
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	19:	
• Midterm	II	Review

Nov	13,	2018

Topics	to	Review
• Key	Graph	Definitions	/	Properties

• Directed/Undirected
• Weighted/Unweighted
• Trees,	DAGs
• Paths,	Cycles
• Connected	Components,	Strongly	Connected	Components

Graphs:	Key	Definitions

• Definition:	A	directed	graph ! = #, %
• # is	the	set	of	nodes/vertices
• % ⊆ #×# is	the	set	of	edges
• An	edge	is	an	ordered	(=), * “from) to	*”

• Definition: An	undirected	graph ! = #, %
• Edges	are	unordered	(=), * “between) and	*”

• Simple	Graph:
• No	duplicate	edges
• No	self-loops	(=),)

IVI n IE l m

m 0 na

Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
• + =),,- , ,-, ,. , ,., ,/ , … , ,12-, *
• + =) − ,- − ,. − ,/ −⋯−,12- − *
• The	length of	the	path	is	the	#	of	edges

• An	undirected graph	is	connected if	for	every	two	
vertices), * ∈ #,	there	is	a	path	from) to	*
• A	directed graph	is	strongly	connected if	for	every	
two	vertices), * ∈ #,	there	are	paths	from) to	*
and	from	* to)

D 4BF f
nu stongy

Cycles

• A	cycle is	a	path	*- − *. −⋯− *1 − *- where		
6 ≥ 3 and	*-, … , *1 are	distinct

Trees

• A	simple	undirected	graph	! is	a	tree if:
• ! is	connected
• ! contains	no	cycles

• Theorem: any	two	of	the	following	implies	the	third
• ! is	connected
• ! contains	no	cycles
• ! has	= 9 − 1 edges

Trees

• Rooted	tree:	choose	a	root	node	; and	orient	
edges	away	from	;
• Models	hierarchical	structure I is the parentof

2,5 7

root

2 5,77 are the
children of 1

Topics	to	Review
• Graph	Representations

• Adjacency	Matrix
• Adjacency	List All algorithms we study are for

the adjacency

Adjacency-Matrix	Representation

• The	adjacency	matrix of	a	graph	! = #, % with	9
nodes	is	the	matrix	< 1: 9	, 1: 9 where

< ?, @ = 	 A1					 ?, @ ∈ %
	0					 ?, @ ∉ %

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Cost
Space:	Θ 9.

Lookup	(u,v):	Θ 1 time
List	Neighbors	of	u:	Θ 9 time

2 1

3 4

Adjacency	Lists	(Directed)

• The	adjacency	list of	a	vertex	* ∈ # are	the	lists
• <EFG[*] of	all) s.t.	 *,) ∈ %
• <JK[*] of	all) s.t.), * ∈ %

2 1

3 4

<EFG 1 = 2,3
<EFG 2 = 3
<EFG 3 = 	
<EFG 4 = 3

<JK 1 = 	
<JK 2 = 1
<JK 3 = 1,2,4
<JK 4 = 	

Adjacency-List	Representation

• The	adjacency	list of	a	vertex	* ∈ # is	the	list	<[*]
of	all	the	neighbors	of	*

2 1

3 4

• < 1 = 2,3
• < 2 = 1,3
• < 3 = 1,2,4	
• < 4 = 3

Cost
Space:	Θ 9 +O

Lookup	(u,v):	Θ deg) + 1 time
List	Neighbors	of	u:	Θ deg) + 1 time

Topics	to	Review
• Finding	(short)	paths	in	graphs

• BFS	for	finding:
• Connected	components
• Strongly	connected	components
• Shortest	paths	in	unweighted graphs	(i.e.	fewest	hops)

• Dijkstra’s algorithm	for	finding:
• Shortest	paths	in	graphs	with	non-negative	lengths

• Bellman-Ford	algorithm	for	finding:
• Shortest	paths	in	graphs	with	negative	lengths	(no	neg cycles)
• Negative	cycles	if	they	exist

• Structural	properties	of	shortest	paths
• Dynamic	programming
• Shortest	path	trees

H un CEEf
dis v t dls.ie team

BFS

• Informal	Description: start	at	S,	find	all	neighbors	of	
S,	find	all	neighbors	of	neighbors	of	S,	…

• BFS	Algorithm:
• TU = S
• T- = all	neighbors	of	TU
• T. = all	neighbors	of	T- that	are	not	in	TU, T-
• …
• TV = all	neighbors	of	TV2- that	are	not	in	TU, … , TV2-
• Stop	when	TVW- is	empty.

