
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	19:	
• Midterm	II	Review

Nov	13,	2018

Topics	to	Review
• Key	Graph	Definitions	/	Properties

• Directed/Undirected
• Weighted/Unweighted
• Trees,	DAGs
• Paths,	Cycles
• Connected	Components,	Strongly	Connected	Components

Graphs:	Key	Definitions

• Definition:	A	directed	graph ! = #, %
• # is	the	set	of	nodes/vertices
• % ⊆ #×# is	the	set	of	edges
• An	edge	is	an	ordered	(=), * “from) to	*”

• Definition: An	undirected	graph ! = #, %
• Edges	are	unordered	(=), * “between) and	*”

• Simple	Graph:
• No	duplicate	edges
• No	self-loops	(=),)

IVI n IE l m

m 0 na

Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
• + =),,- , ,-, ,. , ,., ,/ , … , ,12-, *
• + =) − ,- − ,. − ,/ −⋯−,12- − *
• The	length of	the	path	is	the	#	of	edges

• An	undirected graph	is	connected if	for	every	two	
vertices), * ∈ #,	there	is	a	path	from) to	*
• A	directed graph	is	strongly	connected if	for	every	
two	vertices), * ∈ #,	there	are	paths	from) to	*
and	from	* to)

D 4BF f
nu stongy

Cycles

• A	cycle is	a	path	*- − *. −⋯− *1 − *- where		
6 ≥ 3 and	*-, … , *1 are	distinct

Trees

• A	simple	undirected	graph	! is	a	tree if:
• ! is	connected
• ! contains	no	cycles

• Theorem: any	two	of	the	following	implies	the	third
• ! is	connected
• ! contains	no	cycles
• ! has	= 9 − 1 edges

Trees

• Rooted	tree:	choose	a	root	node	; and	orient	
edges	away	from	;
• Models	hierarchical	structure I is the parentof

2,5 7

root

2 5,77 are the
children of 1

Topics	to	Review
• Graph	Representations

• Adjacency	Matrix
• Adjacency	List All algorithms we study are for

the adjacency

Adjacency-Matrix	Representation

• The	adjacency	matrix of	a	graph	! = #, % with	9
nodes	is	the	matrix	< 1: 9	, 1: 9 where

< ?, @ = 	 A1					 ?, @ ∈ %
	0					 ?, @ ∉ %

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Cost
Space:	Θ 9.

Lookup	(u,v):	Θ 1 time
List	Neighbors	of	u:	Θ 9 time

2 1

3 4

Adjacency	Lists	(Directed)

• The	adjacency	list of	a	vertex	* ∈ # are	the	lists
• <EFG[*] of	all) s.t.	 *,) ∈ %
• <JK[*] of	all) s.t.), * ∈ %

2 1

3 4

<EFG 1 = 2,3
<EFG 2 = 3
<EFG 3 = 	
<EFG 4 = 3

<JK 1 = 	
<JK 2 = 1
<JK 3 = 1,2,4
<JK 4 = 	

Adjacency-List	Representation

• The	adjacency	list of	a	vertex	* ∈ # is	the	list	<[*]
of	all	the	neighbors	of	*

2 1

3 4

• < 1 = 2,3
• < 2 = 1,3
• < 3 = 1,2,4	
• < 4 = 3

Cost
Space:	Θ 9 +O

Lookup	(u,v):	Θ deg) + 1 time
List	Neighbors	of	u:	Θ deg) + 1 time

Topics	to	Review
• Finding	(short)	paths	in	graphs

• BFS	for	finding:
• Connected	components
• Strongly	connected	components
• Shortest	paths	in	unweighted graphs	(i.e.	fewest	hops)

• Dijkstra’s algorithm	for	finding:
• Shortest	paths	in	graphs	with	non-negative	lengths

• Bellman-Ford	algorithm	for	finding:
• Shortest	paths	in	graphs	with	negative	lengths	(no	neg cycles)
• Negative	cycles	if	they	exist

• Structural	properties	of	shortest	paths
• Dynamic	programming
• Shortest	path	trees

H un CEEf
dis v t dls.ie team

BFS

• Informal	Description: start	at	S,	find	all	neighbors	of	
S,	find	all	neighbors	of	neighbors	of	S,	…

• BFS	Algorithm:
• TU = S
• T- = all	neighbors	of	TU
• T. = all	neighbors	of	T- that	are	not	in	TU, T-
• …
• TV = all	neighbors	of	TV2- that	are	not	in	TU, … , TV2-
• Stop	when	TVW- is	empty.

