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ABSTRACT 
Individuals with Autism Spectrum Disorders (ASD) 
frequently engage in stereotyped and repetitive motor 
movements. Automatically detecting these movements in 
real-time using comfortable, miniature wireless sensors 
could advance autistic research and enable new intervention 
tools for the classroom that help children and their 
caregivers monitor and cope with this potentially 
problematic class of behavior. We present activity 
recognition results for stereotypical hand flapping and body 
rocking using data collected from six children with ASD 
repeatedly observed in both laboratory and classroom 
settings. In the classroom, an overall recognition accuracy 
of 88.6% (TP: 0.85; FP: 0.08) was achieved using three 
sensors. Challenges encountered when applying machine 
learning to this domain, as well as implications for the 
development of real-time classroom interventions and 
research tools, are discussed.  
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INTRODUCTION 
Health researchers in many disciplines lack effective tools 
for unobtrusively acquiring information about peoples’ 
behavior in natural settings. Ubiquitous computing systems 
that detect certain behaviors might create new opportunities 
to improve scientific understanding of the interaction 
between context, behavior, and health. The goal of the 
current work is to use ubiquitous monitoring tools for the 
automated detection of stereotypical behavior observed in 

persons with Autism Spectrum Disorders. Autism Spectrum 
Disorders (ASD) affect as many as 1 in 150 children [1]  
and are characterized by deficits in socialization and 
communication, including stereotypical behavior [2]. 
Stereotyped behaviors are generally defined as repetitive 
interests and/or motor or vocal sequences that appear to the 
observer to be invariant in form and without any obvious 
eliciting stimulus or adaptive function [3]. The current work 
focuses on stereotypical motor movements. Several 
stereotypical motor movements have been identified [4], the 
most prevalent among them being body-rocking, mouthing, 
and complex hand and finger movements [5]. The majority 
of research in ASD focuses on social and communication 
deficits, rather than on restricted and repetitive behavior [4]. 
This is a potential problem given the high prevalence of 
stereotypical motor movements reported in individuals with 
ASD (e.g., [6]).  

One reason why stereotypical motor movements may not be 
as thoroughly studied is because appropriate tools for 
measuring the behavior are not available to the research 
community. In this work, we present a case study on the 
automatic identification of stereotypical body rocking and 
hand flapping activity in children with ASD gathered from 
wireless accelerometers. Stereotypical body rocking and 
hand flapping are examples of movements that occur 
frequently in people with mental retardation and 
developmental disabilities [4], and less frequently in 
typically developing children and adults. 

Impact of Stereotypical Motor Movements 
When severe, stereotypical motor movements can present 
several problems for individuals with ASD and their 
caregivers. First, persons with ASD often engage in 
stereotypical motor movements for the majority of their 
waking hours. Second, if unregulated, stereotypical motor 
movements can become the dominant behavior in an 
individual with ASD’s repertoire and interfere with the 
acquisition of new skills and performance of established 
skills (e.g., [7]). Third, engagement in these movements is 
socially inappropriate and stigmatizing and can complicate 
social integration in school settings and the community [8]. 
Finally, stereotypical motor movements can lead to self-
injurious behavior under certain environmental conditions 
[9].  
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Tools for Measuring Stereotypical Motor Movements 
There are currently no tools for clinicians or caregivers to 
easily, accurately, and reliably monitor stereotypical motor 
movements. Traditional measures of stereotypical motor 
movements rely primarily on paper-and-pencil rating 
scales, direct observation, and video-based methods [10], 
all of which have limitations. 

Paper-and-pencil rating scales typically involve a global 
impression of the frequency and/or severity of stereotypical 
motor movements based on general, non-specific 
observations. Several paper-and-pencil rating scales have 
been developed that ask an informant to give a global 
impression of an individual’s stereotypical motor 
movements [4]. From a measurement standpoint, informant 
rating scales are subjective, can have questionable 
accuracy, and fail to capture inter-individual variations in 
the form, amount, and duration of stereotypical motor 
movement [11]. 

Direct observation also involves a rating but the focus is on 
the direct observation of specific behaviors. The observer 
watches and records a sequence of stereotypical motor 
movements. According to Sprague and Newell [10], the 
following factors, among others, can make direct 
observational measures unreliable: (a) Reduced accuracy in 
observing and documenting high-speed motor sequences; 
(b) Difficulty determining when a sequence has started and 
ended; (c) Limitations in the ability to observe 
concomitantly occurring stereotypical motor movements; 
and (d) Limitations in the ability to note environmental 
antecedents and record stereotypical motor movements at 
the same time.  

Video-based methods involve video capture of behavior 
and off-line coding of stereotypical motor movements by an 
expert. The ability to view videos repeatedly and to slow 
playback speeds makes video-based methods more reliable 
than paper-and-pencil and direct observation methods. 
Video-based methods, however, are tedious and time 
consuming. The necessity to code videos off-line also 
precludes real-time monitoring. Combining video recording 
with other tagging technologies to permit practical, semi-
automatic logging is an area of active research [12]. 

