CS3000: Algorithms & Data
Jonathan Ullman

Lecture 18:
 Network Flow: choosing good paths

Nov 9, 2018

Flow Networks

* Directed graph ¢ = (V,E)
* Two special nodes: source s and sink ¢
* Edge capacities c(e)

AT
10 4 10
source /5 %\ \g 10 » t) sink
|)
4 15
capacity — 5\ ‘ \g/

10

Flows

* An s-t flow is a function f(e) such that

* Foreverye €E,0 < f(e) < c(e) (capacity)
* Forevery®@%#,) cintov) (€) = Yeoutofnf(€) (conservation)
VEV v#g t
* The value of aflow is val(f) = X, qutofs f (€)
0
9 »(5
4 0
10 44 10

capacity — 15
flow
7

Maximum Flow Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

val(4) = 2%

10
10

%ﬁ
)

4 0 10

1 \»l
T\ T .

capacity — 15
flow — 14 "\ ‘

=
(92}
o

Cuts

* Ans-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(A,B) = Y., qut of 2 €(€)

A IS cap (B,B) =62

10

source / 5 p

capacity — 15

10 p t) sink

Minimum Cut problem

* Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

cap (A, &)= 2%

9 {Sf\

\L M t) sink

10

source ¢ 5

capacity — 15

%/r%f

Flows vs. Cuts =2 val(#*7) ¢ mm cop (P,

((vedk doalrt \
* Fact: If f is any s-t flow and (4, B) is any s-t cut then the
net flow across (4, B) is equal to the amount leaving s

z f(e) - z f(e) = val(f)

eoutofA einto A

AN

4 0

.
LI

15

capacity — 15
flow — 14 "\ ‘ : ‘ /

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the residual graph

e Repeat until you get stuck G;
/@\
20 /0,\0 20 1° +lo
20 10\
10/30 # 10 '
-10
1©/10 20 lo 20
4 20 +10

N ¢

Or.‘ana\ 3qu\’\
£le) /()
LN

residual 5rap\ﬂ

cle)-4e)
@/‘\@

(Nmoze 0 (a/ocié] PC/JM)
e

Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time is O(m) per augmentation step
* O(val(f™)) augmentinations in any graph with integer capacities

* MaxFlow-MinCut Theorem: The value of the max s-t flow
equals the capacity of the min s-t cut

* If f*is a max flow, the nodes reachable from s in G¢~ are a min cut

* Given a max flow, can find a min cutin time O(n + m) via BFS
A %S/ZJ ’\1 'B 25 f-s

G?)’ @ — @ >© F s a e oo,

A M NMum O\IJ('_

¢ FO(an *‘jmd(m Gl 'H{mafx O\)ﬂ’\ C)—(Mlze
express J‘)

L;Q: ax ’F/oum G.F}J

€

Ask the Audience

* |s this a maximum flow?

> L
N| n) 1

car”?‘ . /@_ 1 1.5
1 2
0.5
1
. 0.5
1 0.5 1
)7

Ask the Audience

* |s this a maximum flow?

* Is there an integer maximum flow?

Ask the Audience

* |s this a maximum flow?

* Is there an integer maximum flow?

* Does every graph with integer capacities have an integer
maximum flow?

’ L&CS. FF wl) (’md on m{e3U ‘Hou,

Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time is O(m) per augmentation step
* O(val(f™)) augmentinations in any graph with integer capacities

* MaxFlow-MinCut Theorem: The value of the max s-t flow
equals the capacity of the min s-t cut

* If f*is a max flow, the nodes reachable from s in G¢~ are a min cut
* Given a max flow, can find a min cut in time O(n + m) via BFS

* Every graph with integer capacities has an integer max flow
* And Ford-Fulkerson finds an integer max flow

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the residual graph

e Repeat until you get stuck

AN N
\g/

®

FF can {eal\g\

0se val “'*3 ovrjweA'h-l'bnS

@

Choosing Good Augmenting Paths

 Last time: arbitrary augmenting paths
* If FF terminates, it outputs a maximum flow
* Might not terminate, or might require many augmentations

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
* Shortest augmenting paths (“shortest augmenting path”)

Fattest Augmenting Path

Fattest Augmenting Path

* Maximum-capacity augmenting path

M O min cle)
-4 perthsP [€T
w Gp

Ne~—~——

hll

“bottleneck c‘oracrl'..a

* Can find the fattest augmenting path in time O(mlogn) in
several different ways -
* Variants of Prim’s or Kruskal’s MST algorithms \
* BFS + binary search

Only .sl:ﬁlﬂl'lj
slove than 76""‘1“"9

an’g Fa-l-la,

Fattest Augmenting Path

\;m’: valve 0'¥ Max Hou ’?i

Arbitrary Paths Maximum-Capacity Path

* Assume integer capacities * Assume integer capacities

Value of maxflow: v* Value of maxflow: v*

Value of aug path: = 1 Value of aug path:

