CS3000: Algorithms & Data
Jonathan Ullman

Lecture 12:
* Applications of BFS: 2-Coloring, Connected
Components, Topological Sort

Oct 19, 2018

Recap: Graphs/BFS

Graphs: Key Definitions

* Definition: A directed graph ¢ = (V/, E)
* IV is the set of nodes/vertices, |V| =n
« F € VXV is the set of edges, |E| =m
* An edgeisan orderede = (u,v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between 1 and v”

(O O O
* Simple Graph: @‘G
* No duplicate edges "

* No self-loopse = (u,u) (4)

Breadth-First Search (BFS)

* Definition: the distance between s, t is the number
of edges on the shortest path fromsto ¢

* Thm: BFS finds distances from s to other nodes
* L; containsall nodes at distance i from s

* Nodes notin any layer are not reachable from s
tree j.\m tle shortegt poth

dotted edagy l'e 0a
cnc\e> y

Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1:n] where

E“ﬂﬂ“
. W o 1 1 o
Ali, /] = 1 (i,j) €E o o0 1 o
’ 0 (i,j) €E "o o o0 o
o o 1 o0

gs—ie: O(n?) a,e

Lookup: ©(1) time

List Neighbors: ©(n) time a °

Adjacency Lists (Undirected)

* The adjacency list of a vertexv € V is the list A[v]
ofallust. (v,u) € E

Al1] =1{2,3}
Al2] ={1,3}
Al3] =1{1,2,4}
Al4] =13}

Cost
Space: O(n + m) a’a

Lookup: @(deg(u) + 1) time
List Neighbors: ©(deg(u) + 1) time e °

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] « false Vv, found[s] < true
Let layer[v] <« o Vv, layer[s] <« 0
Let i< 0, Ly = {s}, T «0Q

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] <« true, layer[v] « i+l
Add (u,v) to T and add v to L,,;

i<i+l

Implements BFS in O (n + m) time

Jor reachable frm s
H: s _”LC O-F nett “of, => 7",\,/? O/ns"l'mf)
MS w " fd’gl(

Bipartiteness / 2-Coloring

2-Coloring

* Problem: Tug-of-War Rematch
* Need to form two teams R, P
* Some students are still mad from last time
* Input: Undirected graph G = (V, E)
* (u,v) € E means u, v wont be on the same team

* Output: Split V into two sets R, P so that no pair in
either set is connected by an edge

2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

* Agraph G is bipartiteif | can split V into two sets L and
R such that all edges (u, v) € E go between L and R

L"R=¢&
Lo =V

L R

Desighing the Algorithm

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite

/%@ CM+ Ipe 'Z-(o\oﬂd
©
g@? Cont be Z-colored
\
—0

Desighing the Algorithm

* Idea for the algorithm:
* BFS the graph, coloring nodes as you find them
* Colornodesinlayeri purpleifi even, red ifi odd
* See if you have succeeded or failed

A

g2
O ©0D-
p -

Desighing the Algorithm

* Claim: If BFS 2-colored the graph successfully, the
graph has been 2-colored successfully

* Key Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?

Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality

* Eve CJS,Q m He BFES 4ree s colored w/mr{'l}
y DO’\"Qd QCQ%} ":rom L', +o L‘,—(—t e OO\ONA cou*cr‘l’lxa’_
¢ I'Q ‘H"P__ 2—(0\0/»\/\3 S @

not corl‘CC‘*J"’LM
‘H%J‘Q s an ec]a}

Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality

C\m: \‘S: Cr contams on e(ljy ’ —%f, on S— w F"'%’
‘From L-, o 'r{'s»ﬂ)l) 'H—Jz/\ ’ IMJHO “
. 3 o S—> Pe-l'l/) Of

(5 contams an odd c&ele,

l@\&’“’\ i

: —n‘es,_e Fq’“’)s meef at
Some node K & L:)

N R
o 3 ety lagh 7 = gy = AN |

Topological Sort

Acyclic Graphs

* Acyclic Graph: An undirected graph with no cycles
* Also known as a forest
e Ifit’sconnected then it’s known as a tree

 Can test if a graph has a cyclein O(n + m) time
* Run BFS

* If there are any edges that are not in the BFS tree, then
they form a cycle

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

(54000
0$ %300

. . O
Directed Acyclic Graphs (DAGs) AN
O—0O
* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

— —
ONOJOROSORORONO

* A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all
edges go “forwards”, that is (vi,vj) EE=j>1

* (has a topological ordering= G isa DAG

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design one algorithm that either outputsa
topological ordering or finds a directed cycle

’ Aﬂo‘ﬂﬂef examg\z o dua\&-‘ru&

Topological Ordering
H\' e\m‘@ node has >, |)n—e@lae_ s‘”’*" G—c@j— be TOMJ .

* Observation: the first node must have no in-edges
A/“
OJOROIORORTRO

* Observation: In any DAG, there is always a node
with no incoming edges

"Prlof: Sup()oso_ e\,q\\,) no e har %

O—O—0—0" —O—E)—-

. (onsides ths chaia of |€/\j#’ n | ¢ Jr\»e nodke thot appers

‘ als ond eds a
\ _"\,\Q same node muyt afpexN 44%7& Ej_\:::i(e;{‘ c,gc\e,

Topological Ordering

* Fact: In any DAG, there is a node with no incoming
edges

* Thm: Every DAG has a topological ordering

e Proof (Induction): F(n): ¥ DAG wth n nodes,
Pere exts a "l'oro[o\j read orcLUN\a,

"To prover ¥nelN B0 5

* Base Ca&e: H[/) S Frue

\‘ﬂ(‘AUC‘h\JQ S«Lep-.
« To prove . H(R‘B-—@ H(n}

) B‘a [-Fad'] Hae exats a node o/ o moomma
M&eg call it v

)

Consydles fle far% G'\%\)\%J s Smr\f\ S a
‘DP\CT u) n-\ noduas

%6 H(n—-\‘\\) there exats w W&Ul\,\g o'lp Cr\%\;\—gs
call Vo V3, -y Un
U, U -.- Un usa_—TOo‘F(f
N\cluc-Fvn all@lg,u
3 ey
_—— / H an
Thove ae o
'\\‘talyv) > all

fﬂ(AXZ.‘ 30 \e{—{’ -{"o ﬁs\,,.\-

Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1

Until (G has no more nodes):

(O Find a node u with no incoming edges
® Label u as node i, increment i <« i+l
(® Remove u and its edges from G

Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
Find a node u with no incoming edges
Label u as node i, increment i « i+l
Remove u and its edges from G

Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
@ Find a node u with no incoming edges
(%) Label u as node i, increment i <« i+l
@ Remove u and its edges from G

‘ CYO &rovﬂd 'H/\Q \@.P V. +?mes

Stee O fakes On) e

. g‘(’(fp @ tolkes O(ﬂ +ine
OSvalls assume

* Step ® talkes O(vm) +ane /

m> n-—)

L X O(Y\Jrvv\) = O(V\?"f‘V)m\ = O(nm\

Fast Topological Ordering

FastTopOrder (G) :
Mark all nodes with their # of in-edges
Call a node INACTIVE if it’s mark is 0
Call a node ACTIVE otherwise
Let i =1
Until (all node are INACTIVE) :
Let u be an INACTIVE
Label u as node i in the top. order
Let i = i+l
For (every (u,v) in E):
Decrease v’s mark by 1

Fast Topological Ordering Example

Topological Ordering Summary

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered

* There is an algorithm that either outputs a topological
ordering or finds a directed cycle in time O (n + m)