Goal: Explore the Possibility of Real-Time Recognition 
of Stereotypical Motor Movements 
The aim of the current work is to explore whether wireless 
accelerometer sensor technology and pattern recognition 
algorithms can provide an automatic, real-time measure of 
stereotypical motor movements that may be more objective, 
detailed, and precise than rating scales and direct 
observation, and more time-efficient than video-based 
methods. An algorithm that achieves good recognition 
performance could operate for much longer periods of time 
than than a human observer. 

In the remainder of this paper, we describe experiments we 
have performed to determine whether pattern recognition 

techniques using mobile wireless accelerometers that have 
shown promise in other domains of recognition of posture, 
mobility, exercise, and everyday activities can be adapted to 
create a real-time tool for stereotypical motor movement 
monitoring in children with ASD. 

RELATED WORK 
We are aware of only one published attempt to apply 
pattern recognition algorithms to this domain.  

Automatically Detecting Stereotypical Motor Movements 
Westeyn et al. used accelerometers and pattern recognition 
algorithms in pilot work to detect stereotypical motor 
movements [13]. While 69% of hand flapping events were 
automatically and accurately detected in this work using 
Hidden Markov Models, the data were acquired from 
individuals mimicking the actual behaviors – the work did 
not observe children with ASD actually performing the 
behaviors.  

Using Pattern Recognition to Detect Other Physical 
Activities 
A growing body of work shows that wearable 
accelerometers can be used to detect activities, such as 
postures, ambulation, exercise, and even household 
activities (e.g., [14-16]). A variety of methods and models 
have been used for feature generation and classification. 
Our focus in this work is not on any particular activity 
recognition algorithm, per se, but instead on the issues one 
encounters when trying to apply pattern recognition to the 
problem of monitoring stereotypical motor movements in 
constrained and naturalistic settings.  

Most prior work in accelerometer-based activity recognition 
uses supervised learning strategies. Activities are performed 
by people wearing wired or wireless accelerometers on one 
or more body locations. Annotators (usually the 
researchers) then use video or audio to label the start and 
end points of each behavior of interest. Algorithms are then 
tested on the datasets using cross-fold validation. We use 
this same approach, but describe the challenges we have 
encountered in the stereotypical motor movement domain.  

DATA COLLECTION 
The current investigation consisted of a series of six single 
case studies, with direct replication across participants. For 
each participant, the study included repeated observations 
of body rocking, hand flapping, and/or simultaneous body 
rocking and hand flapping while children wore sensors in 
laboratory (Study 1) and classroom (Study 2) settings.  

Participants 
Six participants were recruited from The Groden Center, 
RI, a school for children and young adults with ASD.  The 
study was approved by a human subjects review board and 
parental consent was obtained for each participant. Children 
included in the study: (1) Had a documented DSM-IV-TR 
diagnosis of ASD made by a licensed psychologist familiar 
with the child; (2) Were between the ages of 12-20 yrs.; (3) 
Had a clinically significant score on the Stereotyped 



 

Behavior subscale of the Repetitive Behavior Scale-Revised 
(RBS-R; [17]) for body rocking and/or hand flapping; (4) 
Tolerated the wireless sensors; and (5) Exhibited, on 
average, at least 10 hand flapping or body rocking incidents 
per hour.   

Sensors 
Each participant wore three wireless accelerometers [18] 
placed simultaneously on the left wrist and right wrist using 
wristbands, and on the torso using a thin strip of 
comfortable fabric tied around the chest (see Figure 1(a-b)). 
The wrists and torso were chosen because stereotypical 
hand flapping and body rocking are associated with 
movements in these areas. The sensors were small enough 
to be worn on these locations comfortably and without 
restricting movement. All participants tolerated wearing the 
sensors for the duration of each observation. Also, visual 
inspection of each participant’s real-time acceleration data 
prior to analysis confirmed that there were no equipment 
failures or other problems occurring (improper attachment, 
weak signal strength, unusual amount of signal loss, etc.).  

In the configuration used in the experiments, the devices 
were set to transmit 3-axis +/- 2g motion data at 60Hz to a 
nearby receiver (Figure 1(c)). The body can block the 
2.4GHz range low-power radio signal, so there is 
occasional signal loss experienced that the pattern 
recognition algorithms must compensate for. The receiver 
was plugged into a standard computer (desktop in the 
laboratory and laptop in the classroom), where data from 
the three sensors were synchronized and saved to disk. 
Simultaneously, a video camera was used to capture video 
of the scene that could be synchronized with the 
accelerometer streams and used for annotation of activity.   

Setting and Procedure 
We undertook data collection in both laboratory and 
classroom settings to determine the accuracy of recognition 
performance across both constrained and real-world 

environments. Participants were seated during all 
observations in both environments.  

Laboratory (Study 1) 
Observations were undertaken in a laboratory setting at The 
Groden Center where there were limited stimulus materials, 
one-to-one monitoring by a familiar teacher, and no other 
students present. The lab is divided into three areas: (1) A 
soundproof room equipped with a discrete, ceiling mounted 
camera and microphone to record observations; (2) An 
observation area behind the glass; and (3) An adjacent 
office containing a computer and video monitor. 

