
CS7880: Faster Regression via Gradient Descent and
Subspace Embedding

Scribe: Niklas Smedemark-Margulies

March 14, 2019

Contents

1 Last time 1

1.1 Least Squares Regression . 1

1.2 Analytical Solution by Projection . 2

1.3 Faster Solution using Subspace Embedding 2

2 Faster Approaches 3

2.1 Condition Number for Inversion . 3

2.2 Gradient Descent . 4

2.3 Sketching Matrix with Subspace Embedding and AMPP 6

1 Last time

1.1 Least Squares Regression

Recall the Least Squares Regression problem. We have a data matrix A ∈ Rn·d, containing
our n data examples, each with d features. We want to find a vector x satisfying:

min
x
‖Ax− b‖2

2 (1)

1

Note - the typical regime is with n >> d; if d > n, the system is under-determined, and we
would need to apply additional constraints to find a unique solution.

1.2 Analytical Solution by Projection

The vector of labels b may or may not be in the column space of A. In either case, our
objective is to find a vector x whose product with A has the minimum euclidean distance.
This is exactly the projection of b onto the column space of A. Notice if b does lie in the
column space, we can find a vector with 0 error.

We can derive the analytical solution by simply considering our error vector. We observe
that the error vector, Ax∗−b is perpendicular to the column space of A. It must have a 0 dot
product with each column of A, or in other words, this error vector is in the left nullspace
of the matrix A:

AT (Ax∗ − b) = 0

ATAx∗ = AT b

x∗ = (ATA)−1AT b

Recall that the running time of this analytical solution is dominated by the multiplication
ATA, because n >> d.

1.3 Faster Solution using Subspace Embedding

Last time, we saw that we can compute an approximation to the least squares solution by
projecting the whole problem to a lower-dimensional space using a sketching matrix Π.

Intuitively, if we perform this projection using a matrix that satisfies the ε-subspace embed-
ding property for the column space of A, which nearly preserves lengths for all the vectors
in this subspace, we will also find a good approximation to the true solution.

For a sketching matrix Π ∈ Rm·n, which projects vectors from its rowspace in Rn into its
lower-dimensional column space in Rm, we search for the approximate solution x̃ as follows:

min
x
‖ΠAx− Πb‖2

2 (2)

We discussed two sketching matrix constructions, with different runtimes. Here, nnz(A)
represents the number of non-zero entries of A. In general, A might be very sparse, and could

2

be represented in the memory of a program as just a set of non-zero locations; therefore, we
try to be a bit careful about the time required to multiply by A.

• Using a dense Gaussian matrix, we can get away with few rows (m = Θ(d
ε
), but

multiplication by this dense matrix is relatively slower. We have an overall runtime of
O(d

e
· nnz(A) + poly(d, 1/ε)

• Using a matrix containing only a single non-zero entry per column, each of which is
just +/− 1, we needed m = Θ(d

2

ε2δ
) rows. Recall that:

– δ was the failure probability that this matrix actually fails to preserve lengths, d
is our number of features, and ε is the distortion factor.

– Because of the special way we represented this matrix using hash functions, we
were also able to multiply with it quickly, and our overall least squares runtime
was O(nnz(A) + poly(d, 1/ε)). Notice this runtime has a larger polynomial in d
and 1/ε than for the dense Gaussian case.

2 Faster Approaches

By making the observation that we are optimizing a convex objective, we can also try using
other convex optimization approaches to solve this problem faster. In particular, let’s try to
use gradient descent.

2.1 Condition Number for Inversion

First, let’s define the condition number for inversion of a matrix. We will state for the
purpose of intuition (deferring a strict analysis of this fact for elsewhere) that having control
of the condition number of a matrix allows us to also set a favorable step size for gradient
descent, and therefore perform gradient descent faster.

Def: For a matrix A, the condition number for inversion is the ratio between the maximum
and minimum singular value of A.

As discussed, we really want to find the projection of b onto the column space of A. We This
allows us to find the same solution by considering any other matrix with the same column
space - in particular, we will consider a matrix with a smaller condition number.

• Let Π ∈ Rm·n be a 1
4
-subspace embedding for the column space of A ∈ Rn·d.

• Let ΠA = UΣV T be the singular value decomposition of the matrix ΠA.

• Let R = V Σ−1 be our preconditioner matrix. This matrix will help us produce a
more well-conditioned matrix while maintaining the same column space

3

Note that we can compute an approximation to the SVD in time O(md2). In general, we
cannot obtain an exact form of the svd, even for a matrix with all rational or even all integer
entries. We defer discussion of the precision issues associated with this approximation of the
SVD, though it is possible to carry this error term through the same analysis.