Flow remainingin Gg: < v" — 1 Flow remaining in G¢:

of aug paths: < v”* # of aug paths:

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
* P is a fattest augmenting s-t path with capacity b

* Key Claim: b > -
m

Fattest Augmenting Path
* f*is a maximum flow with value v* = val(f™)
* P is a fattest augmenting s-t path with capacity b
* Key Claim: b > v
m
* Proof:
(Lot Gy be e groph i nodes Vand edger o
64FM:+D s>b w B

. CS\, LIOS ho Pq,ﬂ,, -F:mm S 4>

* et A=2 \j f\eac\r\ak\f_ ‘me NI CVLK

> @/_Z 5 o

A 2
| cap (A)Qf Z ele) ¢ \o-(ﬂg‘: edqes ‘an A'L”@B
e ot of A ¥
L b

2

VAN cq?(Aje\L_L;-m & b, VX

Fattest Augmenting Path

Arbitrary Paths Maximum-Capacity Path

* Assume integer capacities * Assume integer capacities

Value of maxflow: v* Value of maxflow: v*

V)

Value of aug path: > o

Value of aug path: = 1

Flow remaining in Gf: <v* -1 Flow remaining in Gf: & (\‘T‘:\\ v

of aug paths: < m-|n (v*) +\

of aug paths: < v~

: A‘(‘l’&f \L adjr"\Qﬁ‘l'a"lef\SJ -HN?- [\ema‘.v\m\j ‘HOLJ 1S

L 1By

) "? ’HNJ@ ofe \’-4" Qv r«e/r“off‘.o.l\i/‘ -I’Lw

=> At most e n (V’q + | 07M0)+0+'0n5

Choosing Good Paths £ o Gl), V7

 Last time: arbitrary augmenting paths
* If FF terminates, it outputs a maximum fJow

* Today: clever augmenting paths

* Maximum-capacity augmenting path {“fattest augmenting path”)
« < mlnv* augmenting paths (assuming integer capacities)
« O(m?Innlnv*) total running time

* See KT for a slightly faster variant (“fat-ish augmenting path”?)

* Shortest augmenting paths (“shortest augmenting path”)

Shortest Augmenting Path

Shortest Augmenting Path

* Find the augmenting path with the fewest hops
* Can find shortest augmenting path in O(m) time using BFS

* Theorem: for any capacities % augmentations suffice

* Overall running time 0 (m?n)
* Works for any capacities!

* Warning: proof is challenging (you will not be tested on it)

Shortest Augmenting Path

* Let f; be the flow after the i-th augmenting path
* Let G; = Gy, be the i-th residual graph

* Let L;(v) be the distance from s to vin G;
* Recall that the shortest path in G; moves layer-by-layer

Shortest Augmenting Path

* Every augmentation causes at least one edge to disappear
from the residual graph, may also cause an edge to appear

* Key Property: each edge disappears at most % times

* Means that there are at most % augmentaitons

. L‘. (\J = i’s(' |f\ofu "[f\ﬂ\.;‘('o v
Shortest Augmenting Path =« &

* Claim 1: foreveryv € V and every i, L;;,(v) = L;(v)
* Obvious for v = s because L;(s) = 0
* Suppose for the sake of contradiction that L; ., (v) < L;(v)
* Let v be the smallest such node
* Lets ~u — v beashortest pathin G;;4
* By optimality of the path, L;;(v) = L;;;(u) + 1
* By assumption, L;.{(u) = L;(u)
* Two Cases:
e (u,v) €G;soLi(v) <L;(u)+1

* (u,v) € G;, so (v,u) was in the i-th path, so L;(v) = L;(u) — 1

Shortest Augmenting Path

* Claim 2: If an edge u — v disappears from G; and reappears in
Gj+1 then L](U,) > Li(U,) + 2
* u — vison the i-th augmenting path, L;(v) = L;(u) + 1
* v — uis onthe j-th augmenting path, L;(u) = L;(v) + 1
* ByClaim1: Lj(v) = L;(v)

* Claim 3: An edge (u, v) cannot reappear more than gtimes

e By Claim 2: length increases by 2 for each reappearance

Choosing Good Paths

 Last time: arbitrary augmenting paths
* If FF terminates, it outputs a maximum flow

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
« < mlnv* augmenting paths (assuming integer capacities)
« O(m?Innlnv*) total running time
* See KT for a slightly faster variant (“fat-ish augmenting path”?)

* Shortest augmenting paths (“shortest augmenting path”)
e < % augmenting paths (for any capacities)
« 0(m?n) total running time

‘ —DMN ore a\ﬂor;-l’hmﬁ WCO(may Flow fW"‘MJ n O(”"‘\ ",-MC.

