Threading and Synchronization



Parallelism

e Parallelism and Pseudo-
parallelism

 Why parallelize?
* Finding parallelism

e Advantages: better load balancing, better scalability

e Disadvantages: process/thread overhead and
communication



Parrallelism — Cont’d

e distribute computation and data
— Assign which processor does which computation

— If memory is distributed, decide which processor
stores which data (why is this?)
e Data can be replicated also
— Goals: minimize communication and balance the
computational workload

e Often conflicting goals



Parallelism — Cont’d

e synchronize and/or communicate

— If shared-memory machine, synchronize

e Both mutual exclusion and sequence control

— Locks, semaphores, condition variables, barriers, reductions

— If distributed-memory machine, communicate
* Message passing

e Usually communication involves implicit
synchronization



Definition of Thread

e Thread
— Lightweight process (LWP)
— Threads of instructions or thread of control

— Shares address space and other global information
with its process

— Registers, stack, signal masks and other thread-
specific data are local to each thread

 Threads may be managed by the operating
system or by a user application

e Examples: Win32 threads, C-threads, Pthreads
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 Threads have become prominent due to
trends in
— Software design
 More naturally expresses inherently parallel tasks
— Performance
e Scales better to multiprocessor systems

— Cooperation

e Shared address space incurs less overhead than IPC



 Thread states

— Born state

— Ready state (runnable state)
— Running state

— Dead state

— Blocked state

— Waiting state

— Sleeping state

e Sleep interval specifies for how long a thread will sleep
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Figure 4.3 User-level threads.
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e User-level threads perform threading operations in user space

— Threads are created by runtime libraries that cannot execute
privileged instructions or access kernel primitives directly

e User-level thread implementation

— Many-to-one thread mappings

e Operating system maps all threads in a multithreaded process to single
execution context

e Advantages
— User-level libraries can schedule its threads to optimize performance
— Synchronization performed outside kernel, avoids context switches
— More portable
e Disadvantage
— Kernel views a multithreaded process as a single thread of control
» Can lead to suboptimal performance if a thread issues 1/O
» Cannot be scheduled on multiple processors at once



Thread Signal Delivery

 Two types of signals

— Synchronous:
e Occur as a direct result of program execution
e Should be delivered to currently executing thread

— Asynchronous
* Occur due to an event typically unrelated to the current
instruction

* Threading library must determine each signal’s recipient so
that asynchronous signals are delivered properly

* Each thread is usually associated with a set of
pending signals that are delivered when it
executes

 Thread can mask all signals except those that it
wishes to receive



Thread Termination

 Thread termination (cancellation)

— Differs between thread implementations

— Prematurely terminating a thread can cause subtle
errors in processes because multiple threads
share the same address space

— Some thread implementations allow a thread to
determine when it can be terminated to prevent
process from entering inconsistent state



Linux task state-transition diagram.
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Example Concurrent Program
(x is shared, initially 0)

e code for Thread 0 e code for Thread 1
foo( ) bar( )
X :=Xx+1 X 1= X+2

Assume both threads
execute at about the
same time.

What'’s the output?



Example Concurrent Program (cont.)

 One possible execution order is:

— Thread 0: R1 := x (R1 == 0)
— Thread 1: R2 :=x (R2 == 0)
— Thread 1: R2 :=R2 + 2 (R2 == 2)
— Thread 1: x := R2 (x == 2)
—Thread 0: R1:=R1+1 (R1==1)
— Thread 0: x := R1 (x ==1)

e Final value of xis 1 (!!)
e Question: what if Thread 1 also uses R1?



Example Execution

1. head 5 5 Insert: head := elem;
_____________________ 4. head - -
Insert: elem->next := head; l B -
A
head elem T
2. e > > —> t
A
elemr,—m—my ( T/ T--=-T-T-T-T-=T--T-----==="
s Delete: head := head->next;
_____________________ 5. head
Delete: t := head; —> > >
A
3. head elem T
e > > — t

A
elem T Delete: return t;
t

—




Some Definitions

e Race condition

— when output depends on ordering of thread
execution

— more formally:

e (1) two or more threads access a shared variable with
no synchronization, and

e (2) at least one of the threads writes to the variable



More Definitions

 Atomic Operation
— an operation that, once started, runs to completion
* note: more precisely, logically runs to completion
— indivisible
— in this class: loads and stores

 meaning: if thread A stores “1” into variable x and thread B
stores “2” into variable x about about the same time, result
is either “1” or “2”

— <await (B) S>
e atomically (evaluate B, wait until true, execute S)



Critical Section

e section of code that:

— must be executed by one thread at a time

— if more than one thread executes at a time, have a
race condition

— ex: linked list from before

* |[nsert/Delete code forms a critical section
e What about just the Insert or Delete code?

