Threading and Synchronization

Parallelism

e Parallelism and Pseudo-
parallelism

 Why parallelize?
* Finding parallelism

e Advantages: better load balancing, better scalability

e Disadvantages: process/thread overhead and
communication

Parrallelism — Cont’d

e distribute computation and data
— Assign which processor does which computation

— If memory is distributed, decide which processor
stores which data (why is this?)
e Data can be replicated also
— Goals: minimize communication and balance the
computational workload

e Often conflicting goals

Parallelism — Cont’d

e synchronize and/or communicate

— If shared-memory machine, synchronize

e Both mutual exclusion and sequence control

— Locks, semaphores, condition variables, barriers, reductions

— If distributed-memory machine, communicate
* Message passing

e Usually communication involves implicit
synchronization

Definition of Thread

e Thread
— Lightweight process (LWP)
— Threads of instructions or thread of control

— Shares address space and other global information
with its process

— Registers, stack, signal masks and other thread-
specific data are local to each thread

 Threads may be managed by the operating
system or by a user application

e Examples: Win32 threads, C-threads, Pthreads

Information global
to all threads
in a process

Information local
to each thread

Heavyweight process

Address space
Other global process data

Registers Registers

Reqgisters

Stack Stack

Stack

Mask Mask

Mask

TSD TSD

TSD

 Threads have become prominent due to
trends in
— Software design
 More naturally expresses inherently parallel tasks
— Performance
e Scales better to multiprocessor systems

— Cooperation

e Shared address space incurs less overhead than IPC

 Thread states

— Born state

— Ready state (runnable state)
— Running state

— Dead state

— Blocked state

— Waiting state

— Sleeping state

e Sleep interval specifies for how long a thread will sleep

ynedsia

—

Comartng >
\waitmg// o

—

5= S ~

sleeping / (\ dead ;i < blocked)

Figure 4.3 User-level threads.

One
process
e
\
RN S S 3L g - Thread
- } User
shace — Execution
All of a process’s context
threadsmap [EENEE [N _ [SEEE = SN /
to a single &)
execution context
> Kernel
space
.

e User-level threads perform threading operations in user space

— Threads are created by runtime libraries that cannot execute
privileged instructions or access kernel primitives directly

e User-level thread implementation

— Many-to-one thread mappings

e Operating system maps all threads in a multithreaded process to single
execution context

e Advantages
— User-level libraries can schedule its threads to optimize performance
— Synchronization performed outside kernel, avoids context switches
— More portable
e Disadvantage
— Kernel views a multithreaded process as a single thread of control
» Can lead to suboptimal performance if a thread issues 1/O
» Cannot be scheduled on multiple processors at once

Thread Signal Delivery

 Two types of signals

— Synchronous:
e Occur as a direct result of program execution
e Should be delivered to currently executing thread

— Asynchronous
* Occur due to an event typically unrelated to the current
instruction

* Threading library must determine each signal’s recipient so
that asynchronous signals are delivered properly

* Each thread is usually associated with a set of
pending signals that are delivered when it
executes

 Thread can mask all signals except those that it
wishes to receive

Thread Termination

 Thread termination (cancellation)

— Differs between thread implementations

— Prematurely terminating a thread can cause subtle
errors in processes because multiple threads
share the same address space

— Some thread implementations allow a thread to
determine when it can be terminated to prevent
process from entering inconsistent state

Linux task state-transition diagram.

active "i I
: ~—— Unblock)
Time slice Dispatched e e
expires, B _ 5
interactive __ Y /W\ sleeping)
New task — eSS, e .
epoch | K running] Stoy, o e Continue

signal

I

Time slice \ Stopped
expires i L
expired) | Task receives

et exit or kill
l signal
_TActivated states = =
l zombie \1
i__:r‘ask exits
J—system

— o
- -
- -

% dead)|
\\ _’/

~ —

Example Concurrent Program
(x is shared, initially 0)

e code for Thread 0 e code for Thread 1
foo() bar()
X :=Xx+1 X 1= X+2

Assume both threads
execute at about the
same time.

What'’s the output?

Example Concurrent Program (cont.)

 One possible execution order is:

— Thread 0: R1 := x (R1 == 0)
— Thread 1: R2 :=x (R2 == 0)
— Thread 1: R2 :=R2 + 2 (R2 == 2)
— Thread 1: x := R2 (x == 2)
—Thread 0: R1:=R1+1 (R1==1)
— Thread 0: x := R1 (x ==1)

e Final value of xis 1 (!!)
e Question: what if Thread 1 also uses R1?

