Cs>»o000: Algorithms & Data
Jonathan Ullman

Lecture 18:
 Network Flow: choosing good paths

Nov 9, 2018

Flow Networks

* Directed graph ¢ = (V,E)
* Two special nodes: source s and sink ¢
* Edge capacities c(e)

AT
10 4 10
source /5 %\ \g 10 » t) sink
|)
4 15
capacity — 5\ ‘ \g/

10

Flows

* An s-t flow is a function f(e) such that
* Foreverye €E,0 < f(e) < c(e) (capacity)

* ForeveryV €E, Y intorf(€) = Yeoutofrf(€) (conservation)

* The value of aflow is val(f) = X, qutofs f (€)

capacity — 15
flow
7

Maximum Flow Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

4 0 10

; \L 9
s 5 3 » 6 10 » t
\r\ T 10

capacity — 15
flow — 14 "\ ‘

=
(92}
o

Cuts

* Ans-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(A,B) = Y., qut of 2 €(€)

p t) sink

Minimum Cut problem

* Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

9 {?\
\L t) sink

10

source ¢ 5

capacity — 15

%Mﬁ

Flows vs. Cuts max floo & mio cot

!

* Fact: If f is any s-t flow and (4, B) is any s-t cut, then the
net flow across (4, B) is equal to the amount leaving s

> f@=) fle)=val(f)

eoutof A einto 4
10 7 ‘ : ‘ \\
10
4 0
4 ;
| | :\T/\)

15

capacity — 15
flow — 14 "\ ‘ : ‘ /

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the Mh
e Repeat until you get stuck

1
\O
20 4
20 10
1O \
0,1 /@
10 20
20
ﬂ’\O). 4

Oﬁfyna) Srqf%
IOV
© NG

residloal S\M)O)”

c() -f(e)
T
@\/@

Pl

(f\ft'f\ove GAQ,QS D'F Cﬁrac:‘\’»B Ow

U\'IQI) FF < Yok l'/ 'F S Q. Max ‘HOLJ

/

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time is O(m) per augmentation step

Summary

* O(val(f™)) augmentinations in any graph with integer capacities

* MaxFlow-MinCut Theorem: The value of the max s-t flow
equals the capacity of the min s-t cut

* If f*is a max flow, the nodes reachable from s in G¢~ are a min cut
* Given a max flow, can find a min cut in time O(n + m) via BFS

O L®
/
©— ®— %)

A=3s,1,2% B=32%4, 5

Ask the Audience

e |s this a maximum flow? Jes
cap="A

1
.)
0.5
. 1 0.5
1 0.5 1
@

Ask the Audience

* |s this a maximum flow?

* Is there an integer maximum flow?

(A max ‘Hou Lhere -F(QE—Z -Lwewj eeEw

Ask the Audience

* |s this a maximum flow?

* Is there an integer maximum flow?

* Does every graph with integer capacities have an integer
maximum flow?

Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time is O(m) per augmentation step
* O(val(f™)) augmentinations in any graph with integer capacities

* MaxFlow-MinCut Theorem: The value of the max s-t flow
equals the capacity of the min s-t cut

* If f*is a max flow, the nodes reachable from s in G¢~ are a min cut
* Given a max flow, can find a min cut in time O(n + m) via BFS

* Every graph with integer capacities has an integer max flow
* And Ford-Fulkerson finds an integer max flow

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E
* Find an augmenting path P in the residual graph

e Repeat until you get stuck M:@\n{' take AC
aujwuw?m(j ‘mﬂns

O/)71 @

\/ ¢ C FF con have C ¢
\é/ Trae 52 w- val (£ @ |

Choosing Good Augmenting Paths

 Last time: arbitrary augmenting paths
* If FF terminates, it outputs a maximum flow
* Might not terminate, or might require many augmentations

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
* Shortest augmenting paths (“shortest augmenting path”)

Fattest Augmenting Path

Fattest Augmenting Path

* Maximum-capacity augmenting path

»*

rP = argmaox \oo'H’l-e/\ecL‘ capoc.%) /-PB

s-+t pa'H\s T
™ C;qz

* Can find the fattest augmenting path in time O(mlogn) in
several different ways

* Variants of Prim’s or Kruskal’s MST algorithms
* BFS + binary search

" Not oo wmuch slower +han C\noosh'\] on ovlar}mj ra‘l’ln

Fattest Augmenting Path

Arbitrary Paths Maximum-Capacity Path

* Assume integer capacities * Assume integer capacities

* Value of maxflow: v* Value of maxflow: v*

* Value of aug path: = 1 Value of aug path:

* Flow remainingin Gg: <= v — 1

maug paths: < v” \

\f«‘\& Rz O
fev”

Flow remaining in G¢:

of aug paths:

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)

* P is a fattest augmenting s-t path with capacity b
H v* “w

* Key Claim: b = — "“V“":tj & de Lortest prth

MOox ‘F’ow i

& of edg,u

2

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)

* P is a fattest augmenting s-t path with capacity b
v e cap (A8

£ bem

* Key Claim: b > v
m
* Proof: N
. ! - eb
Z o Pa—Hn S quacffj b+) ”
* Lot G') \oe (> \D\r\'onlj uith eal?zs sA4. cle) = lb+|

|
’ (‘S aloesn’+ ¢ onfen wu) s-€ ()a-{-L.