While wearing the sensors, participants were observed in 
the lab while sitting in a comfortable chair with a familiar 
teacher (see Figure 1(d)). There were no structured 
activities involved in these observational sessions. 
However, teachers familiar with the participants were 
invited to bring objects (e.g., headphones, books, toys) that 
participants typically interacted with when engaging in 
stereotypical motor movements.  

Classroom (Study 2) 
Observations were also undertaken in a classroom setting at 
The Groden Center, which included a diverse set of stimuli, 
demands for shared attention, and other students present. 
While wearing the sensors, each participant was observed 
on two separate occasions in class while seated at a desk. 
These observations included typical classroom activities 
(e.g., eating lunch, spelling program, sorting), with 
participants working both on their own and with a familiar 
teacher.  

Over a period of 12 months and during regular school hours 
(9:00-3:00), we recorded one 10-30 minute session per 
week per participant1. This data collection effort resulted in 

                                                           
1 When we began this work, the primary focus was to collect large 
numbers of examples of stereotypical movements quickly. Sessions that 

 
Figure 1. (a) A wireless accelerometer placed on each wrist. (b) A wireless accelerometer placed on the chest. (c) Receiver for 
sensor data. (d) An image of a child in the laboratory setting. (e) The video coding software that allows frame-accurate 
annotation. (f) The real-time activity annotator. (g) The acceleration data window plotting data streams in real-time. (h) The 
video window with images being captured. (i) USB camera clipped on to the top of the laptop. 



 

6.5 hours of data for Study 1 and 4.75 hours of data for 
Study 2. These data included at least 2 sessions per 
participant per study. 

Stereotypical Motor Movements 
One of the first challenges we encountered was simply the 
diversity of stereotypical motor movements observed in our 
participants, and the difficulty associated with annotating 
those movements. Table 1 summarizes quantitative and 
qualitative stereotypical motor movement characteristics of 
the participants averaged across observation sessions in the 
lab and classroom.  

The Total Duration is the total time spent engaged in 
stereotypical motor movements across lab and classroom 
sessions. The % Engaged is the percentage of time 
participants engaged in stereotypical motor movements 
during the data collection sessions. M and SD are the mean 
duration and standard deviation of each participant’s 
episodes of stereotypical movements. Num Stereo is the 
number of different types of stereotypical motor 
movements observed during all sessions and Total Stereo is 
the total number of episodes of those movements for each 
participant. This includes hand flapping, body rocking, and 
simultaneous hand flapping and body rocking – dubbed 
“flaprock.” Finally, consistency is a subjective grade (none, 
mild, or very) assigned by a trained behavioral scientist 
indicating how consistent each participant’s stereotypical 
motor movement appeared to be. 

Annotation 
Each session involved two observational coding procedures. 
The first, real-time coding, was undertaken during the 
sessions to see how well start time, end time, and type of 
stereotypical motor movement could be documented in real-
time (i.e., live) by a trained observer. The second, offline 
coding, was undertaken after the sessions using video records 
and computerized annotation software.  

                                                                                                 
had infrequent episodes of stereotypical movements (< 10 per hour) were 
aborted to reduce stress on participants, and the data were discarded. In 
hindsight, given the difficulty of acquiring examples, data from these 
sessions should have been coded and used in the analysis. 

Real-time Coding 
Start time, end time, and type of stereotypical motor 
movement were coded in real-time using custom annotation 
software (see Figure 1(f)). The activity annotator included 
three buttons that corresponded to the stereotypical motor 
movements under observation (i.e., hand flapping, body 
rocking, flaprock). Pressing a button once marked the start of 
the corresponding stereotypical motor movement. Pressing a 
button a second time marked the end of the corresponding 
stereotypical motor movement. 

Offline Coding (video records) 
A digital camera (mounted in the ceiling of the laboratory; 
attached to the front of the laptop in the classroom (Figure 
1(i)) was used to record each session. The camera was 
connected to a computer that synchronized the saved video 
with the accelerometer data streams. Start time, end time, and 
type of stereotypical motor movement were coded offline by 
two independent raters using a custom video coding software 
application (Figure 1(e)). 

RECOGNITION EVALUATION AND EXPERIENCES 
In this section, we describe in detail our experience applying 
physical activity pattern recognition to the stereotypical 
motor movement recognition domain.  

Algorithm 
Prior work [18] demonstrates that decision tree classifiers can 
be used to effectively recognize a variety of physical 
activities. We are ultimately interested in creating a real-time 
recognition tool, and decision trees have a desirable 
combination of properties: They have performed well in prior 
experiments reported in the literature on posture and 
ambulatory recognition, and they are fast to run once trained.  

We use five time and frequency domain features computed 
for each acceleration stream. These are: (1) The distances 
between the means of the axes of each accelerometer to 
capture sensor orientation for posture; (2) Variance to capture 
the variability in different directions; (3) Correlation 
coefficients to capture the simultaneous motion in each axis 
direction; (4) Entropy to capture the type of stereotypical 
motor movement; and (5) FFT peaks and frequencies to 
capture differentiation between different intensities of the 
stereotypical motor movements. The features are computed 
for a window of data, assembled into a vector, and used as 
input to the C4.5 classifier in the WEKA toolkit [19]. WEKA 
is then used to evaluate classification performance using 10-
fold cross validation.  