For convenience later, note several other facts:

• For any matrix M , and any invertible matrix C, the product MC has the same column
space as M .

• Multiplying any vector x by any orthonormal matrix Q (satisfying QTQ = I) preserves
the length of x: ‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2.

In particular, these facts imply that when we consider the SVD of a matrix A = UΣV T ,
where we know that the left and right singular vector matrices are orthonormal (UTU = I,
V TV = I), and the singular values matrix is invertible, then we have:

A = UΣV T

AV Σ−1 = U

A (·) = U

The column space of U and A are the same.

We resume with our analysis of the effect of this preconditioner matrix R. Consider how it
affects the length of vectors, and apply our definition for the subspace embedding matrix Π:

‖ARx‖ = (1± 1

4
)‖ΠARx‖

= (1± 1

4
‖(UΣV T)(V Σ−1)x‖

= (1± 1

4
)‖x‖

From this, we see that by preconditioning, we have a matrix AR with the same column space
as A (because it is constructed by right-multiplying A with two invertible matrices), and
with all singular values in the range 1± 1

4
(such that we will be able to perform fast gradient

descent). We can also say that this matrix AR is well-conditioned.

2.2 Gradient Descent

We will now consider performing our least squares optimization problem relative to this well
conditioned matrix Ã = AR.

We can run the following iterative gradient descent algorithm:

4

1. Pick x(0) such that ‖Ãx(0) − b‖ ≤ 1.1‖Ãx∗ − b‖. We can compute this x(0) using a
Θ(1)-subspace embedding matrix and solving the system analytically.

2. set x(t+1) ← x(t) + ÃT (b− Ãx). The second term is the negative of the gradient.

Notice that this looks like a typical gradient descent algorithm, though we are using a
surprisingly large step size of 1. Recall that we know that Ã is well-conditioned. When we
move our current solution vector x(t) in the direction of the gradient, we want to think about
how much the components of this vector along each singular vectors are modified. We will
try not to step too far, since then our solution vector will get distorted. Intuitively, we can
think of our solution vector in terms of its components along the various singular vectors of
Ã:

• For an ill-conditioned matrix, with a large ratio of singular values, the components
along one singular vector and another may become relatively very skewed, causing our
solution vector to deviate.

• For a well-conditioned matrix like Ã, we know that the relative change in length of
components along various singular vectors will not be skewed in this way (because
the ratio of stretching is close to 1!). Therefore, we can take a large step along the
direction of interest, and know that the components of our solution vector will not
become relatively distorted.

Now, we will show that the error ‖Ã(x(t) − x∗)‖ goes down exponentially in the number of
iterations t.

Recall that (ATA)x∗ = AT b, and likewise (ÃT Ã)x∗ = ÃT b, which we will substitute below.

Consider the change in our error after a single iteration, applying our iterative update rule:

‖Ã
(
x(t+1) − x∗

)
‖ = ‖Ã

(
x(t) + ÃT (b− Ãx(t))− x∗

)
‖

= ‖Ã
(
x(t) + (ÃT Ã)x∗ − (ÃT Ã)x(t) − x(t)

)
‖

= ‖Ã
(
I − (ÃT Ã)

) (
x(t) − x∗

)
‖

Notice that we are multiplying by a matrix (I − (ÃT Ã)); since we know the singular values
of Ã are all close to one, we know that this results in a matrix with all singular values close
to 0!

Let Ã = U ′Σ′V ′T be the singular value decomposition of Ã. Σ′ is diagonal, with all entries
in the range (1± 1

4
)

Continuing with the same analysis. Notice here that the product of two diagonal matrices
is commutative; A · B = B · A. Towards the end, we also use the triangle inequality,

5

‖A ·B‖ ≤ ‖A‖ · ‖B‖.

‖Ã
(
x(t+1) − x∗

)
‖ = ‖U ′Σ′V ′T

(
I − V ′Σ′U ′TU ′Σ′V ′T

) (
x(t) − x∗

)
‖

= ‖Σ′V ′T
(
I − V ′Σ′2V ′T

) (
x(t) − x∗

)
‖

= ‖Σ′
(
I − Σ′2

)
V ′T

(
x(t) − x∗

)
‖

= ‖
(
I − Σ′2

)
Σ′V ′T

(
x(t) − x∗

)
‖

≤ ‖I − Σ′2‖ · ‖Σ′V ′T
(
x(t) − x∗

)
‖

≤ 9

16
· ‖Σ′V ′T

(
x(t) − x∗

)
‖

We see that our error decreases by a constant factor in each iteration, and therefore decreases
exponentially in the number of iterations.

