

n∑
i=1

xi = E
xi∼x

[xi]

is released. We use standard notation from the computation science literature and

write xi ∼ x to mean that xi is sampled from the uniform distribution over the

elements of x. We call qj the j-th marginal of the sample.

4. The attacker has the data y ∈ {±1}d of a target individual. That individual y is

either IN the dataset, meaning y is a uniformly random element of x, or OUT of the

dataset, meaning y is an independent random sample from P . The attacker’s goal is

to distinguish these two cases.

5. The population P is unknown to the attacker. However, the attacker has a collection

of m i.i.d. reference samples z = {z1, . . . , zm} from P .

The attack is a function A(y, q, z) that takes the data of the target individual, the

released marginals, and the reference samples and outputs a value in {IN,OUT}.
Homer et al. (2008) and Sankararaman et al. (2009) (see also the analysis of Yu (2015))

design an attack based on hypothesis testing. Consider the null hypothesisH0 corresponding

to the case where y is OUT of the dataset, meaning that y is a random sample from the

population P , i.e. y is sampled from a product distribution with marginals p. Also consider

the alternative hypothesis H1 corresponding to the case where y is IN the dataset7. In this

case y is a random sample from the dataset x, which can be approximated by a product

distribution with mean q. If the attacker has p and q, then the optimal way to determine

if y is sampled from the population or the dataset is to perform a log-likelihood test.

While our model assumes that the vector q is released, it also assumes that p is unknown.

However, if the attacker has sufficiently many reference samples z1, . . . , zm, then the average

p̂ = 1
m

∑m
i=1 zi will be a suitable approximation to p for the attack. All of the attacks

discussed in this section can (directly or with minor changes) be carried out using no

information about the reference set z except its mean. We can summarize what is known

about this attack in the following theorem.

Theorem 10 (Sankararaman et al. (2009)). There is an attack A(y, q, z) that takes the data

y ∈ {±1}d of a targeted individual, the exact sample mean q of a dataset x of dimension

d = O(n log(1/δ)), and m = O(n) reference samples z = {z1, . . . , zm} ⊆ {±1}d such that

for every non-trivial product distribution P ,

1. If y is IN the dataset x, then P [A(y, q, z) = IN] ≥ 1− δ.
2. If y is OUT of the dataset x, then P [A(y, q, z) = OUT] ≥ 1− δ.

7In Homer et al. (2008) the attacker sees only the mean of the reference set, and the null
hypothesis is that y is drawn from that set (see the discussion in Sankararaman et al. (2009)).
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In both of these statements, the probabilities are taken over the random choices of the dataset

x ∼ Pn, the reference samples z ∼ Pm, and the choice of y according to either y ∼ x (IN)

or y ∼ P (OUT). In other words, the probabilities of both type I and type II errors are at

most δ.

In this theorem, a non-trivial product distribution is one whose marginals are bounded

away from −1 and 1. This condition is very mild, and serves to rule out pathological cases,

such as a population in which every member of the population has the same data.

3.2. Robust Tracing for Noisy Statistics

What happens if the attacker does not get the exact sample mean q, but instead only a

noisy sample mean q̂? Is it still possible to trace individuals in the dataset? As Dwork

et al. (2015d) showed, the answer is resoundingly “yes!” However, it takes much more care

to formalize tracing attacks when the statistics can be noisy. To see why tracing attacks

are more subtle with only noisy statistics, we give a few examples of ways that the sample

mean can be perturbed to make tracing difficult.

Example 11. Subsampling is one way to introduce noise into statistics. That is, we can

take a dataset x = {x1, . . . , xn} of n samples obtain a dataset x̂ = {x̂1, . . . , x̂s} ⊆ x of

s ≈ τn samples for some τ > 0. Now we can release the exact mean q̂ = 1
s

∑s
i=1 x̂i of

x̂ of the subsample, which is a noisy sample mean of x. Sampling theory tells us that the

average over coordinates j of |qj − q̂j | ≈ 1√
τn

. However, when we run a tracing attack on

the released mean q̂, and a random target individual xi that is IN the dataset x, with with

probability 1− τ , xi is independent of q̂. Thus, we have

P
IN

[A(y, q̂, z) = IN]− P
OUT

[A(y, q̂, z) = IN] ≤ τ � 1,

in contrast to the case of exact statistics where Theorem 10 yields

P
IN

[A(y, q̂, z) = IN]− P
OUT

[A(y, q̂, z) = IN] ≥ 1− 2δ ≈ 1,

where P
IN

[E] is the probability of the event E when y is IN the dataset, and P
OUT

[E] is defined

analogously.