Stereotypical motor movements were labeled as flapping, 
rocking, or flaprock (i.e., simultaneous flapping and rocking). 
Non-stereotypical motor movements were labeled as 
unknown segments. Including an unknown class resulted in 
highly skewed class distributions, such that the frequencies of 
stereotypical motor movements were substantially lower than 
the examples of the unknown class when stereotypical motor 
movements were not occurring. To reduce skewness in the 
present data, all classifiers used balanced data for training 
and natural imbalanced data for testing. Balancing the data 

ID Total 
Duration 
(min:sec) 

%  
Engaged 

M (SD) 
(sec)  

Num 
Stereo| 
Total 
Stereo 

Consistency 

6 47:42 28% 7 (6) 3 | 372 Mild 

7 18:18 17.5% 3 (2) 2 | 345 Very 

8 10:00 8.5% 4 (2) 3 | 149 Very 

9 36:53 45%  9 (12) 2 | 240 Very 

10 32:14 48% 7 (7) 3 | 253 Mild 

11 67:28 71% 21 (23) 2 | 199 Very 

Table 1. Summary of participant stereotypical movements 



 

Exp Description Goals 

#1 Trained using participant-dependent data and offline 
annotations from the laboratory. Tested using cross-validation. 

1. Measure the performance of the classifier in a constrained setting. 
2. Measure the agreement between 2 offline annotators. 
3. Measure performance on agreement and disagreement segments. 

#2 Trained using participant-dependent data and offline 
annotations from the classroom. Tested using cross-validation. 

1. Measure the performance of the classifier in a naturalistic setting. 
2. Measure the agreement between 2 offline annotators. 
3. Measure performance on agreement and disagreement segments. 

#3 Trained using participant-dependent data from the classroom 
environment and tested it on the lab data, and vice versa.  

1. Measure the impact of inter-session variability. 
2. Understand the impact of the setup on the quality of the training 

data and the classifier.  
3. Compare the performance in the classroom and the lab. 

#4 

Trained and compared 3 different methods: (1) One-annotator 
training that uses offline annotations; (2) One-annotator 
training that uses real-time annotations; and (3) Two-annotator 
training that uses agreement segments from 2 offline 
annotators for training. 

1. Understand the impact of the annotation (e.g. offline, real-time, 
multiple annotators) on the performance of the classifier. 

2. Measure the agreement between offline and real-time annotations. 
3. Determine and compare where errors occur in real-time and offline 

annotations scenarios. 

#5 Trained the classifier with data from all the participants but 
one and tested the performance on the left out participant. 

1. Measure the performance of the classifier using participant-
independent data. 

2. Determine if some stereotypical motor movements are more 
consistent across participants and therefore detectable using 
participant-independent training. 

Table 2. Summary of Experiments 

was done by randomly under-sampling the majority class (i.e. 
unknown) and re-sampling minority classes (i.e. stereotypical 
motor movements). 

Nine acceleration streams (x, y and z from three 
accelerometers) were broken into 50% overlapping sliding 
windows of length 1 second. Our choice of 1 second was 
based on pilot work where we changed the window length 
from 200 ms to 5 seconds and measured the performance of 
the C4.5 classifier over pilot datasets. A window of 1 second 
obtained good overall accuracy while minimizing the 
classification delay. 

Cubic spline interpolation was used to fill in missing data 
points (e.g. due to wireless signal loss). Windows that lost 
more than 50% of their expected data points were excluded 
from the analysis. This amounted to less than 1% of the data. 

We conducted five types of analyses that are summarized in 
Table 2. To measure the performance of the activity 
classifier, we computed recognition accuracy, true positive 
rate (TP), false positive rate (FP), precision, and recall. 

In what we will call one-annotator training, we perform 10-
fold cross-validation over each participant’s data and present 
averaged results across different sessions in the classroom 
and the lab. In two-annotator training, we train on only 
agreement segments between two annotators and test on the 
complete data including both agreement and disagreement 
segments. For the agreement portion of the data, we perform 
10-fold cross-validation. For the disagreement portion, we 
train on the agreement data and test on the disagreement data. 
Results are then combined and averaged across sessions for 
each participant. Finally, we report on the percentages of 
agreement between two offline annotations and real-time-

offline annotations using Cohen’s Kappa inter-rater 
reliability statistic.  

Experiment 1: Performance in a Laboratory 
Table 3 shows the overall performance results of the 
algorithm averaged over multiple sessions for each 
participant in the lab. Accuracy is the average accuracy of the 
classifier across all sessions. Accuracy (Agree) is the 
accuracy of the classifier on examples where both offline 
annotators agreed. Accuracy (Disagree) is the accuracy of the 
classifier on examples where both annotators disagreed. TP 
and FP are the true and false positive rates, respectively. 
These are followed by precision and recall [19]. Finally, K is 
Cohen’s Kappa, a statistic representing inter-rater reliability 
between two offline annotators. 