——

| /,@__)@ \ A - %no«lar reaclhable 1[f0m N -\I\(J’)§
< Op SO (R =T el
\ C e ot o P
®A £ \O-(o‘Fe od(o"F-Aw
b m

% L

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
* P is a fattest augmenting s-t path with capacity b

* Key Claim: b > -
m

Fattest Augmenting Path

Arbitrary Paths Maximum-Capacity Path

* Assume integer capacities * Assume integer capacities

Value of maxflow: v* Value of maxflow: v*

¢

v
Value of aug path: > ™

Value of aug path: = 1

(2
Flow remainingin Gg: < v" — 1 Flow remaining in Gf: < (\‘ 'rFJ v

of aug paths: < v”* * # of aug paths:

- | 'h'\ve ot \ﬁ+,a"j~P"‘H’7f Hon dte add.\na k p%ﬂﬂf ‘H«-e}hw

(R]/8Y 0\‘(’ leay{‘ 1.

\ k ®
* Flou I\(’mcc,v)m\c) afte L paths = ([— 7\ "NT

. (l- %\wk |
[CONEY

() v = |

\
3|~

e '&r“z\

k & me ln T% ¥Pm°|mr E ()‘t

Choosing Good Paths

 Last time: arbitrary augmenting paths

* If FF terminates, it outputs a maximum flow mm% ln(0) |nl
o Bad pa—fhc = FF neves fommates

M v’ %
* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)

« < mlnv* augmenting paths (assuming integer capacities)
« O(m?Innlnv*) total running time

* See KT for a slightly faster variant (“fat-ish augmenting path”?)

* Shortest augmenting paths (“shortest augmenting path”)
mn

#Ogj a\JjMU(’m\"') Fop‘H’)S < ‘5; ‘For ‘ag C’QFQCT"',‘EB

O(m"r\w total r\)nnm9

Shortest Augmenting Path

Shortest Augmenting Path

* Find the augmenting path with the fewest hops
* Can find shortest augmenting path in O(m) time using BFS

* Theorem: for any capacities % augmentations suffice

* Overall running time 0 (m?n)
* Works for any capacities!

* Warning: proof is challenging (you will not be tested on it)

Shortest Augmenting Path

* Let f; be the flow after the i-th augmenting path
* Let G; = Gy, be the i-th residual graph

* Let L;(v) be the distance from s to vin G;
* Recall that the shortest path in G; moves layer-by-layer

Shortest Augmenting Path

* Every augmentation causes at least one edge to disappear
from the residual graph, may also cause an edge to appear

* Some eclaz on He avyme/shn\j q)ﬂn‘\n C)"- s
‘noL ax cqfac.—{:)) 8§ ot m GH[

* Key Property: each edge disappears at most % times

* Means that there are at most % augmentaitons

Shortest Augmenting Path

* Claim 1: foreveryv € V and every i, L;;,(v) = L;(v)
* Obvious for v = s because L;(s) = 0
* Suppose for the sake of contradiction that L; ., (v) < L;(v)
* Let v be the smallest such node
* Lets ~u — v beashortest pathin G;;4
* By optimality of the path, L;;(v) = L;;;(u) + 1
* By assumption, L;.{(u) = L;(u)
* Two Cases:
e (u,v) €G;soLi(v) <L;(u)+1

* (u,v) € G;, so (v,u) was in the i-th path, so L;(v) = L;(u) — 1

Shortest Augmenting Path

* Claim 2: If an edge u — v disappears from G; and reappears in
Gj+1 then L](U,) > Li(U,) + 2
* u — vison the i-th augmenting path, L;(v) = L;(u) + 1
* v — uis onthe j-th augmenting path, L;(u) = L;(v) + 1
* ByClaim1: Lj(v) = L;(v)

* Claim 3: An edge (u, v) cannot reappear more than gtimes

e By Claim 2: length increases by 2 for each reappearance

Choosing Good Paths

 Last time: arbitrary augmenting paths
* If FF terminates, it outputs a maximum flow

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
« < mlnv* augmenting paths (assuming integer capacities)
« O(m?Innlnv*) total running time
* See KT for a slightly faster variant (“fat-ish augmenting path”?)

* Shortest augmenting paths (“shortest augmenting path”)
e < % augmenting paths (for any capacities)

« 0(m?n) total running time

¢ grl-a*e-by-'ﬂ\e At a\l\o)orfﬂms\/\ave O(mn‘) ‘I',V\e 760/ ""‘J CQpac-i‘bC(