The subsampling example shows that, in general, we must give up on tracing every

individual who is in the dataset (but see Theorem 16 for a case in which all individuals in

the dataset can be traced). Thus, we will set our sights on tracing at least one individual

in the dataset.

As our next example shows, the role played by the population P is much more delicate

when the statistics can be noisy.

Example 12. Suppose the population P and its mean p were fixed and known. Then instead

of releasing the exact sample mean q of the dataset, the algorithm could release the “noisy”

population mean q̂ = p. By sampling theory, we will have that |qj − q̂j | ≈ 1√
n

on average

over coordinates j. Note that, while the population mean is likely of more interest than the

sample mean, they are “noisy” for the purposes of this example because they are not equal

to the sample mean. If we are only given the population mean q̂, then we cannot hope to

trace because q̂ is independent of the dataset. Thus,

P
IN

[A(y, q̂, z) = IN] = P
OUT

[A(y, q̂, z) = IN] .
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This example does not give an actual algorithm for releasing an approximately correct

sample mean, because we cannot assume that the holder of the dataset knows the population

mean. However, it demonstrates the need to model the data holder’s uncertainty about the

population. Thus, we assume that each of the population marginals pj is itself random and

chosen i.i.d. from some probability distribution P over [−1, 1].8

Clearly P must be non-trivially random, or else the population’s marginals are not

really uncertain. Our final example considers two types of non-trivial yet “degenerate”

distributions P that will make it impossible to trace from noisy statistics.

Example 13. Suppose that P is uniform on some interval [a, b] for some 0 < a < b < 1.

Then, the noisy samplemean q̂ = ( b−a
2
, b−a

2
, . . . , b−a

2
) will satisfy |qj − q̂j | . b−a

2
for every

coordinate j. As in the previous example, q̂ is independent of the dataset, so tracing cannot

succeed against an algorithm that outputs q̂. This example shows that P must be “well

spread” in the sense that it must be significant mass on values that are farther apart than

the amount of noise we are willing to add to the mean.

Now, suppose that P is either − 1
2

or + 1
2

with equal probability. For this choice of

P, every population marginal pj is in {± 1
2
}. Consider the noisy mean q̂ such that q̂j =

sign(qj)

2
∈ {± 1

2
}. By sampling theory, we will have |qj−q̂j | ≈ 1√

n
on average over coordinates

j. However changing the data of one person xi will, with high probability, not change q̂ at

all. Therefore, q̂ is nearly independent of any specific person in the dataset, making tracing

impossible. This example shows that P must be “smooth” in addition to being “well spread.”

The distributions in the example above show that for tracing to succeed, P must avoid

certain pathologies. The specific technical conditions we need to impose are beyond the

scope of this article, but can be found in Dwork et al. (2015d). In the sequel, we will

refer to a distribution P satisfying these unspecified conditions as a strong distribution. For

example, the uniform distribution on [−1, 1] is strong, as is the uniform distribution on an

interval of sufficient length or a Beta distribution with “reasonable” parameters.

3.2.1. The Model. To address these pathologies, we need to modify some features of the

model we described in Section 3.1. These modifications only affect the way the population

P is chosen and the way the released vector q̂ are chosen, so we only give the modifications

to these two parts of the model.

1’. We model our population P by a distribution P over {±1}d. We call d the dimension

of the data. We assume that P is a product distribution and we let

p = E
x∼P

[x]

so that pj is the mean of the j-th attribute in the population. Each coordinate pj
will be random and chosen i.i.d. from a strong distribution P.

3’. There is an algorithm M that takes the dataset x and outputs a noisy sample mean

q̂ = M(x). This vector satisfies 1
d
‖q − q̂‖1 ≤ α (i.e. |qj − q̂j | ≤ α on average over

coordinates j). Recall that q = 1
n

∑n
i=1 xi. If M is randomized, then we require

that accuracy holds with probability at least 2/3 over this randomization. We call an

algorithm that outputs such a vector α-accurate.

8To simplify notation we will assume that every marginal is chosen from the same distribution
P. It would not affect our results if each marginal were chosen from a different distribution Pj .
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3.2.2. The Attack. Dwork et al. (2015d) showed how to trace in this model using the very

simple attack in Figure 1. The attack requires no knowledge ofM, and remarkably requires

only a single reference sample from P .