The performance of the algorithm appears to be directly 
dependent on at least three factors: (1) The duration of each 
episode of stereotypical motor movement; (2) The percentage 
of time participants engaged in stereotypical motor 
movements; and (3) The consistency with which participants 
performed these movements.  

Participants 6, 7, and 8 had the shortest mean duration for an 
episode of stereotypical motor movement (7, 3, and 4 
seconds, respectively) and spent the least amount of time 
engaged in these movements (28%, 17.5%, and 8.5%, 
respectively). As expected, the recognition performance fpr 
these participants with respect to Precision and Recall is 
significantly lower than participants 9, 10, and 11 who 
engaged in stereotypical motor movements more often and 
for longer periods of time.  

Participant 6 exhibited the most inconsistent stereotypical 
motor movements, displaying a range (i.e., topography, 



 

intensity, duration) of different flapping and rocking 
movements. This resulted in both the lowest performance 
accuracy (79.0%) and the lowest TP rate (0.75). Conversely, 
participants 9 and 11 consistently engaged in the same 
stereotypical motor movements for 45% and 71% of the 
duration of the data, respectively and had the longest 
episodes with an average of 9 and 21 seconds, respectively. 
This resulted in the highest performance accuracies (93.3% 
and 95.0%, respectively) and the highest TP rates (0.90 and 
0.91, respectively). 

A major concern is the high false positive rates averaging 
0.07 across all participants. For intervention applications that 
target specific stereotypical motor movements, the system 
would incorrectly deliver the intervention 7% of the time 
when the participant is not engaged in the behavior. A closer 
look at the distribution of FP errors across the different 
activities reveals that more than 75% of the FP errors are for 
the unknown class and less than 25% of the errors are shared 
between specific stereotypical motor movements. This brings 
the average false positive rate for specific stereotypical motor 
movements down to approximately 0.03, which is a more 
desirable FP rate when an intervention is to be delivered only 
when a stereotypical motor movement is occurring. Standard 
smoothing techniques may further reduce these errors.  

Finally, the highest agreement between offline annotators is 
for participant 9 (kappa=0.95) and the lowest agreement is 
for participant 6 (kappa=0.82). To determine whether the 
majority of classification errors occurred on the subset of 
data where annotators were not in agreement, we evaluated 

the classifier on agreement and disagreement segments 
independently. Not surprisingly, the algorithm performed 
poorly on segments where there was disagreement between 
the annotators. However, this modestly impacted the overall 
performance of the classifier because the frequency of 
disagreement in offline annotation was relatively low, 
averaging less than 3% of the collected data for each 
participant.  

Experiment 2: Performance in Classroom 
Table 4 describes results from the classroom experiments. 
Similar to the lab setting, participants 9 and 11 showed the 
highest frequency and the longest duration of stereotypical 
motor movements and therefore performed the best with 
respect to accuracy (91.2% and 90.7%, respectively), TP rate 
(0.90 and 0.90, respectively), precision (0.88 and 0.86, 
respectively) and recall (0.90 and 0.90). The worst 
performance with respect to accuracy came from participant 
6 who also performed the worst in the lab. Participant 6 was 
particularly difficult to annotate in the classroom because he 
frequently transitioned between different types of 
stereotypical motor movements of relatively short duration. It 
appears, however, the more constrained lab environment 
made it easier for the annotators to monitor and label the 
participant’s stereotypical motor movements. This is 
reflected in the agreement between annotators with kappa for 
participant 6 being 0.72 in the classroom and 0.82 in the lab.  

Similar to the lab setup, participants 6 and 8 had the worst 
performance in the classroom with respect to precision (0.58 
and 0.55, respectively) and recall (0.82 and 0.74, 

Participant ID Accuracy Accuracy (Agree) Accuracy (Disagree) TP FP Precision Recall K 

6 79.0% 82.5% 47.4% 0.75 0.08 0.60 0.75 0.82 

7 92.2% 92.9% 51.1% 0.86 0.12 0.63 0.86 0.85 

8 90.0% 91.0% 51.5% 0.76 0.07 0.49 0.76 0.89 

9 93.3% 93.7% 56.6% 0.90 0.05 0.72 0.90 0.95 

10 87.6% 90.0% 52.3% 0.87 0.09 0.81 0.87 0.86 

11 95.0% 96.4% 68.3% 0.91 0.03 0.78 0.92 0.88 

Mean 89.5% 91.1% 54.5% 0.84 0.07 0.67 0.84 0.87 

Table 3. Performance of the classifier on 6 participants in laboratory (offline one-annotator training) 

Participant ID Accuracy Accuracy (Agree) Accuracy (Disagree) TP FP Precision Recall K 

6 84.6% 85.9% 64.9% 0.82 0.07 0.58 0.82 0.72 

7 87.5% 88.9% 62.8% 0.89 0.12 0.75 0.88 0.83 

8 89.7% 90.6% 47.6% 0.74 0.07 0.55 0.74 0.86 

9 91.2% 93.7% 39.8% 0.90 0.05 0.88 0.90 0.92 

10 88.0% 90.2% 43.0% 0.85 0.08 0.72 0.83 0.83 

11 90.7% 93.0% 58.5% 0.90 0.07 0.86 0.90 0.88 

Mean 88.6% 90.4% 52.8% 0.85 0.08 0.72 0.84 0.84 

Table 4. Performance of the classifier on 6 participants in a classroom (offline one-annotator training) 



 

respectively). However, for participant 7, the precision 
improved in the classroom relative to the lab (lab: 0.63; 
classroom: 0.75), likely because the number of stereotypical 
motor movements recorded in the classroom were more than 
double those recorded in the lab. This provided more 
examples for the classifier to learn the movements.  

