CS3000: Algorithms & Data
Jonathan Ullman

Lecture 19:
Midterm Il Review

Nov 13, 2018

Topics to Review

» Key Graph Definitions / Properties
* Directed/Undirected
* Weighted/Unweighted
* Trees, DAGs
e Paths, Cycles
* Connected Components, Strongly Connected Components

Graphs: Key Definitions

lvi=n |El=m

* Definition: A directed graph G = (V, E)
* I/ is the set of nodes/vertices
 F € VXV is the set of edges
* An edgeis an ordered e = (u, v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unordered e = (u, v) “between u and v”

M O © o
 Simple Graph:
p p a‘e‘

* No duplicate edges "
ORNOBRONSO

* No self-loops e = (u,u) (4)
= 0(n®) (6) (13)

Paths/Connectivity

* A path is a sequence of consecutive edges in E
o P ={(u,wy), (wy,wy), Wy, ws), ..., Wr_q, 1)}
*P=u—w;—w, —W3 — -+ —Wj_{1— VU
* The length of the path is the # of edges

* An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

* A directed graph is strongly connected if for every
two vertices u, v € V, there are paths fromu to v
and fromvtou

onnected | ast strongl
OHOREHES wed

Cycles

* Acycleisapathv; —v, — - — v, —v; where
k = 3 and vy, ..., V), are distinct

Loy

Trees

* A simple undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

* Theorem: any two of the following implies the third
* (7 is connected
* (7 contains no cycles (3)
* G has=n —1 edges

Trees

* Rooted tree: choose a root node r and orient
edges away from r

. . "\ &
 Models hierarchical structure s fhe porent

25,% "

X @@
OO o © SESRCRO

25 L
(s5) 2,5 F e~ ‘f“
©) eloren o |

Topics to Review

* Graph Representations
* Adjacency Matrix
» Adjacency List 1 A\ a\agnﬂams ve rbdj e 1Co/

He Mjace/\c:)

Adjacency-Matrix Representation

* The adjacency matrix of a graph G = (V,E) withn
nodes is the matrix A[1: n, 1:n] where

Al 7] = 1 (i,))€E A 112]3] |4
;] — O (l,]) $ E 0 1 1 0
o 0 1 o0
Cost 0o 0o o o
Space: O(n?) o 0o 1 o0

Lookup (u,v): ©(1) time G e
List Neighbors of u: ©(n) time ’

Adjacency Lists (Directed)

* The adjacency list of a vertex v € V' are the lists
* Ayye[v] ofallust. (v,u) € E
e Aj[v]ofallus.t. (u,v) EE

Aout:l: — {2:3} Ain:l: = {}

Apel21= 3} 4,02 = (1) Q'Q
Aout 3 — {} Al‘n 3 = {11214}

Aout 4] = {3} Ain 4] ={} a °

Adjacency-List Representation

* The adjacency list of a vertex v € V is the list A|v]

of all the neighbors of v

Cost

A
A
A
Space: O(n + m) A

List Neighbors of u: O(deg(u) + 1) time

EE N =

={2,3}
= {1,3}
={1,2,4}

| =13}

Lookup (u,v): O(deg(u) + 1) time a’e
(3

Topics to Review

* Finding (short) paths in graphs
e BFS for finding:
e Connected components
e Strongly connected components
* Shortest paths in unweighted graphs (i.e. fewest hops)
* Dijkstra’s algorithm for finding:
* Shortest paths in graphs with non-negative lengths
* Bellman-Ford algorithm for finding:
* Shortest paths in graphs with negative lengths (no neg cycles)
* Negative cycles if they exist
 Structural properties of shortest paths
* Dynamic programming Y (u,v)¢E

e Shortest path trees d(s) ¢ d(s,\ﬂ 4 (40

BFS

* Informal Description: start at s, find all neighbors of
s, find all neighbors of neighbors of s, ...

* BFS Algorithm:
* Lo ={s}
* L = all neighbors of L,
* L, = all neighbors of L4 that are not in Ly, L4
* L; = all neighbors of L;_4 thatarenotin Ly, ..., L 1
e Stop when L, is empty.