A(y, q̂, z) :

Input: target y, noisy marginals q̂, reference sample z.

Let T = O(
√
d log(1/δ)) be a carefully chosen threshold. If

〈y, q̂〉 − 〈z, q̂〉 ≥ T,

output IN , otherwise output OUT .

Figure 1

The Robust Tracing Attack

We can interpret the quantities 〈y, q̂〉 and 〈z, q̂〉 as the correlation of the noisy sample

mean with the target individual and a random member of the population, respectively.

Thus, the attack is testing “is the target individual’s data significantly more correlated

with the released statistics than a random member of the population?” The attack itself is

quite similar to the one used by Homer et al. (2008), but the analysis is necessarily quite

different because we can no longer view the attack as testing one of two simple hypotheses.9

That is, since the distribution P and the algorithm M are unknown to the attacker, the

cases of IN and OUT no longer give rise to two specific distributions on the triple (y, q̂, z),

and instead each case now corresponds to a whole family of distributions (a composite

hypothesis).

We can summarize the properties of this attack in the following theorem.

Theorem 14 (Dwork et al. (2015d)). There is an attack A(y, q, z) that takes a noisy sample

mean q̂ of a dataset x of dimension d = O(n2 log(1/δ)), the data y ∈ {±1}d of a targeted

individual, and a single reference sample z ∈ {±1}d, such that if the population P ’s mean

is chosen from any strong distribution P, and q̂ =M(x) for any 1/2-accurate M,

1. If y is IN the dataset x, then P [A(y, q, z) = IN] ≥ Ω(1/n).

2. If y is OUT of the dataset x, then P [A(y, q, z) = OUT] ≥ 1− δ.

In both of these statements, the probabilities are taken over the random choices of the pop-

ulation P ’s marginals p ∼ Pd, the dataset x ∼ Pn, the possibly random choice of noisy

marginals q̂ ∼ M(x), the reference sample z ∼ P , and the choice of y according to either

y ∼ x (IN) or y ∼ P (OUT).

Some comments are in order. First, note that this theorem is non-trivial when δ � 1/n.

In this case, when given a random member of the dataset, the attack will say IN with

probability Ω(1/n), but when given a random member of the population the attack says IN

with probability at most δ � 1/n.

Second, note that the condition of 1/2-accuracy is very weak—much less accurate than

applications would require—and it is rather surprising that we can trace in the presence of

9By “simple hypotheses”, we mean that each hypothesis stipulates a fixed distribution.

www.annualreviews.org • Hiding in Plain Sight 15



so much noise. In exchange for requiring such a weak notion of accuracy, the attack is only

guaranteed to trace when d & n2, whereas for exact marginals the attack in Theorem 10

was able to trace with dimension d ≈ n. As we will see in Section 4, such high dimension is

necessary to guarantee tracing, because when d = o(n2) we can simultaneously achieve non-

trivial accuracy and a strong guarantee of privacy (see Theorem 20, for a precise statement).

However, for certain algorithms M , this attack may succeed even when d is much smaller.

Analysis of the Robust Tracing Attack A full proof of Theorem 14 is beyond the scope

of this article. Instead, we give some basic intuition for why the attack works and how to

analyze it.

First, suppose y is OUT of the dataset x. Then y and z are independent samples

from the population P . Moreover, since x = {x1, . . . , xn} is independent of y, z, and

q̂ = M(x), y and z are distributed as two independent samples from P even when con-

ditioned on any fixed value of q̂ (even one that is not accurate). For any q̂, we have

E [〈y, q̂〉 − 〈z, q̂〉] = 0. Furthermore, since P is a product distribution, the coordinates of y

and z are independent and 〈y, q̂〉 − 〈z, q̂〉 can be written as the sum of d bounded indepen-

dent random variables. Applying Hoeffding’s inequality to 〈y, q̂〉 − 〈z, q̂〉 thus shows that

P
[
〈y, q̂〉 − 〈z, q̂〉 ≥ O(

√
d log(1/δ))

]
≤ δ. The OUT case of the theorem follows by setting

an appropriate choice of T = O(
√
d log(1/δ)) and taking expectation over q̂.

