CS3000: Algorithms & Data
Jonathan Ullman

Lecture 12:
* Applications of BFS: 2-Coloring, Connected
Components, Topological Sort

Oct 19, 2018

Recap: Graphs/BFS

Graphs: Key Definitions

* Definition: A directed graph ¢ = (V/, E)
* IV is the set of nodes/vertices, |V| =n
« F € VXV is the set of edges, |E| =m
* An edgeisan orderede = (u,v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between 1 and v”

(O O O
* Simple Graph: @‘G
* No duplicate edges "

* No self-loopse = (u,u) (4)

Breadth-First Search (BFS)

* Definition: the distance between s, t is the number
of edges on the shortest path fromsto ¢

* Thm: BFS finds distances from s to other nodes
* L; containsall nodes at distance i from s
* Nodes notin any layer are not reachable from s

® ®

—
nst reachall o

Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1:n] where

E“ﬂﬂ“
. W o 1 1 o
Ali, /] = 1 (i,j) €E o o0 1 o
’ 0 (i,j) €E "o o o0 o
o o 1 o0

gs—ie: O(n?) a,e

Lookup: ©(1) time

List Neighbors: ©(n) time a °

Adjacency Lists (Undirected)

* The adjacency list of a vertexv € V is the list A[v]
ofallust. (v,u) € E

Al1] =1{2,3}
Al2] ={1,3}
Al3] =1{1,2,4}
Al4] =13}

Cost
Space: O(n + m) a’a

Lookup: @(deg(u) + 1) time
List Neighbors: ©(deg(u) + 1) time e °

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found|[v] « false Vv, found|[s] < true
Let layer[v] « © Vv, layer[s] «< 0
Let i< 0, Ly = {s}, T «0Q

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] <« true, layer[v] « i+l
Add (u,v) to T and add v to L,,;

i<i+l

Implements BFSinO(n+ m)time | < 4 nodes
Time 5 Na\\\%’ O(Vls"’ mgw u\nere tochable ‘meS

\

Ms = ' ”ed%,

Bipartiteness / 2-Coloring

2-Coloring

* Problem: Tug-of-War Rematch
* Need to form two teams R, P
* Some students are still mad from last time
* Input: Undirected graph G = (V, E)
* (u,v) € E means u, v wont be on the same team

* Output: Split V into two sets R, P so that no pair in
either set is connected by an edge

2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

* Agraph G is bipartiteif | can split V into two sets L and
R such that all edges (u, v) € E go between L and R

LR =8 L R
L0R= V

Desighing the Algorithm

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite

Proet \96 Pictore : /@
%]

Desighing the Algorithm

* Idea for the algorithm:
* BFS the graph, coloring nodes as you find them
* Colornodesinlayeri purpleifi even, red ifi odd

* See if you have succeeded or failed
L'z,

;\@ 6
@

Lo L

\

Desighing the Algorithm

* Claim: If BFS 2-colored the graph successfully, the
graph has been 2-colored successfully

* Key Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?

Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality

Tha ed hes too
?\)!‘o\c :\éjdu

Designing the Algorithm F BFS cdors
N\cnrl\ec{’LB =>’3 oddl

CBC\Q
* Claim: If BFS fails, then G contains an odd cycle J

* If G containsan odd cycle then G can’t be 2-co|ored!]
* Example of a phenomenon called duality

© Back eda,ef are colored co;mc+|~a/ (ble 'ﬂfj ZQ,LW" ¢ o O\
® Dotted edcj,a one etle L; & Ly, o L; e [,
L'.A"> Lie edj,v ae Carrect

@ An\a L=y e&:j,a_ T on &
CUL\C of \MS‘H') ’Z.’-fl)

U\MC\/; s an OJA # PR

Topological Sort

Acyclic Graphs

* Acyclic Graph: An undirected graph with no cycles
* Also known as a forest
e Ifit’sconnected then it’s known as a tree

 Can test if a graph has a cyclein O(n + m) time
* Run BFS

* If there are any edges that are not in the BFS tree, then
they form a cycle

Directed Acyclic Graphs (DAGS) M_ﬁ\r"f%_{m%

Vs

* DAG: A directed graph with no directed cycles

e Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

ONOJOROSORORONO

* A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all
edges go “forwards”, that is (vi,vj) EE=j>1

* (has a topological ordering= G isa DAG
(—\ﬂ%> o\:mc&g& %de means & connot be 40{7, ordered

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design one algorithm that either outputsa
topological ordering or finds a directed cycle

¢ A(\O‘\'\V\Q(QXO(Y\()\Q 01(‘ dua\\‘l\a’

Topological Ordering

* Observation: the first node must have no in-edges
OJOROIONORTR0

* Observation: In any DAG, there is always a node
with no incoming edges

?"00’?'. SU??OS—C G\JQFL& nocke has an in- eo[je Follow MengJ
untl ethe ve %ﬁ' a directed cycle of

un out o\[‘ hocdes

\‘Fevc, node
&—— 4_/ has an Vin-edso
D—0—0—0 b ey
$ i Cedadd *
T C=a C&ra, -fo/ nt) wnodes

= cycle ")CDL\& = cytle

Topological Ordering

* Fact: In any DAG, there is a node with no incoming
edges

* Thm: Every DAG has a topological ordering

» Proof (Induction): * H ()~ Eueﬂq DAG u/ n nodes has
o -['o(o\o\c)i(_a ONLQIMCa_

* G‘OOl\'. ’\7(0\1*{ V nén\)) H‘(A\ TS’{'(UQ

* Base Cases n=\ (+fN?a\\

Topological Ordering

@In any DAG, there is a node with no incoming

lndoetme Skep v To shoo H(n) =>H(aw)

@ Let U, be a node uith ne Tﬁ/f’d!g/@“
O Lt () be e ordong o VN3

Implementing Topological Ordering

SimpleTopOrder (G) :
Set i « 1
Until (G has no more nodes):
Find a node u with no incoming edges] Guaranteed
Label u as node i, increment i « i+l
[Remove u and its edges from G

Mod.\g\o M\Scu.el\ua it 4wme O(m)

4o ex. vt

Implementing Topological Ordering

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
Find a node u with no incoming edges
Label u as node i, increment i « i+l
Remove u and its edges from G

Implementing Topological Ordering

S
o N Ywne
KJ®

SimpleTopOrder (G) :
Set 1 « 1
Until (G has no more nodes):
Find a node u with no incoming edges] o0
ol ELabel u as node i, increment i « i+l
Z[Remove u and its edges from G

Cua mplement O(M’\ time (.‘*‘: lr‘epmm% L)/ beth A;n ond Aoﬁ\
Ovesal] dime O(nm\

e On\ud kee? M3°M3 ed%J n e [e

‘me\ S«F{p 1S 0 ovual _QW‘S O(mz\
£w{ Hep 18 0(n)

Fast Topological Ordering

FastTopOrder (G) :
Mark all nodes with their # of in-edges
Call a node INACTIVE if it’s mark is 0
Call a node ACTIVE otherwise
Let i =1
Until (all node are INACTIVE) :
Let u be an INACTIVE
Label u as node i in the top. order
Let i = i+l
For (every (u,v) in E):
Decrease v’s mark by 1

Fast Topological Ordering Example

Topological Ordering Summary

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered

* There is an algorithm that either outputs a topological
ordering or finds a directed cycle in time O (n + m)

next +uesda

@

