CS3000: Algorithms & Data
Jonathan Ullman

Lecture 19:
Midterm Il Review

Nov 13, 2018



Topics to Review

» Key Graph Definitions / Properties
* Directed/Undirected
* Weighted/Unweighted
* Trees, DAGs
e Paths, Cycles
* Connected Components, Strongly Connected Components



Graphs: Key Definitions

* Definition: A directed graph ¢ = (V,E) .,
* I/ is the set of nodes/vertices [Vl=n i melos ()¢
« £ € VXVisthesetofedges 1E]=m me (ol
* An edge is an ordered ¢ = (1, V) “From U t0 V" oeeted

* Definition: An undirected graph ¢ = (V, E)

* Edges are unordered e = (u, v) “between u and v”
, OBROBNORNO
e Simple Graph:

. . a‘e
No duplicate edges "
* No self-loops e = (u,u) (—= © @



Paths/Connectivity

* A path is a sequence of consecutive edges in E
* P = {(u: Wl): (W1; WZ)' (Wz, W3)r ey (Wk—lr U)}
*P=u—w;—w, —W3 — -+ —Wj_{1— VU
* The length of the path is the # of edges

* An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

* A directed graph is strongly connected if for every
two vertices u, v € V, there are paths fromu to v
and fromvtou



Cycles

* Acycleisapathv; —v, — - — v, —v; where
k = 3 and vy, ..., V), are distinct

Loy



Trees

* A simple undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

* Theorem: any two of the following implies the third
* (7 is connected
* (7 contains no cycles (3)
* G has=n —1 edges



Trees

* Rooted tree: choose a root node r and orient
edges away from r
* Models hierarchical structure

/
“2,2 are He culdeenof | P
—~ \
2 )

O AN
@p@ © 6 @

“\ s He Pw&/\fo'Pz ’




Topics to Review

* Graph Representations
* Adjacency Matrix

* Adjacency List [ Al aijor:—f\nmj ve S’l’oo{j use adjamcj 7t



Adjacency-Matrix Representation

* The adjacency matrix of a graph G = (V,E) withn
nodes is the matrix A[1: n, 1:n] where

Al 7] = 1 (i,))€E A 112 ]3] |4
;] — O (l,]) $ E 0 1 1 0
o 0 1 o0
Cost 0o 0o o o
Space: O(n?) o 0o 1 o0

Lookup (u,v): ©(1) time G e
List Neighbors of u: ©(n) time ’



Adjacency Lists (Directed)

* The adjacency list of a vertex v € V' are the lists
* Ayye[v] ofallust. (v,u) € E
e Aj[v]ofallus.t. (u,v) EE

Aout:l: — {2:3} Ain:l: = {}

Apel21= 3} 4,02 = (1) Q'Q
Aout 3 — {} Al‘n 3 = {11214}

Aout 4] = {3} Ain 4] ={} a °




Adjacency-List Representation

* The adjacency list of a vertex v € V is the list A|v]

of all the neighbors of v

Cost

A
A
A
Space: O(n + m) A

List Neighbors of u: O(deg(u) + 1) time

EE N =

={2,3}
= {1,3}
={1,2,4}

| =13}

Lookup (u,v): O(deg(u) + 1) time a’e
(3



Topics to Review

* Finding (short) paths in graphs

e BFS for finding:
e Connected components
e Strongly connected components
* Shortest paths in unweighted graphs (i.e. fewest hops)

* Dijkstra’s algorithm for finding:
* Shortest paths in graphs with non-negative lengths

* Bellman-Ford algorithm for finding:
* Shortest paths in graphs with negative lengths (no neg cycles)
* Negative cycles if they exist

 Structural properties of shortest paths
* Dynamic programming ¥ (u,v)€E . d (50) ¢ d (5 +L(wv)
* Shortest path trees



BFS

* Informal Description: start at s, find all neighbors of
s, find all neighbors of neighbors of s, ...

* BFS Algorithm:
* Lo ={s}
* L = all neighbors of L,
* L, = all neighbors of L4 that are not in Ly, L4
* L; = all neighbors of L;_4 thatarenotin Ly, ..., L 1
e Stop when L, is empty.



Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] <« false Vv, found|[s] « true
Let layer[v] <« o Vv, layer([s] <0
Let i<0, L, = {s}, T <0

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] « true, layer|[v] « i+l
Add (u,v) to T and add v to L,

11+l



Implementing Dijkstra

Dijkstra(G = (V,E,{2(e)}, s):

d[s] < 0, d[u] ¢« © for every u != s
parent[u] <1 for every u
Q « V // Q holds the unexplored nodes

While (Q is not empty):

u < argmin d[w] //Find closest unexplored
WEQ

Remove u from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + £2(u,v)):
d[v] «<d[u] + 2 (u,v)
parent[v] < u

Return (d, parent)



Recurrence

* Subproblems: OPT (v, j) is the length of the shortest s ~ v
path with at most j hops

* Case u: (u, v) is final edge on the shortest s ~» v path with
at most j hops

Recurrence:

OPT(v,j) = min {OPT(v,i — 1), min {OPT(u,i -1+ 4, v}}
(u,v)€EE ’

OPT(s,j) = 0 for every j
OPT(v,0) = oo for every v



Implementation (Bottom Up)

Shortest-Path (G, s)
foreach node v € V
M[O,v] <« ©
P[O,v] « ¢
M[O,s] « O

for i =1 to n-1
foreach node v € V
M[i,v] <« M[i-1,vVv]
P[i,v] « P[i-1,vVv]
foreach edge (v, w) € E
if (M[i-1,w] + £, < M[i,v])
M[i,v] « M[i-1,w] + £,
P[i,v] <« w



Topics to Review

e Depth-First Search
* Types of edges (tree, forward, backward, cross)
« Post-ordering ( Fre-ord UMSD
* Topological Sort
* Fast algorithm using DFS
e Other graph algorithms
e 2-coloring



Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Yu

DFS (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)




Depth-First Search

 Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u,c), (c,b)
* These are the edges that explore new nodes
* Forward edges: (u, b)
* Ancestor to descendant
» Backward edges: (a, u)
* Descendant to ancestor
* Cross edges: (¢, a)
* No ancestral relation




@M” —()
m@w@



starts L stert: S

Post-Ordering ol =3 s

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
explored[u] =1 sﬂd stafH
end: F
’O.fd\V
for ((a.v) in 5. preots

if (explored[v]=0): L

parent[v] = u
DF'S (v)

o 9

post-visit (u) ¢

A
y
3
O- @
* Maintain a counter clock, initially set clock =

* post-visit(u):

1
S
&

set postorder[u]=clock, clock=clock+1l



Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

o
ONOJOROSOF OSSO

* A topological ordering of a directed graph is a
labeling of the nodes from v, ..., v, so that all

edges go “forwards”, that is (vi, vj) EE=>j>1
* & has a topological ordering & G is a DAG

‘ ?evwm og po_\»f-ordg N oa ‘(’o(OIijcCcl orohe/ma



Topics to Review

* Minimum Spanning Trees
* Cut Property / Cycle Property
* Four Algorithms:
* Boruvka
* Prim
e Kruskal
* Anti-Kruskal



Cycles and Cuts

* Cycle: a set of edges (v1, V), (Vy, V3), .., (Vg, V1)

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

Cut S
Cutset

{4, 5, 8}
(5,6), (5,7), (3,4), (3,5), (7,8)




Properties of MSTs

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge

* Cycle Property: Let C be a cycle. Let e be the
maximum weight edge in C. Then the MST T"* does
not contain e.