Now, consider the more difficult case where y is IN the dataset x. The crucial claim to

establish is that

E

[
n∑
i=1

〈xi − z, q̂〉

]
≥ Ω(d). (1)

If the inequaltiy 1 holds, then by a concentration of measure argument we obtain that∑n
i=1〈xi − z, q̂〉 ≥ Ω(d) holds with high probability. Consequently, with high probability,

for some y = xi, we have 〈y, q̂〉 − 〈z, q̂〉 ≥ Ω(d/n), and we want to ensure that this quantity

is larger than the threshold T . Given our choice of T = O(
√
d log(1/δ)), the IN case of the

theorem follows by taking an appropriately large choice of d = O(n2 log(1/δ)).

It remains to justify our claim (1). By linearity of expectations, it suffices to understand

the case of d = 1 and show that

E

[
n∑
i=1

(xi − z)q̂

]
≥ Ω(1).

For intuition, consider the case of exact statistics where q̂ = q = 1
n

∑n
i=1 xi. Then

E

[
n∑
i=1

(xi − z)q̂

]
=

1

n

n∑
i=1

Var[xi] ≥ Ω(1),

as long as the distribution P has high variance (i.e. the population mean p is bounded

away from −1 and 1). It remains to show that introducing error into q̂ does not completely

“break” the correlation between q̂ and
∑n
i=1 xi.

Suppose the exact marginal is q = 1. In this case, the dataset must be x1 = x2 =

· · · = xn = 1. Even if the answers are very noisy, we have that q̂ > +1/2. Similarly, if

the exact marginal is q = −1 then q̂ < −1/2. Now, as a thought experiment, start with

the dataset x1 = · · · = xn = +1 and change the xis from +1 to −1 one-by-one until the

dataset x1 = · · · = xn = −1 is reached. The sum of these changes takes q̂ from > +1/2 to
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< −1/2. Thus, on average over i, changing each xi changes q̂ by > 1/n. So “on average”

we have correlation at least 1/n between each xi and q̂. To establish our general claim

about the correlation between
∑n
i=1 xi and q̂, we need to show that, when x1, . . . , xn are

chosen randomly as in our model, the correlation behaves like the average in this thought

experiment, which requires the use of our assumption that P is a strong distribution.

3.2.3. Additional Results. The strength of Theorem 14 is in the weakness of its assump-

tions. However, as we have described, these weak assumptions lead to somewhat weaker

conclusions than what Theorem 10 gives for exact tracing, and certainly weaker than a

reconstruction attack. Nonetheless, as the next theorem shows, if we have more accuracy

and more reference samples, then we can trace with much lower dimensional data.

Theorem 15. For every α ≥ 1√
n

, there is an attack A(y, q, z) that takes a noisy sample

mean q̂ of a dataset x of dimension d = O(α2n2 log(1/δ)), the data y ∈ {±1}d of a targeted

individual, and m+ 1 = O( log(d)

α2 ) reference samples z0 and z = {z1, . . . , zm} ⊆ {±1}d such

that if the population mean P is chosen from any strong distribution P, and q̂ =M(x) for

any α-accurate M,

1. If y is IN the dataset x, then P [A(y, q, z) = IN] ≥ Ω(1/α2n).

2. If y is OUT of the dataset x, then P [A(y, q, z) = OUT] ≥ 1− δ.

The probabilities are taken over the same random choices as in Theorem 14.

This result smoothly interpolates between Theorem 14 (minimal accuracy, minimal

reference samples, higher dimension) and Theorem 10 (perfect accuracy, many reference

samples, lower dimension). For every value of α > 0, the dimension required by our attack

is essentially optimal, by the positive results we present in Section 4.

The attack in this result is nearly identical to the one presented in Figure 1. The only

difference is that we are given m+ 1 reference samples z0, z1, . . . , zm. z0 acts like the single

reference sample in the basic attack, while ẑ = 1
m

∑m
i=1 zi serves as an estimate of the

population mean. Specifically, instead of computing 〈y − z, q̂〉, we compute 〈y − z, q̂ − ẑ〉,
and apply a suitable threshold.

The first guarantee of this attack can be rephrased as saying that, on average, the attack

outputs IN for 1/α2 of the n individuals in the sample. On the other hand, we can release α-

accurate marginals by using a random subsample of size O(1/α2). This comparison justifies

our claim that every algorithm allows almost the same number of individuals to be traced

as the subsampling algorithm with comparable accuracy.