Experiment 3: Comparing Performance in Classroom and 
in Laboratory 
To measure the impact of inter-session variability, we trained 
the classifier using data from the classroom environment and 
tested it on the lab data and vice versa.  

From Table 5, we can observe that the average performance 
using classroom data for training (83.7%) is similar to using 
lab data for training (81.4%).  Although the classroom is a 
less constrained setup where participants engaged in a wider 
range of movements and positions, it does not seem to have 
impacted the performance of the classifier.  

Notably, however, the performance on participants 7 and 9 
was significantly better when the classifier used the 
classroom data for training. This appears to be related to the 
number of training examples provided to the classifier. 
Specifically, we recorded an average of 108 episodes for 
participant 7 in the classroom per session versus 42 episodes 
in the lab and we recorded 48 episodes for participant 9 in the 
classroom per session versus 13 episodes in the lab. For 
participants 7 and 9, each episode resulted in an average of 7 

and 16 training examples respectively. Having more training 
examples appears to result in higher classification accuracy 
for the classroom classifier. 

Experiment 4: Comparing Performance using Real-time 
and Offline Annotations 
Table 6 compares the impact of real-time and offline 
annotation on the performance of the classifier in both the lab 
and the classroom settings. The column labeled Offline 
reiterates the overall accuracy reported in previous sections 
with one-annotator training. Real-time describes the results 
using real-time annotations for training and offline 
annotations for testing. Agreement describes the results from 
training the algorithm on segments where both offline 
annotators agreed. Finally, K is Cohen’s Kappa inter-rater 
reliability statistic that measures the agreement between the 
real-time and off-line annotations. 

Our first observation is that a strong association exists 
between duration of stereotypical motor movements and 
performance of the real-time annotator. For example, 
participants 6, 7, and 8 have the shortest mean durations (7, 
3, and 4 seconds, respectively) and the least percentage of 
engagement in stereotypical motor movements (28%, 17.5%, 
and 8.5%, respectively). The kappa values between offline 
and real-time annotations for these participants are also 
lowest in both the classroom and the lab. The real-time 
annotations and offline annotations differ in at least two 
ways. First, the real-time annotator frequently misses short 
episodes of stereotypical motor movements. For participant 
8, this constituted approximately 33% of the episodes that 
were labeled offline. Second, when the real-time annotations 
overlap with corresponding offline annotations, the real-time 
onsets and offsets are shifted in time but biased slightly 
towards errors in onset.  These two factors appear to reduce 
the performance of the real-time classifier relative to the 
offline one-annotator classifier, particularly when 
stereotypical motor movements are of short duration. Further, 
the impact of short duration movements seems more evident 
in the classroom environment where it is more likely that an 
annotator will miss subtle movements due to increased 
general activity. 

Classroom Lab Participant 
ID Offline Real-time Agreement K Offline Real-time Agreement K 

6 86.5% 75.8% 84.5% 0.42 79.0% 77.5% 77.7% 0.55 

7 86.8% 80.4% 89.2% 0.32 96.5% 96.4% 92.8% 0.37 

8 95.0% 91.1% 91.9% 0.54 95.8% 95.1% 91.7% 0.33 

9 83.7% 82.2% 92.1% 0.76 86.0% 91.8% 93.6% 0.69 

10 81.9% 85.9% 91.4% 0.71 77.5% 82.0% 87.5% 0.59 

11 84.0% 82.6% 92.3% 0.68 83.2% 93.5% 95.3% 0.81 

Mean 86.3% 83.0% 90.2% 0.57 86.3% 89.4% 89.8% 0.56 

Table 6. Performance of the classifier using real-time and offline annotations 

Participant ID Train Classroom, 
Test Lab 

Train Lab, Test 
Classroom 

6 64.9% 64.8% 

7 90.8% 86.8% 

8 90.7% 91.9% 

9 91.8% 83.9% 

10 75.0% 73.4% 

11 75.8% 87.7% 

Mean 83.7% 81.4% 
Table 5. Performance of the classifier using independent 
training and testing data from the classroom and the lab 



 

Our second observation is that when both the duration of 
stereotypical motor movements is long (7 seconds or more) 
and the percentage of engagement is high (40% or more), 
there is little difference between real-time and offline one-
annotator classifiers. We would expect the offline 
annotations to be of higher quality, with more accurate 
boundaries than the real-time labels, because real-time 
labeling is challenging given the differing speeds, frequency, 
and consistency of stereotypical motor movements.  A 
surprising result is that the performance of the classifier using 
real-time annotations in the lab for participants 9, 10, and 11 
outperformed the offline one-annotator classifier. 
Considering the data of participant 11 (see Figure 2), the 
highest frequency of offline disagreements occurred around 
the boundaries of the stereotypical motor movement, 
particularly in the area that separates the real-time and offline 
onsets (61% for participant 11). The lowest frequency of 
offline disagreements occurred in the area that separates the 
real-time and offline offsets (7% for participant 11). The rest 
of the disagreements were scattered within an episode (22%) 
or occurred in isolation (10%).  As a result, the real-time 
training data included approximately 29% of the examples 
where the offline annotators disagreed, whereas the offline 
annotation included all the examples with disagreement. This 
may partially explain why the real-time classifier 
outperformed the offline one-annotator classifier on 
participants with longer episodes. 