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] <« false Vv, found|[s] « true
Let layer[v] <« o Vv, layer([s] <0
Let i<0, L, = {s}, T <0

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] « true, layer|[v] « i+l
Add (u,v) to T and add v to L,

11+l

Implementing Dijkstra

Dijkstra(G = (V,E,{2(e)}, s):

d[s] < 0, d[u] ¢« © for every u != s
parent[u] <1 for every u
Q « V // Q holds the unexplored nodes

While (Q is not empty):

u < argmin d[w] //Find closest unexplored
WEQ

Remove u from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + £2(u,v)):
d[v] «<d[u] + 2 (u,v)
parent[v] < u

Return (d, parent)

Recurrence

* Subproblems: OPT (v, j) is the length of the shortest s ~ v
path with at most j hops

* Case u: (u, v) is final edge on the shortest s ~» v path with
at most j hops

Recurrence:

OPT(v,j) = min {OPT(v,i — 1), min {OPT(u,i -1+ 4, v}}
(u,v)€EE ’

OPT(s,j) = 0 for every j
OPT(v,0) = oo for every v

Implementation (Bottom Up)

Shortest-Path (G, s)
foreach node v € V
M[O,v] <« ©
P[O,v] « ¢
M[O,s] « O

for i =1 to n-1
foreach node v € V
M[i,v] <« M[i-1,vVv]
P[i,v] « P[i-1,vVv]
foreach edge (v, w) € E
if (M[i-1,w] + £, < M[i,v])
M[i,v] « M[i-1,w] + £,
P[i,v] <« w

Topics to Review

e Depth-First Search

* Types of edges (tree, forward, backward, cross)
* Post-ordering

* Topological Sort
* Fast algorithm using DFS

e Other graph algorithms
e 2-coloring

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Yu

DFS (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

Depth-First Search

 Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u,c), (c,b)
* These are the edges that explore new nodes
* Forward edges: (u, b)
* Ancestor to descendant (but ot a child)
» Backward edges: (a, u)
* Descendant to ancestor
* Cross edges: (¢, a)
* No ancestral relation

Post-Ordering 9 @

G = (V,E) is a graph
explored[u] = 0 Yu

(D—1O
explored[u] =1

for ((u,v) in E):
if (explored[v]=0): W H
parent[v] = u /3 1
DF'S (v) I oY
C. 3

post-visit (u)

* Maintain a counter clock, initially setclock = 1

* post-visit(u):
set postorder[u]=clock, clock=clock+1l

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships
ﬂ-\//_‘

ONOJOROSOF OSSO

* A topological ordering of a directed graph is a
labeling of the nodes from v, ..., v, so that all

edges go “forwards”, that is (vi, vj) EE=>j>1
* & has a topological ordering & G is a DAG

¢ _nle feveuse 0‘? o pOﬁ—OJoLU S a +O(olo\3rca) wcLe/

Topics to Review

* Minimum Spanning Trees
* Cut Property / Cycle Property
* Four Algorithms:
* Boruvka
* Prim
e Kruskal
* Anti-Kruskal

Cycles and Cuts

* Cycle: a set of edges (v1, V), (Vy, V3), .., (Vg, V1)

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

Cut S
Cutset

{4, 5, 8}
(5,6), (5,7), (3,4), (3,5), (7,8)

Properties of MSTs

¢ ASSUmQ all QASQ' L)e..“ﬂ\n-{’.s are ditmet.

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge

* Cycle Property: Let C be a cycle. Let e be the
maximum weight edge in C. Then the MST T"* does
not contain e.

* We call such an e a useless edge

MST Algorithms

* There are at least four reasonable MST algorithms

* Borlvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Reverse-Kruskal: start with T = E, consider edges in
descending order, deleting edges unless it disconnects

Topics to Review

* Network Flow
* Definitions (Flows, Cuts, Augmenting Path, W)
* Ford-Fulkerson Algorithm
e Algorithm
* Correctness
* Running time analysis

* Methods for choosing good augmenting paths (but not proofs)
* MaxFlow-MinCut Theorem

Mo va\(ﬂ: min GaF(A,@
£ Ag

’ C(lﬂ Q«Y\& a max How) n O(Mn\ ’L‘me.