Breadth-First	Search	Implementation

BFS(G = (V,E), s):
Let found[v]	←	false ∀v, found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true, layer[v]←	i+1
Add (u,v) to T and add v to Li+1

i	←	i+1

Implementing	Dijkstra
Dijkstra(G = (V,E,{ℓ(e)}, s):
d[s] ← 0, d[u] ← ∞ for every u != s
parent[u]←⊥ for every u
Q ← V // Q holds the unexplored nodes

While (Q is not empty):
) ← argmin

b∈c
d , //Find closest unexplored

Remove) from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + ℓ(u,v)):
d[v] ← d[u] + ℓ(u,v)
parent[v]←	u

Return (d, parent)

Recurrence

• Subproblems: OPT *, @ is	the	length	of	the	shortest	S ↝ *
path	with	at	most	@ hops
• Case	u: (), *) is	final	edge	on	the	shortest	S ↝ * path	with	
at	most	@ hops

OPT *, @ = min OPT *, ? − 1 , min(F,k)∈l OPT), ? − 1 + ℓF,k

OPT *, 0 = ∞ for	every	*
OPT S, @ = 0 for	every	@

Recurrence:

Implementation	(Bottom	Up)
Shortest-Path(G, s)

foreach node v Î V
M[0,v] ¬ ¥
P[0,v] ¬ f

M[0,s] ¬ 0

for i = 1 to n-1
foreach node v Î V
M[i,v] ¬ M[i-1,v]
P[i,v] ¬ P[i-1,v]
foreach edge (v, w) Î E

if (M[i-1,w] + ℓwv < M[i,v])
M[i,v] ¬ M[i-1,w] + ℓwv
P[i,v] ¬ w

Topics	to	Review
• Depth-First	Search

• Types	of	edges	(tree,	forward,	backward,	cross)
• Post-ordering

• Topological	Sort
• Fast	algorithm	using	DFS

• Other	graph	algorithms
• 2-coloring

Depth-First	Search

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u b

a c

forward

N
cross

ya forward

Is

Depth-First	Search

u b

a c

• Fact: The	parent-child	edges	form	a	(directed)	tree
• Each	edge	has	a	type:
• Tree	edges:	(), n), (), o), (o, p)

• These	are	the	edges	that	explore	new	nodes
• Forward	edges:	(), p)

• Ancestor	to	descendant
• Backward	edges:	 n,)

• Descendant	to	ancestor
• Cross	edges:	(o, n)

• No	ancestral	relation

but not a child

Post-Ordering

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u b

a c

• Maintain	a	counter	clock,	initially	set	clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order

4 2

I 3

U 4
a 1
b 2
c 3

Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed	graph	with	no	directed	cycles
• DAGs	represent	precedence relationships

• A	topological	ordering of	a	directed	graph	is	a	
labeling	of	the	nodes	from	*-, … , *K so	that	all	
edges	go	“forwards”,	that	is	 *J, *q ∈ % ⇒ @ > ?
• t has	a	topological	ordering	⟺t is	a	DAG

The reverse of a post order is a topological order

Topics	to	Review
• Minimum	Spanning	Trees

• Cut	Property	/	Cycle	Property
• Four	Algorithms:

• Boruvka
• Prim
• Kruskal
• Anti-Kruskal

Cycles	and	Cuts

• Cycle: a	set	of	edges	 *-, *. , *., */ , … , *1, *-

Cycle	C		=		(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

• Cut: a	subset	of	nodes	v
1

3

8

2

6

7

4

5

Cut	S							 =		{4,	5,	8}
Cutset =		(5,6),	(5,7),	(3,4),	(3,5),	(7,8)

S

Properties	of	MSTs

• Cut	Property:	Let	v be	a	cut.		Let	(be	the	minimum	
weight	edge	cut	by	v.		Then	the	MST	w∗ contains	(
• We	call	such	an	(a	safe	edge

• Cycle	Property: Let	y be	a	cycle.		Let	(be	the	
maximum	weight	edge	in	y.		Then	the	MST	w∗ does	
not	contain	(.
• We	call	such	an	(a	useless	edge