In some settings we can make an even stronger claim and trace every individual. Of

course, we can only do this if we place restrictions that rule out the subsampling algorithm.

One such restriction is to require that the algorithm is symmetric—that is, it “treats all

users the same,” which can be formalized by requiring that the noisy marginals q ∼M(x)

depend only on the vector of exact marginals q. In Markov chain notation, x → q → q̂.

This rules out the subsampling algorithm, and allows us to prove the following theorem.

Theorem 16. There is an attack A(y, q, z) that takes a noisy sample mean q̂ of a dataset x

of dimension d = O(n2 log(1/δ)), the data y ∈ {±1}d of a targeted individual, and a single

reference sample z ∈ {±1}d such that if the population P ’s marginals are chosen from any

strong distribution P, and q̂ =M(x) for any symmetric 1/2-accurate M,

1. If y is IN the dataset x, then P [A(y, q, z) = IN] ≥ 1− δ.
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2. If y is OUT of the dataset x, then P [A(y, q, z) = OUT] ≥ 1− δ.

In other words, the probabilities of both type I and type II errors are bounded by δ. The

probabilities are taken over the same random choices as in Theorem 14.

In this setting the attack is the one described in Figure 1, and only the analysis changes.

4. Differential Privacy: Free at the Limit

The limits imposed by reconstruction and tracing attacks are absolute: no mechanism

protecting against reconstruction and tracing can introduce less noise than is required to

stymie the attacks discussed earlier. However, there are other adversarial goals, such as

learning the sickle cell status of a specific individual, that do not require reconstruction,

re-identification, or tracing, and each of these new goals may have its own set of attack

strategies. A privacy solution that rules out reconstruction and tracing may not rule out

attacks satisfying these other goals. The cryptographic approach to this dilemma is to first

define privacy and then provide techniques that provably satisfy this definition. If the defi-

nition is too weak, in that it fails to protect against an important class of adversarial goals,

it can be strengthened and new algorithms designed. The advantage to the definitional

approach is that, because the definitions are getting stronger, progress is made. Differential

privacy was first proposed in 2006 and so far has not required strengthening.

Differential privacy is a very strong definition, and it is not without cost. Nonetheless

in one sense it is for free: differential privacy can be achieved by introducing exactly as

much noise as is necessary to combat the specific attacks of the previous sections. In other

words, the marginal cost of achieving differential privacy and all the protection that entails

is zero, if one is protecting against reconstruction and tracing.

4.1. Defining Privacy

Our ultimate privacy goal when releasing information about a sensitive dataset is to ensure

that anything that can be learnt about an individual from the released information, can be

learnt without that individual’s data being included. This goal does not ensure that nothing

about an individual can be learnt from the released information, which can only be achieved

by releasing no information ((Dwork & Naor 2008; Dwork 2006)). For example, as discussed

in the introduction, releasing the fact that smoking and lung cancer are strongly correlated

reveals sensitive information about any individual known to smoke; however, we do not to

consider this to be a privacy violation, as learning this correlation has nothing to do with

the use of that individual’s data. Our goal is only to protect sensitive information that is

localized to a single individual’s data.

Differential privacy (Dwork et al. 2006b) is such a quantitative privacy goal. Differential

privacy is a property of a procedure or mechanism M that takes a sensitive dataset x and

releases the outputM(x). We compare the outputM(x) with a hypothetical outputM(y)

in which the input x is changed to y by removing, adding, or modifying the data of a single

individual. The requirement of differential privacy is thatM(x) should be indistinguishable

from M(y) for any inputs x and y′ differing only on the data of a single individual:

Definition 17 (Differential Privacy (Dwork et al. 2006b)). A mechanism M satisfies ε-

differential privacy if, for any datasets x and y differing only on the data of a single indi-
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vidual and any potential outcome q̂,

P [M(x) = q̂] ≤ eε · P [M(y) = q̂] . (2)

Setting ε = 0 corresponds to revealing no information (M(x) and M(y) are identically

distributed), whereas setting ε > 0 permits revealing some information about individuals.10

The definition of differential privacy (2) is inherently probabilistic; as in cryptography,

randomness is used to “hide” or “obscure” the individual information we wish not to reveal.

Thus any non-trivial differentially private release of information requires randomization.

We remark that there are several variants of this definition of differential privacy, which

are similar in spirit to what we discuss here, but have important quantitative differences.