The total running time to achieve an error of ε is therefore O(log(1
ε
) · (nnz(Ã+ d3), which is

the number of iterations required to reach a target error, times the time to compute a single
iteration.

2.3 Sketching Matrix with Subspace Embedding and AMPP

Another approach we can take to quickly solving the least-squares regression problem is to
find a matrix Π that is simultaneously a 0.01-subspace embedding matrix for the column
space of A, and also satisfies the

√
ε
d
-approximate matrix product property.

Recall that the this matrix product property states:

PrΠ

[
‖(ΠA)T (ΠB)− ATB‖ <

√
ε

d
‖A‖F‖B‖F

]
>

9

10

We can build such a matrix using the sparse construction (one non-zero per column), with
additional rows to satisfy the approximate matrix product property. The total number of
rows will then bounded by the sum of requirements for this combined construction will then
be O(d2 + d/ε) rows.

With our original matrix A, we have a true optimal solution vector of x∗ and an optimal
solution vector for the projected problem of x̃∗. For convenience, define the following:

A = UΣV T

Ax∗ = Uα, for some vector α

Ax∗ − b = −w, the optimal error vector

A (x̃∗ − x∗) = Uβ, for some vector β

6

The error for our projected solution vector will be:

‖Ax̃∗ − b‖2
2 = ‖A (x̃∗ − x∗) + Ax∗ − b‖2

2

Notice that on the left hand side, we are looking for the length of a vector. This vector is
most likely NOT perpendicular to the column space of A. Instead, the optimal error vector
Ax∗ − b is perpendicular to the column space, and forms one leg of our right triangle. The
final side of the right triangle is the difference vector between the true optimal solution and
our subspace-projected optimal solution (i.e. A(x̃∗ − x∗)).

Therefore, we can use Pythagoras’ theorem, and apply the convenience substitutions we
defined just above.

‖Ax̃∗ − b‖2
2 = ‖A (x̃∗ − x∗) ‖2

2 + ‖Ax∗ − b‖2
2

= ‖β‖2
2 +OPT 2

Also using our substitutions, we can state the following. Recall that the column space of
U (the left singular vector matrix) is the same as the column space of A, as proven above.
Finally, note that for a vector in some space, its projection into that same space is unchanged.
We can also express this by saying that a projection matrix is idempotent; P 2 = P .

ΠU(α + β) = ΠAx̃∗

= Projspan(ΠA)(Πb)

= Projspan(ΠU)(Πb)

= Projspan(ΠU)(Π (Uα + w)

= ΠUα + Projspan(ΠU)(Πw)

ΠUβ = Projspan(ΠU)(Πw)

Recall that Π is a 0.01-subspace embedding for the span of A (which is also the span of
U). This means that ΠU has all singular values in the range [0.99, 1.01], because U is an
orthonormal matrix with all singular values equal to 1. To give some intuition, just think
about using this matrix on a vector: ΠUy. U first maps the vector into the column space of
U , preserving the length. Π then nearly preserves the length, since (Uy) is now a vector in
the subspace where we have guarantees. We can say: ‖y‖ = ‖Uy‖ ≈ ‖ΠUy‖.

Since we know that this matrix ΠU nearly preserves length (up to a constant factor) we can
say also say the following. Note that we can left multiply the final rearrangement in the
previous equation by (ΠU)T , and substitute it in here:

7

‖β‖ ≈O(1) ‖(ΠU)T (ΠU)β‖
= ‖(ΠU)TΠw‖

Finally, by the approximate matrix product property, we have that

PrΠ

[
‖(ΠU)TΠw − UTw‖2

F < ε/d‖U‖2
F‖w‖2

2

]
> 9/10

Note that ‖U‖2
F = d because U is orthonormal, and that UTw = 0 because w is our error

vector, which is perpendicular to the column space of A, and therefore also perpendicular to
the column space of U .

We can substitute both of these facts into the above inequality. We can also use the approx-
imate equality expression that we previously found for β in terms of Π, U , and w, and fold
the constant factors into our O(·) notation. Thus, with high probability, we have that:

‖β‖2 ≤ O(
ε

d
) · d ·OPT 2

= O(ε ·OPT 2)

Finally, we can substitute this into our expression for the total error of our projected solution:

‖Ax̃∗ − b‖ = ‖β‖2 +OPT 2

= (1 +O(ε))OPT

8