Flows

* An s-t flow is a function f(e) such that
* Foreverye €E,0 < f(e) < c(e) (capacity)

* ForeveryV €E, Y intorf(€) = Yeoutofrf(€) (conservation)

* The value of aflow is val(f) = X, qutofs f (€)

capacity — 15
flow
7

Cuts

* Ans-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(A,B) = Y., qut of 2 €(€)

/Kg :@E\
10
4

source /5 w M t) sink

15

!
DA
capacity \%/

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the residual graph
e Repeat until you get stuck

fov & residual SMF\“ CJ‘.(’

1
20 4 |0
20 To)
20 10
\ O
(3) t 20

SN

10 20

30 %
10
' 20
O \@/ @

20

Ford-Fulkerson Algorithm

FordFulkerson (G, s, t, {c})
for e € E: f(e) « 0
G; is the residual graph

while (there is an s-t path P in G;)
f < Augment (G, P)
update G

return £

Augment (G;, P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f(e) + b
else: f(e) « f(e) - b
return £

Review Problems

?QV§QIA ?m\o\em \
:m‘:ag;/

G‘i\ren 73 ‘ﬂou Y'}e‘{'L)O/L C)‘ :(V, E, s, t, {C,(stj ondl

X Maximum ﬁou ‘F’j OU‘l'pﬁ' A //s'(o“f a“ ?Jgu e
S A+, j\nU\eaJm& (’_(e) 5 l Mmaureae) 7LLQ M= #ou,

Ko M fang O(M*tf\).

Cond; date A\ﬁorrﬂmt

’ F:‘OA 'H/*e_ AN Cu‘{' //\#/ %&

. Od’kpu'(' au ed\%j C(osg.\/\j ‘p/o,v-, Ak’lto @A‘

“Proot
cop (AB)

Max \IOI\(’F\5 = omn

' %3 duali‘{'\l) ‘F P

' \/\C(\(’GSM C[f\ 1toj w\j ed&,e Ffom JQ*‘(’Q @
CG\VO'C-’\j 0 qj;l M W

’ _”\wrofe T hovases ‘H,-(_ \la\vr_ o{)/ ’H'L > ﬂo'—-’.

ORSuRNG

L= ? nodes peachalle ‘)Qom S% R=7 nodes -qu-[-‘ can
%(‘cac% t

’ \‘F 10"(63 < C(cl Hen ado/m\j to cle) cmt ceate
AN augmeAtin oth
T

’ \'\1 J&w(ew = Q(Q\J Heen ada!mﬁ to cle) will
adO\ -qu_ e&g,a e \oac\c to "H/-q resrdo el \7r6V0\/\

) afm“’\j e= (u,\’) to ‘H< rej=d el 3/‘°rﬁ\1
creas o Ovjr’LQA‘fm ()C'/’H" }‘H}

0 w B NOC‘/\a\\\,(_ ﬂcmm S ™ G»f”“
© t & reacholde ﬁmm oM ()70‘

FEQUdOCode

O Lot Gp- be He rendoal qrph,
onch C:{;» be e reverie o; CTF*
® Let L R e [ﬂ\owez
® et S=0
@> For ((uv) € E\):
W(nak A‘UERB'.
add (uv) 4o

@ (R{”lum S

\l‘(\’\ \ dec rease C(ey \ij \ oncl ’Fu[e) '-'-C[e) /»LU\

‘(’* 5 no [Ol\jﬂ/ o leja] floo.

Ue Con W‘ﬁ,yh ‘H—e F/o:..: Lj.choowj mn] 0?**"\ ‘vaoy)o
Hle €0’jﬂ e 5.4 all edsss on Hc 'pa% couj }/ou

) =ele)

O—
. A
o SU??OSJL "'\LAL/‘(_ & G w—v ()u‘f’L ™M G'{‘-k

Hlen AI-CPfaJWj cc\pa.c/l7 4 e bj] uel|
I‘w\uca 'HQ MmorX 'ﬁm)

)

Bonus Review Problem

* Prove the following by induction: in any rooted binary tree,
the number of nodes with exactly two children is one less
than the number of leaves.

Review Problem #4

* Design an algorithm that takes an undirected G = (V, E),
and a pair of nodes s, t and outputs the number of shortest
s-t pathsinG.

Review Problem #5

* Design an algorithm to find a fattest s-t path in a flow
network G = (V,E,s,t,{c(e)})

Review Problem #6

* There are n bank accounts 44, ..., 4,,, and you are given m
constraints of the form

* A; was closed before A; opened
* A; and Aj were open (at least partially) simultaneously

* Design an algorithm to determine if there are opening and
closing times for the accounts that satisfy all constraints

Review Problem #7

* Prove the following by contradiction: if G is an undirected
simple graph with 2n nodes, and every node has degree >
n, then G is connected.