A common generalization of differential privacy (Dwork et al. 2006a) introduces a second

parameter δ and replaces (2) with P [T (M(x)) = 1] ≤ eε · P [T (M(y)) = 1] + δ, which is

required to hold for all functions T . For clarity, we only discuss the simplest definition.

Differential privacy is a very “robust” definition — as we would expect of a meaningful

privacy guarantee. In particular, it satisfies the following important properties.

• Postprocessing: Additional analysis of the released information or the inclusion of

information from other sources will not change the differential privacy guarantee. In

particular, if an attack (such as those discussed earlier) were applied to a differentially

private release, then the guarantee of differential privacy would apply to the output

of the attack, which precludes successful reconstruction or tracing.

• Composition: If the same individual’s data is used in multiple releases, then, as

long as each release satisfies differential privacy on its own, the combination of these

releases also satisfies differential privacy. However, the quantitative privacy guarantee

degrades, namely, if each release satisfies ε-differential privacy, then the combination

of k such releases satisfies kε-differential privacy.

• Group privacy: If information is shared by several individuals (such as a family), dif-

ferential privacy continues to protect this information.11 Again, the privacy guarantee

degrades with the number of individuals we wish to protect simultaneously. That is, if

x differs from y by the addition, removal, or modification of the data of at most k indi-

viduals and M satisfies ε-differential privacy, then P [M(x) = q̂] ≤ ekε · P [M(y) = q̂]

for all possible outcomes q̂.

Composition is arguably the signature property of differential privacy, as it permits differ-

entially private analyses to be viewed as part of a larger system. Privacy-preserving data

analysis does not occur in a vacuum — a single individual’s data may be used multiple times

over her lifetime. Furthermore, simple mechanisms can be composed to perform complex

analytical tasks. The richness of the literature on differential privacy largely stems from

the fact that composition permits an algorithmic approach to differential privacy, whereby

simple building blocks can be combined in sophisticated ways to carry out a wide variety

of analytical tasks.

Perhaps the most surprising property of differential privacy is that, despite its protec-

tive strength, it is compatible with meaningful data analysis. An extensive literature has

10The parameter ε (sometimes called the (bound on) privacy loss) should be thought of as a small
constant no larger than 1.

11If we view the dataset as a random sample, this corresponds to having some correlated samples,
rather than i.i.d. samples.
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been developed showing that a wide range of useful analyses can be carried out subject

to differential privacy and its variants (for an introduction to and overview of differential

privacy, see the textbook on the subject (Dwork & Roth 2014a)). Indeed, the parameter

regime where the attacks of Sections 2 and 3 break down is very close to the setting where

it becomes possible to release approximate aggregate statistics whilst satisfying differential

privacy.

We remark that differential privacy is not only useful for privacy: A major concern in

empirical science is the danger of overfitting data and reaching conclusions that are specific

to the dataset, rather than generalizing to the larger population from which that dataset

was drawn. This problem is exacerbated by adaptivity — that is, when an analysis of a

dataset is informed by prior exploration of the same dataset, standard hypothesis testing

techniques may misrepresent the significance of a hypothesis due to the dependence between

the hypothesis and the dataset that has been introduced by prior use (e.g. through model

selection). However, differential privacy also offers protection from such overfitting (Dwork

et al. 2015c,b,a; Bassily et al. 2016). Namely, if a dataset is only used in a differentially

private manner, then any conclusion drawn from that information cannot overfit the dataset.

This is especially useful in the adaptive setting, as the composition property of differential

privacy holds even for adaptive data analysis. Indeed, differentially private algorithms

provide nearly-optimal results for adaptive data analysis (Hardt & Ullman 2014; Steinke &

Ullman 2015). Thus we see that differential privacy can, in fact, be an aid to analysis, even

when privacy is not a concern.

4.2. Example: The Gaussian Mechanism

Having defined a formal privacy goal, we now discuss an example technique for releasing

aggregate statistics about a dataset while protecting privacy. We restrict our attention

to aggregate statistics of the form “what fraction of people in the dataset have property

q?” For example, q may be the property “smoke and have cancer.” This is a simple, yet

powerful, class of aggregate statistics, often called counting queries.

We assume that k properties q = (q1, · · · , qk) are specified and we will release ap-

proximate answers for all of them on a given dataset x containing the data of n individu-

als. Let qj(x) denote the fraction of individuals in the dataset x having property qj and

q(x) = (q1(x), · · · , qk(x)).

