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1 Overview

In the last lecture we studied how to estimate the Lp norm of a frequency vector x for p : 0 ≤ p < 2.
In this lecture we will study how to estimate Lp norm for p > 2. Last time, we were able to sketch
Lp norm using space polylogarithmic in n, the number of coordinates of the given vector. This
time, we can sketch it using sublinear space.

In the previous lecture a key ingredient was the existence of a p- stable distribution. Unfortunately,
there are no p stable distribution for p = 2.

1.1 Exponential Distribution

This distribution has some interesting properties, with range in t ∈ [0,∞). The standard exponen-
tial pdf is e−t. The general exponential distribution has a parameter λ. The pdf ogf the general
exponential distribution is λ · e−λt cdf is 1− e−λt

Expectation is λ−1.

Claim 1. LetX1, X2, · · ·Xn be independent exponential random variables with parameters λ1, λ2, · · ·λn
respectively. Then, the random variable X := min{X1, X2, · · ·Xn} is distributed according to the
exponential distribution with parameter λ =

∑n
i=1 λi. X ∼ exp(λ).

Proof.

P[X ≥ t] = Πn
i=1P [Xi ≥ t]

= Πn
i=1e

λit

= e
∑n

i=1 λit

This property is sometimes referred to as the ”max stability” property of Exponential distribution.
Let X ∈ Rn be the frequency vector. Let U1, U2, · · ·Un be iid-s that is, independent identical expo-
nential random variables. We combine them with Xi−s in a manner that they become exponential
random variables with some parameter, such that the scaling factor turns out to be the Lp norm
of X.

We define:

Yi =
Xi

U
1/p
i

Y p
i =

Xp
i

Ui
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Therefore, 1/Y ∼ exp(λt)/‖X‖p.

However, Y still has n dimensions. We can compress it by using the linear sketch idea from the
AMS paper [1].

The total mass difference in 1
Yi

will not be much.

Step 2: We will use random hash functions.

h : [n] −→ [m]

We will distribute n items into m buckets. We analyze the random variable Zj :=
∑

h(i)=j Yi · σi,

where σi are random signs i.e. σi
$←− {±1}.

Therefore, every coordinate has a random sign.

Lemma 2. P
[
‖Y ‖∞ ∈

[
1
2‖X‖p, 2‖X‖p

]]
≥ 3/4

Proof. Let q = min
(

Ui
|Xi|p

)
. Note 1/q = ‖Y ‖p∞

P[q ≥ t] = P[∀i :
Ui
|Xi|p

≥ t]

= Πiexp{−|Xi|pt}
= exp{−‖X‖ppt}

Therefore, q is distributed exponentially with the parameter ‖X‖pp.

Since we know that 1/q = ‖Y ‖p∞, we have:

‖Y ‖∞ ∈
[

1

2
‖X‖p, 2‖X‖p

]
⇐⇒ q ∈

[
1

2p
1

‖X‖p
, 2p

1

‖X‖p

]
What is the CDF?

P[· · · ] = e−1/2
p − e−2p ≥ 3/4

Now we need to bound the variance in the compression from Y to Z. We need to show that the
maximum is preserved.

We need to make sure that the entries of opposing signs in any bucket don’t cancel each other and
decrease the weight. We have two issues to deal with here:

1. No two “big” coordinates (elephants) collide i.e. fall in the same bucket (because then they
might cancel each other with some probability 1/2)
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2. Noise from “small” coordinates is insignificant (if a large number of small coordinates are of
same sign they might add up and increase the total noise)

Given a coordinate Yi, we call it ”Big” if |Yi| ≥ ‖X‖p
c logn = M

c logn and call it small otherwise, i.e. if

|Yi| < M
c logn .

Let Ai be the indicator random variables for the event when the coordinate Yi is small.

Ai =

{
1, if Yi ≥M/l

0, otherwise

E[Ai] = P

[
|Xi|
U

1/p
i

≥M/l

]

= P
[
Ui ≤

|Xi|p · lp

Mp

]
= 1− exp

(
|Xi|p · lp

Mp

)
≤ |Xi|p · lp

Mp

For the last step, we used the fact exp(−t) ≥ 1− t.

Using linearity of expectation, we find the expected number of indices such that the coordinates
are big as follows.

E [|index i such that Yi ≥M/l|] = E

[∑
i

Ai

]

≤ ‖X‖
p
p · lp

Mp

= lp

Therefore, in expectation the number of “big” coordinates is (c log n)p. With probability 99
100 , the

number of big coordinates is at most 100(c · log n)p.

We have m = Θ(n1−2/p log n) buckets. We want to show that

Exercise 3. Birthday Paradox. Show that with probability 99/100, no two “big” elements
collide for m = Θ(n1−2/p log n).

The small coordinates are {i : |yi| < M
c logn}. Noise for Zj is

∑
i: small Yiσi

This is a complicated distribution and we shall try to understand it through its expectation and
variance.
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We define: Z
′
j =

∑
i: small Yiσi

We get the following.

E[Z
′
j ] = 0

E[(Z
′
j)

2] = E[

 ∑
i: smallh(i=j)

Yi · σj

2

]

= E[
∑

i: smallh(i)=j

]

=
1

m
· ‖Y ‖22

Claim 4. E[‖Y ‖22] ≤ n1−2/p‖X‖2p

Proof.

E[Y 2
i ] = E

[
Xi

U
2/p
i

]
= O(X2

i )

=⇒
E[‖Y ‖22] = O(‖X‖22)

Now, we recall an important inequality which will let us compare 2-norm and p-norms of a vector.

Lemma 5. Holder’s Inequality 〈f, g〉 ≤ ‖f‖a‖g‖b for 1
a + 1

b = 1.

Some interesting special cases of this inequality are a = 1, b =∞ and a = 2, b = 2.

Apply Holder’s inequality with fi = X2
i and gi = 1 with a = p/2, b = 1

1−2/p .

‖X‖22 ≤

(∑
i

X
2·p/2
i

)(∑
i

1

)1−2/p

≤ ‖X‖2p · n1−2/p

Thus,

V ar
(
Z

′
j

)
≤ n1−2/pM2

m
≤M2/(c log n)·
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Lemma 6. Bernstein’s Inequality Suppose X1, X2, · · ·Xn are independent random variables
with expectation E[Xi] = 0 and their absolute value |Xi| ≤ Q. Then, we have

P[

n∑
i=1

Xi ≥ t] ≤ exp

(
− t2/2∑

E[X2
i ] + 1

3Qt

)

When we apply this inequality with Q = M
c logn , t = αM with a constant value of say, α = 1

2 .

Then we have:

P[Z
′
j ≥ αM ] ≤ exp

(
− α2M2/2

M2

c logn + 1
3 ·

M
c logn · αM

)

P[Z
′
j ≥ αM ] ≤ exp

(
− α2M2/2

M2

c logn + 1
3 ·

M
c logn · αM

)

≤ 1

n2
·

By Union Bound, we get ∀j : Z
′
j < α ·M .

We have left out the analysis of the Ui-s. We can view this as a ROBP and use Nisan’s generator to
use PRG and bound the amount of randomness used as a resource. Nisan’s generator takes polylog
space and therefore does not increase the space requirements being sublinear.

This is still a linear sketch but the analysis is far more involved than the case for p < 2.
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