Assume all edge weights are distinct

MST	Algorithms

• There	are	at	least	four	reasonable	MST	algorithms
• Borůvka’s Algorithm: start	with	w = ∅,	in	each	round	
add	cheapest	edge	out	of	each	connected	component

• Prim’s	Algorithm: start	with	some	S,	at	each	step	add	
cheapest	edge	that	grows	the	connected	component

• Kruskal’s Algorithm: start	with	w = ∅,	consider	edges	in	
ascending	order,	adding	edges	unless	they	create	a	cycle

• Reverse-Kruskal: start	with	w = %,	consider	edges	in	
descending	order,	deleting	edges	unless	it	disconnects

Topics	to	Review
• Network	Flow

• Definitions	(Flows,	Cuts,	Augmenting	Path,	Residual	Graph)
• Ford-Fulkerson	Algorithm

• Algorithm
• Correctness
• Running	time	analysis
• Methods	for	choosing	good	augmenting	paths	(but	not	proofs)

• MaxFlow-MinCut Theorem
mmfax

Val f min cap AB
A B

Can find a max flow in 0 mn time

Flows
• An	s-t	flow is	a	function	z (such	that

• For	every	(∈ %,	0 ≤ z (≤ o ((capacity)
• For	every	* ∈ %,	∑ z (�

~	�Ä	ÅÇ	k = ∑ z (�
~	ÇÉÅ	ÇÑ	k (conservation)

• The	value of	a	flow	is	*n� z = 	∑ z (�
~	ÇÉÅ	ÇÑ	Ü

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Cuts
• An	s-t	cut is	a	partition	(<, �) of	# with	S ∈ < and	� ∈ �

• The	capacity of	a	cut	(A,B)	is	on� <, � = ∑ o (�
~	ÇÉÅ	ÇÑ	ä

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Ford-Fulkerson	Algorithm
• Start	with	z (= 0 for	all	edges	(∈ %
• Find	an	augmenting	path + in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30

flow f residual graph Gf

so

Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Review	Problems

Revie intege

Given a flow network G V E s t W and

a maximum flow f atpit a listof all edges e

s t
increasing ele by 1 increases the max flow

Run in time 0 mtn

CmdidaKAgor.hn
Find the man at A B

Output all edges crossing
from A to B

Proof

Fy duality mfax
vallf main cap AB

Increasing cle
for any edge from A to B increases

capac.tyofthem.net
Therefore it increases the value of the max flow

e fu v

L nodesreachable froms

If f e s c e then adding to cle cast create

an
augmenting path

If f e c e then adding to cle will

add the edge e back to the residual graph

adding e un to the residual graph
creates an augmenting path iff

U B reachable from s in Gfa

t is reachable from v m Gfa

Pseudocodey

Let Gfa be the residual graph
and GRfa be the reverse of Gfa

Let L R be above

let 5 0

For fan C E

If f ut L A VER

add un to S

Return S

If I decrease cle by 1 and f e Cle then

ft is no longer a legal floor

We can fix the flow by choosing my path through

the edge e s 1 all edges on the path carry
flow

To
f e de

i
i i

suppose there is a U su path in Gfa
P Q
P Q

ther decreasing capacity of
e by I willnot

reduce the max flow

Bonus	Review	Problem

• Prove	the	following	by	induction:	in	any	rooted	binary	tree,	
the	number	of	nodes	with	exactly	two	children	is	one	less	
than	the	number	of	leaves.

Review	Problem	#4

• Design	an	algorithm	that	takes	an	undirected	! = #, % ,	
and	a	pair	of	nodes	S, � and	outputs	the	number	of	shortest	
S-� paths	in	!.

Review	Problem	#5

• Design	an	algorithm	to	find	a	fattest	S-� path	in	a	flow	
network !	 = 	 (#, %, S, �, {o(()})

Review	Problem	#6

• There	are	9 bank	accounts	<-,… , <K,	and	you	are	given	O
constraints	of	the	form
• <J was	closed	before	<q opened
• <J and	<q were	open	(at	least	partially)	simultaneously

• Design	an	algorithm	to	determine	if	there	are	opening	and	
closing	times	for	the	accounts	that	satisfy	all	constraints

Review	Problem	#7

• Prove	the	following	by	contradiction:	if	! is	an	undirected	
simple	graph	with	29 nodes,	and	every	node	has	degree	≥
9,	then	! is	connected.

