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Recap: Graphs/BFS



Graphs: Key Definitions

* Definition: A directed graph ¢ = (V/, E)
* IV is the set of nodes/vertices, |V| =n
« F € VXV is the set of edges, |E| =m
* An edgeisan orderede = (u,v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between 1 and v”
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* Simple Graph: @‘G
* No duplicate edges "

* No self-loopse = (u,u) (4)



Breadth-First Search (BFS)

* Definition: the distance between s, t is the number
of edges on the shortest path fromsto ¢

* Thm: BFS finds distances from s to other nodes
* L; containsall nodes at distance i from s

* Nodes notin any layer are not reachable from s
tree j.\m tle shortegt poth
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Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1:n] where

E“ﬂﬂ“
. W o 1 1 o
Ali, /] = 1 (i,j) €E o o0 1 o
’ 0 (i,j) €E "o o o0 o
o o 1 o0

gs—ie: O(n?) a,e

Lookup: ©(1) time

List Neighbors: ©(n) time a °



Adjacency Lists (Undirected)

* The adjacency list of a vertexv € V is the list A[v]
ofallust. (v,u) € E

Al1] =1{2,3}
Al2] ={1,3}
Al3] =1{1,2,4}
Al4] =13}

Cost
Space: O(n + m) a’a

Lookup: @(deg(u) + 1) time
List Neighbors: ©(deg(u) + 1) time e °



Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] « false Vv, found[s] < true
Let layer[v] <« o Vv, layer[s] <« 0
Let i< 0, Ly = {s}, T «0Q

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] <« true, layer[v] « i+l
Add (u,v) to T and add v to L,,;

i<i+l

Implements BFS in O (n + m) time
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Bipartiteness / 2-Coloring



2-Coloring

* Problem: Tug-of-War Rematch
* Need to form two teams R, P
* Some students are still mad from last time
* Input: Undirected graph G = (V, E)
* (u,v) € E means u, v wont be on the same team

* Output: Split V into two sets R, P so that no pair in
either set is connected by an edge




2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

* Agraph G is bipartiteif | can split V into two sets L and
R such that all edges (u, v) € E go between L and R

L"R=¢&
Lo =V

L R




Desighing the Algorithm

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite
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Desighing the Algorithm

* Idea for the algorithm:
* BFS the graph, coloring nodes as you find them
* Colornodesinlayeri purpleifi even, red ifi odd
* See if you have succeeded or failed
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Desighing the Algorithm

* Claim: If BFS 2-colored the graph successfully, the
graph has been 2-colored successfully

* Key Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?




Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality
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Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality
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Topological Sort



Acyclic Graphs

* Acyclic Graph: An undirected graph with no cycles
* Also known as a forest
e Ifit’sconnected then it’s known as a tree

 Can test if a graph has a cyclein O(n + m) time
* Run BFS

* If there are any edges that are not in the BFS tree, then
they form a cycle




Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest
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Directed Acyclic Graphs (DAGs) AN
O—0O
* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships
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* A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all
edges go “forwards”, that is (vi,vj) EE=j>1

* ( has a topological ordering= G isa DAG




Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design one algorithm that either outputsa
topological ordering or finds a directed cycle
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Topological Ordering
H\' e\m‘@ node has >, | )n—e@lae_ s‘”’*" G—c@j— be TOMJ .

* Observation: the first node must have no in-edges
A/“
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* Observation: In any DAG, there is always a node
with no incoming edges
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Topological Ordering

* Fact: In any DAG, there is a node with no incoming
edges

* Thm: Every DAG has a topological ordering

e Proof (Induction): F(n): ¥ DAG wth n nodes,
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Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1

Until (G has no more nodes):

(O Find a node u with no incoming edges
® Label u as node i, increment i <« i+l
(® Remove u and its edges from G




Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
Find a node u with no incoming edges
Label u as node i, increment i « i+l
Remove u and its edges from G




Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
@ Find a node u with no incoming edges
(%) Label u as node i, increment i <« i+l
@ Remove u and its edges from G
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Fast Topological Ordering

FastTopOrder (G) :
Mark all nodes with their # of in-edges
Call a node INACTIVE if it’s mark is 0
Call a node ACTIVE otherwise
Let i =1
Until (all node are INACTIVE) :
Let u be an INACTIVE
Label u as node i in the top. order
Let i = i+l
For (every (u,v) in E):
Decrease v’s mark by 1



Fast Topological Ordering Example




Topological Ordering Summary

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered

* There is an algorithm that either outputs a topological
ordering or finds a directed cycle in time O (n + m)