Definition 18 (Gaussian Mechanism). Given properties q = (q1, · · · , qk), the Gaussian

mechanism Mq,σ2 takes x as input and releases q̂ = (q̂1, · · · , q̂k) where each q̂j is an inde-

pendent sample from N (qj(x), σ2), for an appropriate variance σ2.

We first ask whether Mq,σ2(x) releases useful information about x: We would like to

know qj(x), but the Gaussian mechanism only gives us an approximation q̂j . Whether this

error with standard deviation σ is acceptable depends on the context. However, in many

situations, the dataset x is itself a random sample of size n from a larger distribution, in

which case qj(x) is also only an approximation to the quantity of interest. In particular, the

sampling error of qj(x) has variance pj(1− pj)/n, where pj is the probability that a random

sample from the larger distribution has property qj . Taking the unavoidable sampling error

as a comparison point, we argue that the error introduced by the Gaussian mechanism

is tolerable as long as σ ≈ 1/
√
n. Furthermore, the output of the Gaussian mechanism

remains useful as long as σ � 1. For example, if σ ≤ 1/100, then each yj is an estimate of

qj(x) whose standard deviation is 1% of the size of the dataset.
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We give a self-contained analysis of the privacy guarantee afforded by the Gaussian

mechanism using the Neyman-Pearson lemma. Rather than satisfying differential privacy

as defined earlier, the Gaussian mechanism satisfies a variant called concentrated differential

privacy (Dwork & Rothblum 2016; Bun & Steinke 2016).12

We demonstrate that, given the released output of Mq,σ2(x), we cannot infer “much”

about an individual in the dataset x, where “much” will be parameterized by ρ > 0. We

formulate this in the language of hypothesis testing, by showing that any hypothesis about

a single individual cannot be tested accurately.13 However, the Gaussian mechanism is still

useful in the sense that hypotheses about the population as a whole can be tested accurately

given the output of the Gaussian mechanism. Thus we must distinguish hypotheses about

individuals:

Consider simple null and alternate hypotheses H0 and H1 about an individual in the

dataset, where H0 is the hypothesis that the dataset is x and H1 is the hypothesis that

the dataset is y. Here x and y differ only in the addition, removal, or modification of the

data of one individual, who is the “subject” or “target” of this test. We show that it is

impossible to accurately test H0 versus H1.

Lemma 19 (Neyman & Pearson (1933)). Fix simple hypotheses H0 and H1. Define the

log-likelihood ratio test statistic by

LLR(q̂) = log

(P [q̂|H0]

P [q̂|H1]

)
.

Then any test T is dominated by the likelihood ratio test. That is,

P [T (q̂) = reject|H0] ≥ P [LLR(q̂) < η|H0]

and

P [T (q̂) = reject|H1] ≤ P [LLR(q̂) ≤ η|H1]

for some threshold η depending on T .

Lemma 19 tells us that, rather than considering all possible tests T for H0 versus H1, we

need only consider the likelihood ratio test. Under H0, q̂ =Mq,σ2(x) is distributed accord-

ing to N (q(x), σ2I) and, under H1, q̂ =Mq,σ2(y) is distibuted according to N (q(y), σ2I).

We calculate

LLR(q̂) = log

 (2π)−k/2 · exp
(
−1
2σ2

∑k
j=1(q̂j − qj(x))2

)
(2π)−k/2 · exp

(
−1
2σ2

∑k
j=1(q̂j − qj(y))2

)


=
−1

2σ2

k∑
j=1

(
(q̂j − qj(x))2 − (q̂j − qj(y))2

)
=

1

2σ2

k∑
j=1

(qj(x)− qj(y)) (2q̂j − qj(x)− qj(y)) .

12The properties of concentrated differential privacy are similar to those of differential privacy
listed earlier. However, concentrated differential privacy gives a tighter and more elegant analysis
of composition.

13For more about formulating differential privacy using hypothesis testing, see Theorem 2.4 in
Wasserman & Zhou (2010).
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Thus, under H0, LLR(q̂) is distributed according to N (ρ, 2ρ), where

ρ =
1

2σ2
‖q(x)− q(y)‖22 =

1

2σ2

k∑
j=1

(qj(x)− qj(y))2.

Under H1, LLR(q̂) is distributed according to N (−ρ, 2ρ). Since x and y differ only on the

data of one individual, the fractions qj(x) and qj(y) differ by at most 1/n.14 Hence

ρ ≤ k

2n2σ2
.