Example Execution

1. head 5 5 Insert: head := elem;
_____________________ 4. head - -
Insert: elem->next := head; l B -
A
head elem T
2. e > > —> t
A
elemr,—m—my (T/ T--=-T-T-T-T-=T--T-----==="
s Delete: head := head->next;
_____________________ 5. head
Delete: t := head; —> > >
A
3. head elem T
e > > — t

A
elem T Delete: return t;
t

—

Some Definitions

e Race condition

— when output depends on ordering of thread
execution

— more formally:

e (1) two or more threads access a shared variable with
no synchronization, and

e (2) at least one of the threads writes to the variable

More Definitions

 Atomic Operation
— an operation that, once started, runs to completion
* note: more precisely, logically runs to completion
— indivisible
— in this class: loads and stores

 meaning: if thread A stores “1” into variable x and thread B
stores “2” into variable x about about the same time, result
is either “1” or “2”

— <await (B) S>
e atomically (evaluate B, wait until true, execute S)

Critical Section

e section of code that:

— must be executed by one thread at a time

— if more than one thread executes at a time, have a
race condition

— ex: linked list from before

* |[nsert/Delete code forms a critical section
e What about just the Insert or Delete code?

— is that enough, or do both procedures belong in a single
critical section?

Critical Section (CS) Problem

* Provide entry and exit routines:
— all threads must call entry before executing CS
— all threads must call exit after executing CS
— thread must not leave entry routine until it’s safe

e CS solution properties

— Mutual exclusion: at most one thread is executing CS

— Absence of deadlock: two or more threads trying to get into
CS => at least one succeeds

— Absence of uneccessary delay: if only one thread trying to
get into CS, it succeeds

— Eventual entry: thread eventually gets into CS

Structure of threads for Critical Section
problem

Threads do the following:
while (1) {
do other stuff (non-critical section)
call enter
execute CS
call exit
do other stuff (non-critical section)

Critical Section Assumptions

e Threads must call enter and exit

e Threads must not die or quit inside a critical
section

e Threads can be context switched inside a
critical section

— this does not mean that the newly running thread
may enter the critical section

Hardware Support

* Provide instruction that is:
— atomic
— fairly easy for hardware designer to implement

e Read/Modify/Write

— atomically read value from memory, modify it in
some way, write it back to memory

e Use to develop simpler critical section solution
for any number of threads

Test-and-Set

Many machines have it
function TS(var target: bool) returns bool
var b: bool := target; /* return old value */
target := true;
return b;

Executes atomically

Basic Idea with Atomic Instructions

 Each thread has a local flag
e One variable shared by all threads

e Use the atomic instruction with flag, shared
variable
— on a change, allow thread to go in
— other threads will not see this change

e When done with CS, set shared var back to
initial state

Problems with busy-waiting CS solution

e Complicated
e |nefficient
— consumes CPU cycles while spinning

* Priority inversion problem

— low priority thread in CS, high priority thread
spinning can end up causing deadlock

— example: Mars Pathfinder problem

Want to block when waiting for CS

Locks

* Two operations:
— Acquire (get it, if can’t go to sleep)
— Release (give it up, possibly wake up a waiter)

e entry() is then just Acquire(lock)
o exit() is just Release(lock)

Lock is shared among all threads

Problems with Locks

 Not general
— only solve simple critical section problem
— can’t do any more general synchronization
— often must enforce strict orderings betw. threads

e Condition synchronization
— need to wait until some condition is true

— example: bounded buffer (next slide)
— example: thread join

Semaphores (Dijkstra)

Semaphore is an object
— contains a (private) value and 2 operations

Semaphore value must be nonnegative

P operation (atomic):

— if value is O, block; else decrement value by 1
V operation (atomic):

— if thread blocked, wake up; else value++
Semaphores are “resource counters”

Critical Sections with Semaphores

sem mutex ;=1

entry()

— P(mutex)
exit()

— V(mutex)

 Semaphores more powerful than locks
 For mutual exclusion, initialize semaphore to 1

Bounded Buffer
(1 producer, 1 consumer)

char buf[n], int front :=0, rear :=0
sem empty :=n, full :=0

Producer() Consumer()
do forever... do forever...
produce message m P(full)
P(empty) m := buf[front]
buf[rear] := m; front := front “+” 1
rear :=rear “+” 1 V(empty)

V(full) consume m

Bounded Buffer (multiple producers
and consumers)

char buf[n], int front :=0, rear :=0
sem empty := n, full := 0, mutexC := 1, mutexP :=1

Producer() Consumer()
do forever... do forever...
produce message m P(full); P(mutexC)
P(empty); P(mutexP) m := buf[front]
buf[rear] := m; front := front “+” 1
rear :=rear “+” 1 V(mutexC); V(empty)

V(mutexP); V(full) consume m

Scratching the surface

Readers/Writers

Barriers

Monitors
Fairness/Enforcing ordering

