Mobile Application
Development

19t class

Prof. Stephen Intille
s.intille@neu.edu

 Mobile Application Design and Development Summer 2011 |
Today

e Schedule code reviews / Q&A?
e Final project

— Schedule

— CheckKklist

http://www.ccs.neu.edu/home/intille/teaching/MAD/FinalProjectChecklist.htm

e Optimization
e 4 presentations

Northeastern University 2

| Mobile Application Design and Development Summer 2011 _
Schedule

4 June 2011
SuMo TuWe Th Fr Sa
1 2 3 4
5 6 7 8 91011
12 13 (14|15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

e Programming assignment 5 due today

e Project presentations: 22"9 and 23

e App due: 239 8PM (- available for other teams to review)
e Grade and feedback available: EOD 24t
e Contest voting: 28th — 29th

e Final download for revised grades: 29t

Northeastern University 3

 Mobile Application Design and Development Summer 2011 |
Optimization

e Mobiles have IIimited CPU and storage
and battery life

— Worth trying to be efficient
— Battery life tracker will flag your app

e Two goals
— Don't do work that you don't need to do.
— Don't allocate memory Iif you can avoid It.

Northeastern University 4

 Mobile Application Design and Development Summer 2011
BUT...

e Optimize your DESIGN first

e Then optimize your choice of data
structures and algorithms

e Then initially program for speed

e Only at a last stop optimize code

Northeastern University 5

 Mobile Application Design and Development Summer 2011 |
Before you start...

« ALWAYS measure; know you have a
problem

e Google’s recs based on Caliper
microbenchmarking framework for Java
— Google's open-source framework for writing,

running and viewing the results of
JavaMicrobenchmarks

Northeastern University 6

 Mobile Application Design and Development Summer 2011 |
Microbenchmark fallibility

« JIT compiler will likely compile your
bytecode differently from real life

e Valid only for the particular hardware, OS
and JRE run on; small change to any
could lead to different results

e Less likely to have a cache miss
e Multithreading not considered

e |nputs may not be representative of what
you get in real life

Northeastern University 7

 Mobile Application Design and Development Summer 2011 |
Challenge: hardware platforms

e Different versions of the VM running on
different processors running at different
speeds.

e Measurement on the emulator tells you
very little about performance on any
device.

e |[f you want to know how your app
performs on a given device, you need to
test on that device.

Northeastern University 8

 Mobile Application Design and Development Summer 2011
JIT

e Huge differences between devices with
and without a JIT

— “Best" code for a device with a JIT is not
always the best code for a device without

Northeastern University 9

 Mobile Application Design and Development Summer 2011 |
ODbject creation not free

e Allocating memory Is always more
expensive than not allocating memory

— 2.3 has concurrent GC
e Try to avoid creating GCs

Northeastern University 10

 Mobile Application Design and Development Summer 2011 |
Examples

e |[f you have a method returning a string,
and you know that its result will always be
appended to a StringBuffer anyway,
change your sighature and
Implementation so that the function does
the append directly, instead of creating a
short-lived temporary object.

Northeastern University 11

 Mobile Application Design and Development Summer 2011 |
Examples

« \When extracting strings from a set of input
data, try to return a substring of the
original data, instead of creating a copy.
You will create a new String object, but it
will share the char[] with the data. (The
trade-off being that if you're only using a
small part of the original input, you'll be
keeping it all around iIn memory anyway If
you go this route.)

Northeastern University 12

 Mobile Application Design and Development Summer 2011 |
Examples

e An array of ints iIs a much better than an
array of Integers, but this also generalizes
to the fact that two parallel arrays of ints
are also a lot more efficient than an array
of (Iint,int) objects. The same goes for any
combination of primitive types.

Northeastern University 13

 Mobile Application Design and Development Summer 2011 |
Examples

e |[f you need to implement a container that
stores tuples of (Foo,Bar) objects, try to
remember that two parallel Foo[] and
Bar[] arrays are generally much better
than a single array of custom (Foo,Bar)
objects.

(The exception to this, of course, is when you're designing an API for
other code to access; in those cases, it's usually better to trade
good API design for a small hit in speed. But in your own internal
code, you should try and be as efficient as possible.)

Northeastern University 14

| Mobile Application Design and Development Summer2011 _
Static

e |[f you don't need to access an object's
flelds, make your method static

e |nvocations will be about 15%-20% faster

e Also good practice: can tell from the
method signature that calling the method
can't alter the object's state

Northeastern University 15

 Mobile Application Design and Development Summer 2011 |
Avold internal getters/setters

e Virtual method calls are expensive, much
more so than instance field lookups

e For public interface, use getters/setters

e Internally to class, access fields directly
—l.e.,,don’tdo 1 = getCount()

e \Without a JIT, 3x faster
e \With a JIT, 7x faster

Northeastern University 16

| Mobile Application Design and Development Summer2011 _
Use static final for constants

e No <clinit> method required
« Avoid field lookups

Northeastern University 17

 Mobile Application Design and Development Summer 2011 |
For-each loop syntax

static class Foo {
int mSplat; }
Foo[] mArray = ...