Breadth-First	Search	Implementation

BFS(G = (V,E), s):
Let found[v]	←	false ∀v, found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true, layer[v]←	i+1
Add (u,v) to T and add v to Li+1

i	←	i+1

Implementing	Dijkstra
Dijkstra(G = (V,E,{ℓ(e)}, s):
d[s] ← 0, d[u] ← ∞ for every u != s
parent[u]←⊥ for every u
Q ← V // Q holds the unexplored nodes

While (Q is not empty):
) ← argmin

b∈c
d , //Find closest unexplored

Remove) from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + ℓ(u,v)):
d[v] ← d[u] + ℓ(u,v)
parent[v]←	u

Return (d, parent)

Recurrence

• Subproblems: OPT *, @ is	the	length	of	the	shortest	S ↝ *
path	with	at	most	@ hops
• Case	u: (), *) is	final	edge	on	the	shortest	S ↝ * path	with	
at	most	@ hops

OPT *, @ = min OPT *, ? − 1 , min(F,k)∈l OPT), ? − 1 + ℓF,k

OPT *, 0 = ∞ for	every	*
OPT S, @ = 0 for	every	@

Recurrence:

Implementation	(Bottom	Up)
Shortest-Path(G, s)

foreach node v Î V
M[0,v] ¬ ¥
P[0,v] ¬ f

M[0,s] ¬ 0

for i = 1 to n-1
foreach node v Î V
M[i,v] ¬ M[i-1,v]
P[i,v] ¬ P[i-1,v]
foreach edge (v, w) Î E

if (M[i-1,w] + ℓwv < M[i,v])
M[i,v] ¬ M[i-1,w] + ℓwv
P[i,v] ¬ w

Topics	to	Review
• Depth-First	Search

• Types	of	edges	(tree,	forward,	backward,	cross)
• Post-ordering

• Topological	Sort
• Fast	algorithm	using	DFS

• Other	graph	algorithms
• 2-coloring

Depth-First	Search

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u b

a c

forward

N
cross

ya forward

Is

Depth-First	Search

u b

a c

• Fact: The	parent-child	edges	form	a	(directed)	tree
• Each	edge	has	a	type:
• Tree	edges:	(), n), (), o), (o, p)

• These	are	the	edges	that	explore	new	nodes
• Forward	edges:	(), p)

• Ancestor	to	descendant
• Backward	edges:	 n,)

• Descendant	to	ancestor
• Cross	edges:	(o, n)

• No	ancestral	relation

but not a child

4 2

I 3

U 4
a 1
b 2
c 3

Post-Ordering

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u b

a c

• Maintain	a	counter	clock,	initially	set	clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order

The reverse of a post order is a topological order

Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed	graph	with	no	directed	cycles
• DAGs	represent	precedence relationships

• A	topological	ordering of	a	directed	graph	is	a	
labeling	of	the	nodes	from	*-, … , *K so	that	all	
edges	go	“forwards”,	that	is	 *J, *q ∈ % ⇒ @ > ?
• t has	a	topological	ordering	⟺t is	a	DAG

Topics	to	Review
• Minimum	Spanning	Trees

• Cut	Property	/	Cycle	Property
• Four	Algorithms:

• Boruvka
• Prim
• Kruskal
• Anti-Kruskal

Cycles	and	Cuts

• Cycle: a	set	of	edges	 *-, *. , *., */ , … , *1, *-

Cycle	C		=		(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

• Cut: a	subset	of	nodes	v
1

3

8

2

6

7

4

5

Cut	S							 =		{4,	5,	8}
Cutset =		(5,6),	(5,7),	(3,4),	(3,5),	(7,8)

S

Assume all edge weights are distinct

Properties	of	MSTs

• Cut	Property:	Let	v be	a	cut.		Let	(be	the	minimum	
weight	edge	cut	by	v.		Then	the	MST	w∗ contains	(
• We	call	such	an	(a	safe	edge

• Cycle	Property: Let	y be	a	cycle.		Let	(be	the	
maximum	weight	edge	in	y.		Then	the	MST	w∗ does	
not	contain	(.
• We	call	such	an	(a	useless	edge

MST	Algorithms

• There	are	at	least	four	reasonable	MST	algorithms
• Borůvka’s Algorithm: start	with	w = ∅,	in	each	round	
add	cheapest	edge	out	of	each	connected	component

• Prim’s	Algorithm: start	with	some	S,	at	each	step	add	
cheapest	edge	that	grows	the	connected	component