— is that enough, or do both procedures belong in a single
critical section?



Critical Section (CS) Problem

* Provide entry and exit routines:
— all threads must call entry before executing CS
— all threads must call exit after executing CS
— thread must not leave entry routine until it’s safe

e CS solution properties

— Mutual exclusion: at most one thread is executing CS

— Absence of deadlock: two or more threads trying to get into
CS => at least one succeeds

— Absence of uneccessary delay: if only one thread trying to
get into CS, it succeeds

— Eventual entry: thread eventually gets into CS



Structure of threads for Critical Section
problem

Threads do the following:
while (1) {
do other stuff (non-critical section)
call enter
execute CS
call exit
do other stuff (non-critical section)



Critical Section Assumptions

e Threads must call enter and exit

e Threads must not die or quit inside a critical
section

e Threads can be context switched inside a
critical section

— this does not mean that the newly running thread
may enter the critical section



Hardware Support

* Provide instruction that is:
— atomic
— fairly easy for hardware designer to implement

e Read/Modify/Write

— atomically read value from memory, modify it in
some way, write it back to memory

e Use to develop simpler critical section solution
for any number of threads



Test-and-Set

Many machines have it
function TS(var target: bool) returns bool
var b: bool := target; /* return old value */
target := true;
return b;

Executes atomically



Basic Idea with Atomic Instructions

 Each thread has a local flag
e One variable shared by all threads

e Use the atomic instruction with flag, shared
variable
— on a change, allow thread to go in
— other threads will not see this change

e When done with CS, set shared var back to
initial state



Problems with busy-waiting CS solution

e Complicated
e |nefficient
— consumes CPU cycles while spinning

* Priority inversion problem

— low priority thread in CS, high priority thread
spinning can end up causing deadlock

— example: Mars Pathfinder problem

Want to block when waiting for CS



Locks

* Two operations:
— Acquire (get it, if can’t go to sleep)
— Release (give it up, possibly wake up a waiter)

e entry( ) is then just Acquire(lock)
o exit( ) is just Release(lock)

Lock is shared among all threads



Problems with Locks

 Not general
— only solve simple critical section problem
— can’t do any more general synchronization
— often must enforce strict orderings betw. threads

e Condition synchronization
— need to wait until some condition is true

— example: bounded buffer (next slide)
— example: thread join



Semaphores (Dijkstra)

Semaphore is an object
— contains a (private) value and 2 operations

Semaphore value must be nonnegative

P operation (atomic):

— if value is O, block; else decrement value by 1
V operation (atomic):

— if thread blocked, wake up; else value++
Semaphores are “resource counters”



Critical Sections with Semaphores

sem mutex ;=1

entry( )

— P(mutex)
exit( )

— V(mutex)

 Semaphores more powerful than locks
 For mutual exclusion, initialize semaphore to 1



Bounded Buffer
(1 producer, 1 consumer)

char buf[n], int front :=0, rear :=0
sem empty :=n, full :=0

Producer( ) Consumer()
do forever... do forever...
produce message m P(full)
P(empty) m := buf[front]
buf[rear] := m; front := front “+” 1
rear :=rear “+” 1 V(empty)

V(full) consume m



Bounded Buffer (multiple producers
and consumers)

char buf[n], int front :=0, rear :=0
sem empty := n, full := 0, mutexC := 1, mutexP :=1

Producer( ) Consumer()
do forever... do forever...
produce message m P(full); P(mutexC)
P(empty); P(mutexP) m := buf[front]
buf[rear] := m; front := front “+” 1
rear :=rear “+” 1 V(mutexC); V(empty)

V(mutexP); V(full) consume m



Scratching the surface

Readers/Writers

Barriers

Monitors
Fairness/Enforcing ordering