public void zero() {

int sum = 0;
for (inti=0; i < mArray.length; ++i) {
sum += mArray[i].mSplat; }} Zero slowest

public void one() {
int sum = 0; One faster
Foo[] localArray = mArray;

intlen = localArray.length; Two faster for devices without JIT;

for (inti=0; i< len; ++i) { same as One otherwise
sum += localArray[i].mSplat; }}

public void two() {
int sum = 0;
for (Foo a : mArray) {
sum += a.mSplat; }}

Northeastern University 18

 Mobile Application Design and Development Summer 2011 |
Limit use of floating point

e Floating-point is about 2x slower than
iInteger on Android devices
(True with and without FPU)

e NO difference between float and double

Northeastern University 19

| Mobile Application Design and Development Summer2011 |
Use libraries

e Might get lucky and be replaced with
hand-coded assembler
— Examples:
e String.indexOf

= System.arrayCopy (9x faster than hand-coded
loop)

Northeastern University 20

__Mobile Application Design and Development _ Summer 2011 |
Native code

e Cost with transition

e Pain in the neck to compile for various
resources

e GC issues

e Primaurily useful for porting existing native
codebase, not for "speeding up" parts of a
Java app.

Northeastern University 21

| Mobile Application Design and Development Summer 2011 _
Responsiveness

 \Want to avoid the Application Not
Responding (ANR) dialog
— No response to an input event within 5s
— BroadcastReceiver falls to finish in 10s

e Danger points
— Net access
— Computationally intensive operations
— File operations
— DB operations

Northeastern University 22

| Mobile Application Design and Development Summer 2011 _
Responsiveness

e Method in the main thread should do as
ittle work as possible

e Activities should do as little as possible to
set up in key life-cycle methods such as
onCreate() and onResume()

e Don’t block waiting for a thread to
complete ... Use the Handler or AsyncTask

Northeastern University 23

| Mobile Application Design and Development Summer2011 _
What will feel slow?

« 200+ms lag

— If your application is doing work in the
background in response to user input, show
that progress is being made (ProgressBar and
ProgressDialog are useful for this)

— In games, calculate moves in child thread

— Use a splash screen during setup, or render
main view and fill in info asynchronously

— Always indicate progress being made

Northeastern University 24

Watch out for writing...

Writing to flash (yaffs2)

* Create file, 512 byte

60 .
\ write, delete
50 — ala sqlite journal
In transaction
40
 Flash is ... different
g 30 than disks you're
E likely used to
20
— read, write, erase,
10 wear-leveling, GC,

0 .
10 20 30 40 50 60 70 80 90 ¢ nutshell: write
% disk free performance varies

a lot
M phone type A [phone type B

Source: empirical samples over Google employee phones (Mar 2010)

Northeastern University

25

| Mobile Application Design and Development Summer 2011 |
What will feel broken?

e App can be snappy but feel broken with
Sensors

e Provide feedback on
— Sensor state
— What sensors know
— Sensor noise

Northeastern University 26

< MObile APPICALIOR.DESIGN.AAckDEYIORIRL e st o oo SUIIEE 0L
Responsiveness in BR

e Don’t use child threads because life of
BroadcastRecelver Is short

e Use a Service instead

Northeastern University 27

<M0bJe APRIICAOR.DES) G AREHDRVEI ORI R s s SUTBMOE20 Ly |
Good citizen

e Avoid starting an Activity from an Intent
Recelver

— Spawns a new screen that will steal focus from
whatever application the user is currently has
running.

— If your application has something to show the
user in response to an Intent broadcast, it
should do so using the Notification Manager

Northeastern University 28

| Mobile Application Design and Development Summer 2011
Testing responsiveness

e Use StrictMode to help find potentially
long running operations such as network
or database operations that you might
accidentally be doing your main thread

Northeastern University 29

| Mobile Application Design and Development Summer 2011 |
Seamlessness

e Beware of popping up dialogues
— During testing may make sense

— But may conflict with other apps
(Use Notification instead)

e App losing state because onPause and
onResume not working properly

Northeastern University 30

 Mobile Application Design and Development Summer 2011 |
Think unpredictable

e Another app can pop up at any time
(E.g. phone app)

— Fires the onSavelnstanceState() and
onPause() methods

— Will likely result in your app being killed

e Beware If user was editing data

Northeastern University 31

| Mobile Application Design and Development Summer 2011 |
Share

= “Android Way” If data to expose Is to use
a ContentProvider

Northeastern University 32

 Mobile Application Design and Development Summer 2011 |
Be polite

e Don’t spawn Activities except in response
to user action

— Could become a “keystroke bandit”

