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Lecture 11:
 Graphs
 Graph Traversals: BFS

Feb 16, 2018



What’s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School”
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Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview, Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)




What’'s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

e Bellman-Ford (Dynamic Programming)
Minimum Spanning Trees:

* Borlvka, Prim, Kruskal

Network Flow:

e Algorithms
e Reductions to Network Flow



Graphs



Graphs: Key Definitions lv1\= | Notetion
\El=m

* Definition: A directed graph G = (V, E)
* I/ is the set of nodes/vertices

 F € VXV is the set of edges
* An edgeis an ordered e = (u, v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unordered e = (u, v) “between u and v”

OBROBNORNO
 Simple Graph: Q‘Q
* No duplicate edges "
* No self-loops e = (u,u) (—= © @
(©) (13



Ask the Audience

* How many edges can there be in a simple
directed/undirected graph?
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Paths/Connectivity

* A path is a sequence of consecutive edges in E
*P= {(u: Wl): (Wl; WZ)' (Wz, W3)r ey (Wk—lr U)}

*P=u—wy =Wy =Wz — =W 1~V ¢
* The length of the path is the # of edges Cleanes to
vrte

* An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

* A directed graph is strongly connected if for every
two vertices u, v € V, there are paths fromu to v
and fromvtou



Cycles

* Acycleisapathv; —v, — - — v, — v, where
k = 3 and vy, ..., V), are distinct
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Ask the Audience

. Suplise an undirected graph G is connected

False? (G has atleastn — 1 edges



Ask the Audience

e Suppose an undirected graph G hasn — 1 edges

. True G is connected
© =

\ m= 2 =n-|

© G 3 nod connecked



Trees

* A simple undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

* Theorem: any two of the following implies the third
* (7 is connected
* (7 contains no cycles (3)
* G has=n —1 edges



Trees

* Rooted tree: choose a root node r and orient edges
away from r
* Models hierarchical structure
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Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya
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Planctomyces Thermoproteys
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Thermotoga

Diplomonads
Aquifex



Exploring a Graph



Exploring a Graph

* Problem: Is there a path from s to t?
* ldea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back



Exploring a Graph

* BFS/DFS are general templates for graph algorithms

* Extensions of Breadth-First Search:

» 2-Coloring (Bipartiteness)

* Shortest Paths

* Minimum Spanning Tree (Prim’s Algorithm)
* Extensions of Depth-First Search:

* Fast Topological Sorting

e Fast Strongly Connected Components



Breadth-First Search (BFS)

* Informal Description: start at s, find neighbors of s,
find neighbors of neighbors of s, and so on...

* BFS Tree:
* Lo ={s}
* L, = all neighbors of L
* L, = all neighbors of L4 that are not in Ly, L4
* L3 = all neighbors of L, that are notin Ly, L1, L,

* L, = all neighbors of L;_4 thatarenotin Ly, ..., L1
» Stop when L;, 1 is empty



Ask the Audience 1)y (@)
* BFS this graph froms =1 z'e‘
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Breadth-First Search (BFS)

* Definition: the distance between s, t is the number
of edges on the shortest path from s to ¢

* Thm: BFS finds distances from s to other nodes
* L; contains all nodes at distance i from s
* Nodes not in any layer are not reachable from s




Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) withn
nodes is the matrix A[1: n, 1:n] where

E“ﬂﬂ“
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' 0 (i,j)&E o o o o
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Cost
Space: O(V?) a’e

Lookup: ©(1) time

List Neighbors: @(V) time ° °



Adjacency Lists (Undirected)

* The adjacency list of a vertex v € V is the list A[v]
ofallus.t.(v,u) € E
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Adjacency Lists (Directed)

* The adjacency list of a vertex v € V' are the lists
* Ayye[v] ofallust. (v,u) € E
e Aj[v]ofallus.t. (u,v) EE
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Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] <« false Vv, found|[s] « true
Let layer[v] <« o Vv, layer([s] <0
Let i<0, L, = {s}, T <0

While (L; is not empty):
Initialize new layer L,
For (u in L;):
For ((u,v) in E):
If (found[v] = false):

found[v] « true, layer|[v] « i+l
Add (u,v) to T and add v to L,

11+l



BFS Running Time (Adjacency List)

S
BFS(G = (V,E), s): Total Dorles
Let found[v] « false Vv
Let found[s] « true > O(dej(“\*\\ =

Let layer[v] <~ oo Vv, layer[s] «0 we\
Let i< 0, L, = (s}, T « 0 O(ﬂ*ﬂ)\ A

While (L; is not empty):
Initialize new layer L, Oﬂ\v\\ CYr\Ofe w OACe\.
For (u in L;): /
For ((u,v) in E): l\ For evoy W
If (found[v] = false):
found[v] « true, ve de O(Aejm—kﬂ
layer[v] « i+l of) | work

Add (u,v) to T
Add v to L,
i<i+l