If ρ is small (say, 0.1 or 0.01), then the distributionN (ρ, 2ρ) is very close toN (−ρ, 2ρ).15

By the Neyman-Pearson lemma, any test distinguishing H0 from H1 fares no better than

distinguishing these distributions by means of a threshold. For example, if ρ = 0.01 and a

test T has significance P [T (q̂) = reject|H0] ≤ 0.05, then we conclude that the power of T is

bounded by P [T (q̂) = reject|H1] ≤ 0.067. Figure 2 shows how close these distributions are.

Similarly to differential privacy we can show that, for any test T and any ε ≥ ρ,
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Figure 2

Probability density, under H0, of LLR(q̂) ∼ N (ρ, 2ρ) (blue) and probability density, under H1, of

LLR(q̂) ∼ N (−ρ, 2ρ) (red).

P [T (q̂) = reject|H1] ≤ eε · P [T (q̂) = reject|H0] + e−(ε−ρ)2/4ρ.

For ρ = 0.01, the statistical distance (also called total variation distance) between LLR(q̂)

under H0 versus H1 is 0.06. Hence, if ρ ≤ 0.01, then no test can correctly “guess” whether

H0 or H1 holds with probability greater than 53% in both cases.

A privacy attack can also be thought of as a test T . A tracing attack yields a test T to

determine whether a target individual is included in the dataset, whereas a reconstruction

attack entails multiple tests to determine the sensitive attribute of each user. Since the

Gaussian mechanism ensures that these tests cannot be accurate, these attacks must fail.

Thus, if k � n2σ2, then ρ � 1 and we can be assured that the output of Mq,σ2(x) does

not reveal sensitive information about the dataset x.

14For simplicity, assume x and y are datasets of the same size with the data of one individual
modified, rather than removed or added.

15By dividing LLR(q̂) by
√

2ρ we can rescale these to N (
√
ρ/2, 1) versus N (−

√
ρ/2, 1).
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Theorem 20. The Gaussian mechanism can provide answers to k counting queries given

a dataset of size n with error standard deviation σ whilst protecting privacy, as long as

ρ = k
2n2σ2 � 1.16 In particular, we can answer k ≈ n2 queries with constant relative error

(e.g. σ = 0.01) or we can answer k ≈ n queries with error comparable to the sampling error

(i.e. σ ≈ 1/
√
n).

The bounds of Theorem 20 almost match the attacks in Sections 2 and 3: Theorem

7 shows that answering k = 2n queries with error σ � 1/
√
n makes a reconstruction

attack possible. In contrast, the Gaussian mechanism can answer k = 2n queries with error

σ = 1/
√
ρn and privacy ρ� 1. Similarly, Theorem 14 shows that answering k � n2 queries

with error σ = 0.01 opens the possibility of a tracing attack. Again, Theorem 20 shows

that answering k ≈ n2 queries with error σ = 0.01 is possible whilst protecting privacy.

Therefore, the results we have surveyed essentially pin down (in this simple setting) the

boundary between what information can be released subject to a strong privacy guarantee

like differential privacy versus when the released information permits a privacy attack.

We see that there is a tradeoff here – smaller values of σ yield less noisy answers, whereas

larger values of σ provide greater privacy protection. This is a fundamental and inescapable

dilemma; differential privacy provides the language in which to quantify and formally study

the tension between privacy and utility.

4.3. Beyond Noise Addition

The Gaussian mechanism is but one of many differentially private mechanisms. It is ex-

tremely simple and versatile, but more sophisticated techniques can be used to obtain a

better privacy-utility tradeoff in certain circumstances. If the properties q = (q1, · · · , qk)

are structured in some way (such as being m-way marginals), then carefully correlated

noise (instead of independent Gaussian noise) sometimes yields better results. In particu-

lar, if the data is inherently low-dimensional (e.g. the data of each individual is described

by d bits), there are differentially private mechanisms that can answer many more queries

(e.g. k ≈ 2σ
2n/
√
d queries, each with error σ) (Blum et al. 2008; Hardt & Rothblum 2010).

There is now a rich algorithmic and statistical literature on the design of differentially

private mechanisms, introducing a wide array of techniques. See Dwork & Roth (2014b);

Vadhan (2016); Hardt et al. (2012); Ligett et al. (2013) for recent tutorials.
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