CS3000: Algorithms & Data Jonathan Ullman

Lecture 12:

 Applications of BFS: 2-Coloring, Connected Components, Topological Sort

Oct 19, 2018

Recap: Graphs/BFS

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - V is the set of nodes/vertices, |V| = n
 - $E \subseteq V \times V$ is the set of edges, |E| = m
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition**: An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"

- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s

Adjacency Matrices

• The adjacency matrix of a graph G=(V,E) with n nodes is the matrix A[1:n,1:n] where

$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Cost

Space: $\Theta(n^2)$

Lookup: $\Theta(1)$ time

List Neighbors: $\Theta(n)$ time

Adjacency Lists (Undirected)

• The adjacency list of a vertex $v \in V$ is the list A[v] of all u s.t. $(v, u) \in E$

$$A[1] = \{2,3\}$$
 $A[2] = \{1,3\}$
 $A[3] = \{1,2,4\}$
 $A[4] = \{3\}$

Cost

Space: $\Theta(n+m)$

Lookup: $\Theta(\deg(u) + 1)$ time

List Neighbors: $\Theta(\deg(u) + 1)$ time

Breadth-First Search Implementation

```
BFS(G = (V,E), s):
  Let found[v] \leftarrow false \forallv, found[s] \leftarrow true
  Let layer[v] \leftarrow \infty \ \forall v, \ layer[s] \leftarrow 0
  Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
  While (L; is not empty):
     Initialize new layer Li+1
     For (u in L_i):
       For ((u,v) in E):
          If (found[v] = false):
             found[v] \leftarrow true, layer[v] \leftarrow i+1
             Add (u,v) to T and add v to L_{i+1}
     i \leftarrow i+1
```

Implements BFS in O(n+m) time $n_s = \#of nodes$ Time is really $O(N_s + m_s)$ where machable from s $m_s = ""edges"$

Bipartiteness / 2-Coloring

2-Coloring

- Problem: Tug-of-War Rematch
 - Need to form two teams R, P
 - Some students are still mad from last time
- Input: Undirected graph G = (V, E)
 - $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets R, P so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
 - A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

$$L^{\cap}R = \emptyset$$

$$L \circ R = V$$

$$2$$

$$3$$

Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

Idea for the algorithm:

- BFS the graph, coloring nodes as you find them
- Color nodes in layer i purple if i even, red if i odd
- See if you have succeeded or failed

- Claim: If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- **Key Question:** Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

- Claim: If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can't be 2-colored!
 - Example of a phenomenon called duality

If BFS colors morrectly => 7 odd

- Claim: If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can't be 2-colored!
 - Example of a phenomenon called duality
 - (1) Black edges are colored correctly (b/c they go, from & to O)
 (2) Dotted edge are ether L; => L; , or L; => L;

Topological Sort

Acyclic Graphs

- Acyclic Graph: An undirected graph with no cycles
 - Also known as a forest
 - If it's connected then it's known as a tree
- Can test if a graph has a cycle in O(n+m) time
 - Run BFS
 - If there are any edges that are **not** in the BFS tree, then they form a cycle

Directed Acyclic Graphs (DAGs) A path | A path | A path | | A pat

- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards", that is $(v_i, v_i) \in E \Rightarrow j > i$
 - G has a topological ordering $\Rightarrow G$ is a DAG

Any directed cycle means Gr cannot be top, ordered

Directed Acyclic Graphs (DAGs)

- **Problem 1:** given a digraph G, is it a DAG?
- **Problem 2:** given a digraph G, can it be topologically ordered?

- Thm: G has a topological ordering \Leftrightarrow G is a DAG
 - We will design one algorithm that either outputs a topological ordering or finds a directed cycle
 - · Another example of duality

Topological Ordering

• Observation: the first node must have no in-edges

 Observation: In any DAG, there is always a node with no incoming edges

Topological Ordering

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction): H(n) = Every DAG ul n nodes has a topological ordering $Goal: prove <math>\forall n \in \mathbb{N}$, H(n) is true

- - · Base Case: n=1 (trivial)

Topological Ordering

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering

• Proof (Induction): Inductive Step: To show H(n) ⇒ H(n+1)

- 1) Let v, be a node with no in-edges
- 2 Let 3 be the ordering of V/Sv,3

(3) the the ordering $v_1 \rightarrow 0$ for the whole graph.

Implementing Topological Ordering

```
SimpleTopOrder(G):
  Set i \leftarrow 1
  Until (G has no more nodes):
    Find a node u with no incoming edges Waranteed
    Label u as node i, increment i \leftarrow i+1
   Remove u and its edges from G
 | Modify adjacency list in time O(m)
```

Implementing Topological Ordering

```
SimpleTopOrder(G):
    Set i ← 1
    Until (G has no more nodes):
        Find a node u with no incoming edges
        Label u as node i, increment i ← i+1
        Remove u and its edges from G
```


Implementing Topological Ordering

Helate n times SimpleTopOrder(G): Until (G has no more nodes): Find a node u with no incoming edges $\frac{1}{2}$ 0 Label u as node i, increment i \leftarrow i+1 Remove u and its edges from G Can implement in O(m) time (if I represent w) both Ain and Aart) Overall time is O(nm) · If we only keep ortgoing edges in the list then

-- final step is O(i) overall time is O(n2)

-- first step is O(n)

Fast Topological Ordering

```
FastTopOrder(G):
   Mark all nodes with their # of in-edges
   Call a node INACTIVE if it's mark is 0
   Call a node ACTIVE otherwise
   Let i = 1
   Until (all node are INACTIVE):
     Let u be an INACTIVE
     Label u as node i in the top. order
   Let i = i+1
   For (every (u,v) in E):
     Decrease v's mark by 1
```

Fast Topological Ordering Example

Topological Ordering Summary

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
 - There is an algorithm that either outputs a topological ordering or finds a directed cycle in time O(n+m)

next tuesday v_{1} v_{2} v_{3} v_{4} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}