Our final observation is that using agreement data from two 
annotators is only useful when the duration of stereotypical 
motor movement is long. Table 6 shows that for all 

participants with episodes of long duration (9, 10, and 11), 
training the classifier on agreement data results in the best 
performance in both the classroom and the lab. The longer 
duration appears to allow for higher agreement between 
annotators and better quality training examples. 

It also appears that offline annotation facilitates labeling 
subtle and transitive variations on stereotypical motor 
movements, and that with no way to model the uncertainty of 
the annotator, the algorithm overemphasizes examples that 
are not particularly good for training. These transitive 
examples are likely to be missed in real-time annotation and 
thus are not included in training. For stereotypical motor 
movements of long duration, missing noisy transitive 
examples in real-time annotation might improve accuracy. 
For stereotypical motor movements of short duration, real-
time annotation seemingly misses both noisy transitive 
examples and good examples of short duration (e.g., 33% of 
the episodes were missed for participant 8).  In this case, the 
increase in performance due to loss of noisy transitive 
examples did not offset the reduction in performance due to 
loss of good but short examples. 

Experiment 5: Performance across Different Participants 
In this experiment, we trained the classifier with data from all 
the participants but one and tested the performance on the 
left-out participant. This procedure was repeated across all 
participants and results were averaged across activities. 

The overall performance is relatively low with an average TP 
rate of 0.54 and an average FP rate of 0.17.  The FP rate is 
dominated by errors associated with the unknown class. 
There was considerable variability across participants with 
respect to topography, duration, frequency, and consistency 
of the movements. This results in overall low performance 
using participant-independent training. For example, the 
duration of stereotypical flapping episodes varied from 1 
second to several minutes and involved different hand 
postures and movements across participants. 

We also found that some stereotypical motor movements 
were more consistent across some participants than others. 
For example, we observed that body rocking is more 
consistent than hand flapping. Table 7 shows that the best 
performance on participant-independent training is for 
participants 9 (Precision 0.62 and Recall 0.60) and 11 
(Precision 0.61 and Recall 0.67). Unlike other participants, 
both engaged primarily in body rocking (82% and 95% of the 
time they were observed having stereotypical motor 
movements, respectively). Because body rocking is more 
consistent across participants (i.e., less variability in how 
body rocking is performed), the results for these two 
participants were higher than other cases. 

DISCUSSION 
To the best of our knowledge, this is the only study on real 
data from children with stereotypical motor movements from 
multiple settings and with varying degrees of complexity. 
Enabling detailed and precise information on the occurrence, 

Participant 
ID 

Accuracy TP FP Precision Recall 

6 74.3% 0.52 0.13 0.48 0.52 

7 77.1% 0.53 0.23 0.61 0.53 

8 72.9% 0.48 0.15 0.58 0.48 

9 82.3% 0.60 0.19 0.62 0.60 

10 73.0% 0.45 0.14 0.45 0.45 

11 83.1% 0.67 0.19 0.61 0.67 

Mean 77.1% 0.54 0.17 0.56 0.54 

Table 7. Performance across different participants 

 
Figure 2. Distribution of disagreements between offline 

annotators with respect to the onset and offset of an 
activity for participant 11. 



 

type of movement, and duration of stereotypical motor 
movements using a system children can easily wear in 
everyday settings, and that can reliably and automatically 
recognize these behaviors, could be used for new behavioral 
and medical research to: (1) Clarify what setting events are 
associated with stereotypical motor movements; (2) 
Determine the functional significance of stereotypical motor 
movements, not only to shed light on the mechanisms that 
maintain it, but also to determine appropriate treatments; (3) 
Assess the effects of behavioral and pharmacological 
interventions intended to decrease the incidence or severity 
of stereotypical motor movements; and (4) Facilitate more 
precise intervention efforts before stereotypical motor 
movements are entrenched in an individual’s repertoire.  

The problem of accurately recognizing stereotypical motor 
movements in children with ASD and creating a real-time 
monitoring tool is more challenging than it may appear at 
first due to the complexity of the domain. First, there was 
considerable variability in the topography, duration, 
frequency, and consistency with which participants 
performed their stereotypical motor movements. Each child 
had very specific stereotypical motor movements that 
required participant-dependent data to train the classifier. 
Second, both real-time and offline annotations were difficult 
to generate, even by trained experts. The annotators had more 
difficulty and disagreement in documenting stereotypical 
motor movements in real-time than offline. In real-time 
annotation, the annotators often missed the start and stop 
times of the activity and sometimes missed the whole activity 
altogether. In offline annotation, the annotation tool did not 
account for the uncertainty of the annotator but rather 
provided discrete markers for the beginning and the end of 
the stereotypical motor movement. This resulted in noise 
around the boundaries of each stereotypical motor movement 
that appears to especially impact recognition of shorter 
movement segments. Third, during regular school hours, it 
can be difficult to collect enough training data from 
participants who engage in infrequent stereotypical motor 
movements. For some of our participants, the data were 
sparse, with less than 10% of the data representing specific 
stereotypical motor movements. Gathering naturally evoked, 
longer-term data outside of school settings (home, 
community, etc.) with a mobile system would provide more 
training examples that might improve recognition.  

A key challenge in this domain versus other activity 
recognition domains is the problem of acquiring adequate 
participant-dependent training data in real-life situations 
without an undue burden on the child, a researcher, or 
caregiver. Training a classifier on agreement data from two 
annotators produced the best results when the duration of the 
stereotypical motor movements were long, but acquiring 
such annotation is unrealistic for all but highly controlled 
research settings.  In this case, most of the examples of 
transitive behavior were eliminated from the training data by 
virtue of the disagreement between the annotators. A more 
realistic deployment scenario would involve the caregiver 

utilizing a real-time annotation tool on a mobile device that 
records naturally evoked stereotypical motor movements and 
captures uncertainty in the annotations.  

An encouraging and somewhat surprising result is that 
classifiers trained on real-time annotations performed slightly 
better than classifiers trained using offline annotations from 
one annotator for participants with stereotypical motor 
movements of long duration (7 seconds or more) who 
engaged in the behavior frequently. This suggests that 
transitive and subtle examples typically missed in real-time 
annotation are not particularly good for training. However, 
real-time annotation of stereotypical motor movements of 
short duration misses a significant number of valid episodes 
that results in worse performance than a single offline 
annotator. For children with episodes of long duration, our 
results suggest that deploying a real-time system that 
acquires annotations in real-time may be feasible. This might 
be accomplished by providing a teacher/caregiver with a 
mobile device that facilitates real-time annotation and 
training. However, to deploy such a system for children with 
episodes of short duration, research efforts are still needed to: 
(1) Improve the accuracy of real-time annotation, for 
example using auto segmenting techniques; and (2) Capture 
the uncertainty in the annotations particularly on the 
boundaries of stereotypical motor movements of short 
duration. 

The average performance of the classifier on the stereotypical 
motor movements in a naturalistic classroom was (Accuracy: 
88.6%; TP: 0.85; FP: 0.08) and (Accuracy: 89.5%; TP: 0.84; 
FP: 0.07) in the lab. Since the classroom is a less-constrained 
environment than the lab, enabling participants to engage in a 
wider range of movements (i.e., they have more opportunities 
to interact with objects in the environment), we expected 
more movement variability in the classroom and thus better 
training data, but that turned out not to be true. This result is 
encouraging in two respects. It indicates that recording data 
in more constrained environments may still capture important 
characteristics of the stereotypical motor movements with 
insignificant impact on the performance of the classifier. This 
also facilitates the annotation task since annotators found it 
easier to annotate data in constrained setups such as the lab 
where it was easier to observe the participants.  

Although these results were compiled offline, the entire 
system has recently been implemented on a mobile device, 
and activity detection runs in real-time (Windows Mobile, 
528 MHz ARM CPU). It should be possible to improve the 
results presented here using temporal filtering techniques to 
further lower the FP rates, which would be beneficial for 
intervention efforts. There are other supervised algorithms 
based on graphical models, and unsupervised learning 
algorithms, that could be explored as well.   

Finally, it is important to emphasize that automatic, real-time 
detection of stereotypical motor movements in children with 
ASD using comfortable, miniature wireless sensors could 
both advance autism research and enable new intervention 



 

tools that help children and their caregivers monitor and cope 
with these behaviors. For research, our system has the 
potential to overcome many of the problems Sprague and 
Newell [10] associate with direct observational methods 
mentioned in the introduction. Specifically, using 
acceleration data, pattern recognition algorithms can 
accurately document high-speed motor sequences; indicate 
when a sequence has started and ended; and handle 
concomitantly occurring stereotypical motor movements. 
Automating stereotypical motor movement detection in this 
way could free up a human observer to concentrate on and 
note environmental antecedents and consequences necessary 
to determine what functional relations exist for this 
perplexing class of behavior. For intervention, mobile 
classifiers could be integrated into a real-time intervention 
system where real-time training data are provided by 
caregivers and feedback is provided to participants when 
stereotypical motor movements are detected. Our present 
results suggest that such a system would require child-
specific training data, and that the training data could be 
acquired from a non-laboratory setting. It also appears that 
real-time annotation is possible, especially for children who 
engage in stereotypical motor movements of long duration.  
For children who engage in stereotypical motor movements 
of short duration, it might be possible to enhance the 
performance by deemphasizing boundary examples and by 
accounting for uncertainty in annotations. Such a system 
could facilitate efficacy studies of behavioral and 
pharmacological interventions intended to decrease the 
incidence or severity of stereotypical motor movements. 
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