— l.e., don’t call startActivity from
BroadcastRecelvers or Services

Northeastern University 33

 Mobile Application Design and Development Summer 2011 |
Activities created equal

e Use multiple Activity object instances

e Don’t think of Activity as single entry point
to app

e Think of your application as a “federation
of Activity objects”
— Helps with history and “backstack” model
— Makes code a bit more modular

Northeastern University 34

| Mobile Application Design and Development Summer 2011
Respect Themes

« \When designing your Uls, you should try
and avoid rolling your own

— Jarring
— Confusing
e Use a theme so you start with the same
basic components
— See Applying Styles and Themes

Northeastern University 35

 Mobile Application Design and Development Summer 2011 |
Respect diversity (of hardware)

e Many screen resolutions and dimensions
— Aria: 320 x 480 pixels (1.5 ratio)
— Droid X: 480 x 854 pixels (1.8 ratio)

e Variety of data connection speeds
— GPRS (33kb/s Iin practice)
— 3G (about 4x faster GPRS)
— WIFI (about 120x faster GPRS)

Northeastern University 36

 Mobile Application Design and Development Summer 2011 |
Respect diversity (of hardware)

e Tip: design for
— Smallest screen
— Slowest phone CPU

— Slowest phone Internet (GPRS)
(Change emulator setting)

— Worst battery life

« MUCH Easier to scale up than down

Northeastern University 37

 Mobile Application Design and Development Summer 2011 |
Save battery

e Great differences
— HTC Dream: 1150mAh
— HTC Magic: 1350mAh
— Samsung |17500: 1500mAh
— Asus Eee PC: 5800mAh

e \Write efficient code

e Don’t repeat failled operations

Northeﬁtre\rrq Hnlyweg!;yl Nntarnot ~rnnnacrctinn? \Alait 38

| Mobile Application Design and Development Summer 2011 _
Relative use of features

Where does it all go?

500 Source: Values measured using an industrial power
monitor at SkHz sampling rate, and taking average
power with lowest standard deviation.
400
| Baseline usage
300 B Specific item
200
g I
100
0 N N N
N R & @\& <<,\°\\ S
AN
K & o8 v O &
v R QCO ((/Q {

Northeastern University 39

| Mobile Application Design and Development Summer2011 |
Real life use

e \Watching YouTube: 340mA = 3.4 hours

e Browsing 3G web: 225mA =5 hours

e Typical usage: 42mA average = 32 hours
e EDGE completely idle: 5mA = 9.5 days

e Airplane mode idle: 2mA = 24 days

Northeastern University 40

 Mobile Application Design and Development Summer 2011 |
Eating the battery life

e £E.g., Waking up in the background when
the phone would otherwise be sleeping

— App wakes up every 10 minutes to update
— Takes about 8 seconds to update, 350mA

e Cost during a given hour:
— 3600 seconds * 5mA = 5mAh resting
— 6 times * 8 sec * 350 mA = 4.6mAh updating

« Just one app waking up can trigger
cascade

Northeastern University 41

 Mobile Application Design and Development Summer 2011 |
Eating the battery life

e Bulk data transfer such as a 6MB song:
— EDGE (90kbps): 300mA * 9.1 min = 45 mAh
— 3G (300kbps): 210mA * 2.7 min = 9.5 mAh
— WIiFI (1Mbps): 330mA * 48 sec = 4.4 mAh

e Moving between cells/networks
— Radio ramps up to associate with new cell
— Broadcastintents fired across system

e Parsing textual data, regex without JIT

Northeastern University 42

| Mobile Application Design and Development Summer 2011
Use gzip library for text transfers

50
Source: Timings averaged over nultiple trials of
40 downloading 1800-item RSS feek of textual data.
? 30 B Raw
o
= B GzIP (1)
3 20 B GZIP (9)

-
o

o

WiFi 3G EDGE

Northeastern University 43

 Mobile Application Design and Development Summer 2011 |
Eating the battery life

e Use coarse network location, it's much
cheaper

— GPS: 25 seconds * 140mA = 1mANh
— Network: 2 seconds * 180mA = 0.1mANh

e 1.5 uses AGPS when network available

Northeastern University 44

 Mobile Application Design and Development Summer 2011 |
Eating the battery life

e GPS time-to-fix varies wildly based on
environment, and desired accuracy, and
might outright fall
— Just like wake-locks, location updates can

continue after onPause(), so make sure to
unregister

— If all apps unregister correctly, user can leave
GPS enabled in Settings

Northeastern University 45

 Mobile Application Design and Development Summer 2011 |
Eating the battery life

e Accelerometer/magnetic sensors
— Normal: 10mA (used for orientation detection)
— Ul: 15mA (about 1 per second)
— Game: 80mA
— Fastest: 90mA

Northeastern University 46

| Mobile Application Design and Development Summer 2011 |
Service

e Services should be short-lived:; these aren't
daemons
— Each process costs 2MB and risks being

kiled/restarted as foreground apps need
memory

— Otherwise, keep memory usage low so you're
not the first target

Northeastern University 47

