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Picking Good Experts

e Suppose you have N “experts” making predictions
* Weather forecasters
* Financial advisors
 Recommender systems

* Most of them are bad, but one might be good!
* Who's predictions should we trust?



'F)_)) 'Pz,)
D P | 7.4 P2 9= ---
Model ;, £, , (
=1 gl L )

 There are T time periods, in each:
* experts make predictions f; 1, ..., fy y € {0,1}
* you have to make a decision p; € {0,1}
* some outcome ¢, E@@s revealed (maj be advesaral )
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Level I: The Halving Algorithm (HA)

* Assumption: some expert makes 0 mistakes
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Let C; « {1, ..., H}
Fort=1,..,T:
Let p; be the majority vote of experts in C;
Let C;,1 be the experts with no mistakes so far




Level |: The Halving Algorithm

* Thm: If some expert makes O mistakes then HA
makes < log, N mistakes.
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Level Il: Repeated Halving (RHA)

Let C; « {1, ...,n}
Fort=1,..,T:
Let p; be the majority vote of experts in C;

Let C;,4 be the experts with no mistakes so far
|f Ct+1 — @, Iet Ct+1 — {1, ,Tl}

° Suwom some  expert rates ™M™ mirtakes
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Level II: Repeated Halving

* Thm: If some > expert makes < M mistakes then RHA
makes < (M + 1)(log, N + 1) mistakes.
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Level Ill: Weighted Majority (WM)

Give each expert aweight w,; « 1 W, =2 we;

Fort=1,..,T: =
Let p; be the weighted majority vote of experts
Fori=1,...,N:

) ~—12 can \9&
If (expert i made a mistake): Wy4q; < @ (1= g, ;

Else: Wit1,i & We,i
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Level Ill: Weighted Majority
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* Thm: If some exioert makes < M*mistakes then WM
makes < M + log, N) mistakes.
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Level Ill: Weighted Majority

* Thm: If some expert makes < M mistakes then WM
makes < 2.4(M + log, N) mistakes.
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Level Ill: Weighted Majority

* Thm: If some expert makes < M mistakes then WM
makes < 2.4(M + log, N) mistakes.
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Level Ill: Weighted Majority

* Thm: If some expert makes < M mistakes then WM
makes < 2.4(M + log, N) mistakes.

* Thm: Any determlnistic strategy can be forced to
make at least 2ZM mistakes
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Level IV: Randomized Weighted Majority

Give each expert a weight w;; « 1, W, < X, wy;
Fort=1,..,T:
Choose i with probability wy ; /W,
Fori=1,...,N:
If (expert i made a mistake): wyyq1; < (1 —¢) - wy;
Else: Weyq; < Weiy Wiy < 2iWep
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Level IV: Randomized Weighted Majority

* Thm: If some expert makes < M mistakes then
RWM makes < (1+¢) - M + log; Y mistakes
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Level IV: Randomized Weighted Majority

* Thm: If some expert makes < M mistakes then
RWMmakes< (1+¢)-M + 082 N istakes
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Level IV: Randomized Weighted Majority

* Thm: If some expert makes < M mistakes then
RWMmakes< (1+¢)-M + logs N
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Why | love this algorithm

* Endless applications:
* continuous optimization / linear programming
* including maximum flow!

machine learning
* training machine learning models
* combining weak models into strong models
* online learning: updating models with more data

probability theory

game theory
* how to play zero-sum games

theory of computation



Why | care so much about this

* We often teach algorithms as a set of ad hoc tricks
* These algorithms are easier to deploy
* These algorithms are used often
* These algorithms came first historically
* These algorithms require less mathematical background

* Algorithms research today is much more systematic
* More powerful and unified techniques

e But requires more mathematical sophistication
» Randomization / Probability / Statistics
* Continuous Mathematics / Linear Algebra

* But beautiful and worth studying!



