CS3000: Algorithms & Data
Jonathan Ullman

Lecture 21:
More Applications of Network Flow

Nov 30, 2018

Image Segmentation

Image Segmentation

e Separate image into foreground and background

* We have some idea of:
* whether pixeliis in the foreground or background
* whether pair (i,j) are likely to go together

Image Segmentation

* Input:
* adirected graph ¢ = (V,E); V = “pixels”, E = “pairs”

* likelihoods a;, b; = 0 for everyi € V ﬁ:&éﬁ@mw\dd

* separation penalty p;; = 0 forevery (i,j) €EE J

n

e Output: “%"J“’f\ /,“‘“"“3”“““

* a partition of V into (4, B) that maximizes

AAB = Y+) - > py

) IEA JEB (i,j)EE
y from Ato B

“qua\rfj ’ ‘c

Reduction to MinCut

e Differences between SEG and MINCUT:
* SEG asks us to maximize, MINCUT asks us to minimize

Y arYn- Y

IEA JEB (i,j)EE
fromAto B

bij

mmZb +Za]

L[EA JEB

2 Pij

(iL,j)EE
from Ato B

* SEG allows any partition, MINCUT requiress € A,t € B

Reduction to MinCut

e How should the reduction work?

 capacity of the cut should correspond to the function
we’re trying to minimize

manb +Za] 2 pl]

.cA LEA JEB (i,j)EE
{c@ from Ato B

\

C\{\OO)Q- o S;\o'\)
“ekugfk, o

_ke) ﬁ-"'-

qua(|

Reduction to MinCut

e How should the reduction work?

 capacity of the cut should correspond to the function
we’re trying to minimize

manb +Za] Z pl]

IEA JEB (i,j)EE
fromAto B
S¢ G
a; o,
b .
i \o)

Reduction to MinCut

e How should the reduction work?

 capacity of the cut should correspond to the function
we’re trying to minimize

manb +Za] 2 pl]

IEA JEB (i,j)EE
from A to B

Step 1: Transform the Input

Input G,{a,b,p} #
for SEG

?J'L

L

+ime " O(m-f v”

Step 2: Receive the Output

#fﬁ

Solve
Output (A,B)
«
—__

’\-‘lme—'- "\'N\‘\Q 'l’o $o\u~e_

man et 0 o gragh with

n+2 nodes ond mtm edl 909

O(mn)

Step 3: Transform the Output

Output (A,B) h Output (A,B) for
for SEG MINCUT

Reduction to MinCut

e correctness? max q(AJg\
A,>

* running time?
O(Y‘(\""V\\ Y O(Mn) + O("\

'{'ruﬂSFﬁ(m e l‘npcft solve —},-msy{a/ﬂ 4. oApt-

= O(mn)

Densest Subgraph

Image Segmentation

* Want to identify communities in a network

e “Community”: a set of nodes that have a lot of
connections inside and few outside

Densest Subgraph

* Input: E(A,B)= 3 (i))¢E
* an undirected graph ¢ = (V, E) [€h, JERY
* Qutput:
* a subset of nodes A & V that maximizes 2IE|(:|,A)|
|E(p, M)
i¥ \ Mmaxnmoe (lﬁ_\w

Reduction to MinCut

 Different objectives

* find (4, B) to maximize 2IE(4.4)]

» find (4, B) to minimize |E (4, B)|
7
MINCOT

* Suppose

2|E(A,4)|
4]

& 2|E(A,A)| = 6]A]

> 0 and see what that implies

© Zpeadeg(v) —|E(A,B)| = 5|A|

© Zyey deg(v) — Zyep deg(v) — |E(4, B)| = 6]A|
© 2|E| —Zyep deg(v) — |E(4, B)| = §|4]

& X,cgdeg(v) + 5|A| + |E(A,B)| < 2|E|

é=>zo\43(u\+7—_g+5—_ 1

V€S Y @WVEE for A & R

=

2
A

2)e)

Reduction to MinCut

ves

i deg (V) %\A*’\E(A,@\ N Z\IE]

e ‘A
O —E)

d@m\

[mmcﬁ Ay CY}E 2]\5]]¥ ond on

£3 4
y

Reduction to MinCut

ideg(v\“’ %\A\"'\E(A,@\ 52\5]

ves

o\ej (\'\

Edge-Disjoint Paths

(Edge) Disjoint Paths

* Input: directed graph ¢ = (V,E,s,t)
* Output: a largest set of edge-disjoint s-t paths

* A set of s-t paths Py, ..., Pi is edge disjoint if the paths do
not share any edges

A large set of disjoint paths means we
can tolerate edge failures.

Bipartite Matching

* There is a reduction that uses integer maximum s-t
flow to solve edge disjoint paths.

Step 1: Transform the Input

Input G for EDP # I&T):F?_of\?vr

Step 2: Receive the Output

)
Input G’ for #
MAXFLOW

SolveA

Output f for «
MAXFLOW
—__

Y

Red arrow means f(e)=1
Black means f(e) =0

Step 3: Transform the Output

Output M for « Output f for
MCBM MAXFLOW

Correctness

* Easy Direction: If there are k edge disjoint paths
then there is a flow of value k

Correctness

* Harder Direction: If there is a flow of value k, then
there are k edge disjoint paths

Running Time

* Need to analyze the time for:
* (1) Producing G’ given G
* (2) Finding a maximum flow in G’
* (3) Producing M given G’

Summary

Solving maximum s-t flow in a graph with n
nodes and m edges and c(e)=1intime T

!

Solving edge disjoint paths in a graph with n
nodes and m edges in time T + O(mn)

* Can solve edge disjoint paths in time O(nm) using
Ford-Fulkerson

(Node) Disjoint Paths

* Input: directed graph G = (V,E,s,t)
* Qutput: a largest set of node-disjoint s-t paths

* A set of s-t paths Py, ..., Py is node-disjoint if the paths
do not share any nodes

A large set of disjoint paths means we
can tolerate edge failures.

Step 1: Transform the Input

Input G for NDP # Input G’ for EDP