* We call such an e a useless edge



MST Algorithms

* There are at least four reasonable MST algorithms

* Borlvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Reverse-Kruskal: start with T = E, consider edges in
descending order, deleting edges unless it disconnects



Topics to Review

* Network Flow
» Definitions (Flows, Cuts, Augmenting Path, Residual Graph)
* Ford-Fulkerson Algorithm
e Algorithm
* Correctness
* Running time analysis

* Methods for choosing good augmenting paths (but not proofs)
* MaxFlow-MinCut Theorem



Flows

* An s-t flow is a function f(e) such that
* Foreverye €E,0 < f(e) < c(e) (capacity)

* ForeveryV €E, Y intorf(€) = Yeoutofrf(€) (conservation)

* The value of aflow is val(f) = X, qutofs f (€)

capacity — 15
flow
7




Cuts

* Ans-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(A,B) = Y., qut of 2 €(€)

/Kg :@E\
10
4

source /5 w M t) sink

15

!
DA
capacity \%/




Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the residual graph

e Repeat until you get stuck

flow 4

|0
20/\¢ 20 (O

20 10

\0 \ 20 © @

30 @ /@ &)
10 20 \ Lo
b ®
\

(o3 doar) 3M|°\” GP




Ford-Fulkerson Algorithm

FordFulkerson (G, s, t, {c})
for e € E: f(e) « 0
G; is the residual graph

while (there is an s-t path P in G;) O(m\ 4
f < Augment (G;,P) e
update G, ?U'af3fa*%
return £

Augment (G;, P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f(e) + b
else: f(e) « f(e) - b
return £



Review Problems



/P\QVIQLJ QUQ ytion - /Mf?gw (% ety

Gi\ltn a ‘r}ou netvork G”* (\/} E/ s, €, ?C{e)fs
Olnd oA MaxXimum ‘HOLJ ')['j '(‘,\QJ a” @dggj eéE

s, inUYOJMi C{e\ ‘D\\j 1 Uill moeare %Le Va[wg

olp +L{ Mmax hum ﬂou,

How Lodd .mrcasmj C(e) \o:) \ chamyz e m’:d““]jmﬁ\«

: H ‘Fa(C} < C(ej_, +LQA ‘,’La eda,z va) a\read
y
N +L€- i‘f‘)?o‘ua‘ j\/‘af\q

\f Q*(a" C(e\\J Hn ?r\ufom\j co\pamj\j |
psts e bock M fle residual jm}p\ﬂ
~ lnerae fo max Hoo O w mac\nakla{/OMS/
€ 6 rochale dom v [ ez (wd) )



PSQUOIOCO(M\

"Let L be all noclers mac%a\a\zfmm s m Gf*

) \,Q’% (R \oe, o(“ nodus NaC%O)o\,e ‘pm(r\ —é m G#J

(usm ed%) Eac\;uws
. Q=
Y ( (uv) C'E/w g
W( we LA V{"KSZ
CLACX (M,V} '{’o S

- Ou’\(vJ( <
Or\?‘éml’fl R‘J:dua\ 7
@ $(e\/C(Q)>@ /CR@

O

max \ra\(‘?v m O CW(A/B}
(A,06)

oporoyore



Bonus Review Problem

* Prove the following by induction: in any rooted binary tree,
the number of nodes with exactly two children is one less
than the number of leaves.



Review Problem #4

* Design an algorithm that takes an undirected G = (V, E),
and a pair of nodes s, t and outputs the number of shortest
s-t pathsinG.



Review Problem #5

* Design an algorithm to find a fattest s-t path in a flow
network G = (V,E,s,t,{c(e)})



Review Problem #6

* There are n bank accounts 44, ..., 4,,, and you are given m
constraints of the form

* A; was closed before A; opened
* A; and Aj were open (at least partially) simultaneously

* Design an algorithm to determine if there are opening and
closing times for the accounts that satisfy all constraints



Review Problem #7

* Prove the following by contradiction: if G is an undirected
simple graph with 2n nodes, and every node has degree >
n, then G is connected.



Problem 1. DFS and Topological Ordering

O
KL

Consider running depth-first search on this graph starting from node a. When there are
multiple choices for the next node to visit, go in alphabetical order.

M
-

Y
e

(a) Label every edge as either tree, forward, backward, or cross.
Solution:

(b) Give the post-order numbers of all vertices
Solution:

(c) Is this graph a DAG? Support your answer by either showing a topological ordering or a
directed cycle.

Solution:



