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Latent Feature Models

Latent Feature Model (LFM) is a direct generalization of Mixture Model,
where each observation is an additive combination of several latent features.
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Latent Feature Models

In Latent Feature Model, each observation

xn = W Tzn + εn

where xn ∈ RD : observation, W ∈ RK×D : feature dictionary,
zn ∈ {0, 1}K : binary latent indicators, and εn ∈ RD : noise.

Mixture Model is a special case with ‖zn‖0 = 1.
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Latent Feature Models: Result Summary

Goal: Find dictionary WK×D and latent indicators Z : N × K that
best approximates observation X : N × D.

Existing Approaches:
MCMC, Variational (Indian Buffet Process):

No finite-time guarantee.
Spectral Method (Tung 2014):

O(DK 6) sample complexity. (z ∼Ber(π), x ∼ N(W T z , σ)).
Matrix Factorization (Slawski et al., 2013):

O(NK2K ) runtime complexity for exact recovery (noiseless).

This Paper:
A convex estimator — Latent Feature Lasso.
Low-order polynomial runtime and sample complexity.
No restrictive assumption on p(X ), even allows model mis-specification.
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Latent Feature Model: Estimation

Empirical Risk Minimization:

min
Z∈{0,1}N×K

{
min

W∈RK×D

1

2N
‖X − ZW ‖2F +

τ

2
‖W ‖2F

}
,

Given Z , the dual problem w.r.t. W is:

min
M=ZZT∈{0,1}N×N

{
max

A∈RN×D

−1

2N2τ
tr(AATM)− 1

N

N∑
i=1

L∗(xi ,−Ai ,:)

}
︸ ︷︷ ︸

g(M)

.

Key insight: the function is convex w.r.t. M = ZZT .

Enforce structure M = ZZT via an atomic norm.
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Latent Feature Model: Estimation

Let S := {zzT | z ∈ {0, 1}N}.
The ”Latent-Feature” Atomic Norm:

‖M‖S := min
c≥0

∑
zzT∈S

cz s.t. M =
∑

zzT∈S

czzzT .

The Latent Feature Lasso estimator:

min
M

g(M) + λ‖M‖S .

Equivalently, one can solve the estimator by

min
c∈R|S|+

g (
2N∑
k=1

ckzkzT
k ) + λ‖c‖1

Question: How to optimize with |S| = 2N variables?
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Greedy Coordinate Descent via MAX-CUT

At each iteration, we find the coordinate of steepest descent:

j∗ = argmax
j

−∇j f (c) = argmax
z∈{0,1}N

〈−∇g(M), zzT 〉 (1)

which is a Boolean Quadratic problem similar to MAX-CUT:

max
z∈{0,1}N

zTCz

Can be solved to a 3/5-approximation by roudning from a special
type of SDP with O(ND) iterative solver.
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Greedy Coordinate Descent via MAX-CUT

0. A = ∅, c = 0.
for t = 1...T do

1. Find an approximate greedy atom zzT by MAX-CUT-like problem:

max
z∈{0,1}N

〈−∇g(M), zzT 〉.

.
2. Add zzT to an active set A.
3. Refine cA via Proximal Gradient Method on:

min
c≥0

g(
∑
k∈A

ckzkzT
k ) + λ‖c‖1

4. Eliminate {zkzT
k |ck = 0} from A.

end for.

Evaluating ∇g(M) requires solving a least-square problem of cost O(DK 2).

Each iteration costs O(ND)︸ ︷︷ ︸
MAX-CUT

+ O(DK 2)︸ ︷︷ ︸
Least-Square
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Risk Analysis

Let the population risk of a dictionary W be

r(W ) := E [ min
z∈{0,1}K

1

2
‖x −W Tz‖2].

Let W ∗ be an optimal dictionary of size K , the algorithm outputs Ŵ with

r(Ŵ ) ≤ r(W ∗) + ε

as long as

t = Ω(
K

ε
) and N = Ω(

DK

ε3
log(

RK

ερ
)).

The result trades between risk and sparsity.

No assumption on x except that of boundedness.

The sample complexity is (quasi) linear to D and K .
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Results on Synthetic Data
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Results on Real Data

MCMC Variational MF-Binary BP-Means Spectral LatentLasso

(NDK2)T (NDK2)T (NK)2K (NDK3)T ND + K5log(K) (ND + K2D)T

MCMC, Variational, BP-Means take up to 1000s trainimg time, while
LatentLasso takes up to 100s.
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Conclusion

In this work, we propose a novel convex estimator (Latent Feature
Lasso) for the estimation of Latent Feature Model.

To best of our knowledge, this is the first method with low-order
polynomial runtime and sample complexity without restrictive
assumptions on the data distribution.

In experiments, the Latent Feature Lasso significantly outperforms
other methods in terms of accuracy and time, when there is a larger
number of latent features.
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