• Kruskal’s Algorithm: start	with	w = ∅,	consider	edges	in	
ascending	order,	adding	edges	unless	they	create	a	cycle

• Reverse-Kruskal: start	with	w = %,	consider	edges	in	
descending	order,	deleting	edges	unless	it	disconnects

mmfax

Val f min cap AB
A B

Can find a max flow in 0 mn time

Topics	to	Review
• Network	Flow

• Definitions	(Flows,	Cuts,	Augmenting	Path,	Residual	Graph)
• Ford-Fulkerson	Algorithm

• Algorithm
• Correctness
• Running	time	analysis
• Methods	for	choosing	good	augmenting	paths	(but	not	proofs)

• MaxFlow-MinCut Theorem

Flows
• An	s-t	flow is	a	function	z (such	that

• For	every	(∈ %,	0 ≤ z (≤ o ((capacity)
• For	every	* ∈ %,	∑ z (�

~	�Ä	ÅÇ	k = ∑ z (�
~	ÇÉÅ	ÇÑ	k (conservation)

• The	value of	a	flow	is	*n� z = 	∑ z (�
~	ÇÉÅ	ÇÑ	Ü

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Cuts
• An	s-t	cut is	a	partition	(<, �) of	# with	S ∈ < and	� ∈ �

• The	capacity of	a	cut	(A,B)	is	on� <, � = ∑ o (�
~	ÇÉÅ	ÇÑ	ä

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

flow f residual graph Gf

so

Ford-Fulkerson	Algorithm
• Start	with	z (= 0 for	all	edges	(∈ %
• Find	an	augmenting	path + in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30

Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Review	Problems

Revie intege

Given a flow network G V E s t W and

a maximum flow f atpit a listof all edges e

s t
increasing ele by 1 increases the max flow

Run in time 0 mtn

CmdidaKAgor.hn
Find the man at A B

Output all edges crossing
from A to B

Proof

Fy duality mfax
vallf main cap AB

Increasing cle
for any edge from A to B increases

capac.tyofthem.net
Therefore it increases the value of the max flow

e fu v

L nodesreachable froms

If f e s c e then adding to cle cast create

an
augmenting path

If f e c e then adding to cle will

add the edge e back to the residual graph

adding e un to the residual graph
creates an augmenting path iff

U B reachable from s in Gfa

t is reachable from v m Gfa

Pseudocodey

Let Gfa be the residual graph
and GRfa be the reverse of Gfa

Let L R be above

let 5 0

For fan C E

If f ut L A VER

add un to S

Return S

Bonus	Review	Problem

• Prove	the	following	by	induction:	in	any	rooted	binary	tree,	
the	number	of	nodes	with	exactly	two	children	is	one	less	
than	the	number	of	leaves.

If I decrease cle by 1 and f e Cle then

ft is no longer a legal floor

We can fix the flow by choosing my path through

the edge e s 1 all edges on the path carry
flow

To
f e de

i
i i

suppose there is a U su path in Gfa
P Q
P Q

ther decreasing capacity of
e by I willnot

reduce the max flow

Review	Problem	#4

• Design	an	algorithm	that	takes	an	undirected	! = #, % ,	
and	a	pair	of	nodes	S, � and	outputs	the	number	of	shortest	
S-� paths	in	!.

Review	Problem	#5

• Design	an	algorithm	to	find	a	fattest	S-� path	in	a	flow	
network !	 = 	 (#, %, S, �, {o(()})

Review	Problem	#6

• There	are	9 bank	accounts	<-,… , <K,	and	you	are	given	O
constraints	of	the	form
• <J was	closed	before	<q opened
• <J and	<q were	open	(at	least	partially)	simultaneously

• Design	an	algorithm	to	determine	if	there	are	opening	and	
closing	times	for	the	accounts	that	satisfy	all	constraints

Review	Problem	#7

• Prove	the	following	by	contradiction:	if	! is	an	undirected	
simple	graph	with	29 nodes,	and	every	node	has	degree	≥
9,	then	! is	connected.

Problem 1. DFS and Topological Ordering

a b c

d e f

g h i

Consider running depth-first search on this graph starting from node a. When there are
multiple choices for the next node to visit, go in alphabetical order.

(a) Label every edge as either tree, forward, backward, or cross.

Solution:

(b) Give the post-order numbers of all vertices

Solution:

(c) Is this graph a DAG? Support your answer by either showing a topological ordering or a
directed cycle.

Solution:

2

