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Lecture 15: Matrix Product using JL, Subspace Embedding

Lecturer: Huy Lé Nguyén Scribe: Xuangui Huang

Last time we saw how to approximately compute matrix product using sampling.
We also started discussion on using JLMP to approximately compute matrix prod-
uct. In this lecture we will see its complete proof, and we will see how to construct
distributions of sparse embedding matrices satisfying JLMP. Besides, we will consider
a variant of sparse embedding matrices for subspaces, and use it to solve least square
regression.

1 Approximate Matrix Product using JLMP

Definition 1. Let D be a distribution over matrices I € R™ ™. We say that D
satisfies (g,0,p) Johnson-Lindenstrauss Moment Property ((g,d, p)-JLMP) if for any
unit vector x we have

Enp [\Hnmng . 1\”} < ePs,

Last time we proved that applying II with JLMP to vectors will keep their inner
products approximately.

Lemma 1. Suppose II comes from D with (g, 6, p)-JLMP for p > 1, then for any unit
vectors x and y we have En.p||(Ilz, My) — (x, y)|'] < (2¢)" 9.

Now we are going to prove that matrix product is approximately preserved with
high probability after applying II with JLMP. Therefore instead of calculating A" B
we can calculate (HA)T I1B, which will speed up our calculation since the dimensions
of ITA and IIB can be much smaller than those of A and B.

Theorem 1. Suppose II comes from D with (e, d,p)-JLMP for p > 2, then for any
matrices A € R™® and B € R™**, we have

Py H ATB — (A)" HBHF > 2¢ | All |1Bll,| < 6.

II~D

Proof. Let a; be the i-th column of A for i € {1,...,a}, and b; be the j-th column
of B for j € {1,...,b}. Let M = AT B — (ITA)" [IB, then the entry M, on the i-th
row, j-th column is

Mi,j = <CLZ‘, b]> — <HCLZ‘,Hbj>

a; b, a; b;
— sl 1551 (< i b >—<n—’ R >)
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where we define X; ; = <”Zi” ”Z ”> <H”Z ik H”b ”> Note that o7 and are unit

vectors so we can apply the above lemma to them.
By Markov inequality, we have

Hb [

Pe[|[4TB — () 11B|| = 22 Al 18I 6] < PHIMIE = 22 1Al I1B] )

En[|M]2)
< GeP AT | BT S

To bound Er[||M]%], notice that it is Eg {(Z” M&) 2] , then we raise it to the

power of %:

51\ .
(Z M&-) < Z (]EH [(ij) 5] ) g (triangle inequality of £-norm)
i,J 2
= (sl 16,17 12517
i3

LSAIN]

SR

= > llaal* 161° (EnllXiy )
0,
<> laill® losl1* (2¢)78) 7 (by Lemma 1)

2
= (2¢)%67 | All% || BIE -

Note here we need p > 2 so we have 5-norm and can use the triangle inequality in
the first step.

Therefore we have Eq[||M]|%] = En [(zm ng) ] < (2e)76 || A|I% | B||%, applying
it to Equation (1) we get the result.

2 Sparse Embedding Matrix for JLMP

Last time we mentioned that random matrices with i.i.d. Gaussian entries satisfies
(g,6,log %)—JLMP with m = @(Ei2 log %) As such matrices are dense, the total run-
ning time for calculating (HA)T I1B might be as large as O(abai2 log % + (a+ b)ngi2 log %)
for A € R™* and B € R™®. The first term is basically unavoidable for multiplying a
dense a X m matrix with a dense m x b matrix. Since n > m, we expect IIA and IIB
to be dense. But for the second term, we can improve the running time of calculating
ITA and IIB by constructing sparse II.

Consider a distribution of sparse embedding matrices II € R™*" in which each
column has a single non-zero entry, generated by a pair-wise independent hash func-
tion h: [n] — [m| and a random function o: [n] — {£1}, where for each i € [n], h(7)
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is the row of the non-zero element of the i-th column and o(i) is the value of that
element.

We will show that for m = @(82%;), this distribution satisfies (g, ¢, 2)-JLMP. Note
that II is basically a linear sketch matrix, so the calculation of ITA only takes time
O(nnz(A)), linear in the number of non-zeroes in A.

Claim 1. For the distribution D of matrices I1 we describe above with m = @(%),
for any unit vector x we have

Enp [|Ia]* — 1] < %,

Proof. Note that Ey D||Hx||2 — 1‘2} = Eq [||Hx||4} - QEH[HH!ZHQ} + 1. We can bound

the first and second terms similarly as what we’ve done before.
En[[02’] =Y En|| > 200)
1 j:h(j)=i

Z Z En[lexj20<j1)a(j2)]
=1 j1,j2:h(j1)=h(j2)=i

2

where the first step comes from linearity of expectation, and the third step comes
from the fact that when j; # jo we have o(j;) independent of o(j2) so the expectation
would be 0, thus the remaining term is >, E [230(5)?] = > i a2,

4

 [[IT )] Z]En > zo())

Jh()=i

[
NERD

Z Elzj,2j,75,25,0(51)0(j2)0 (53)0 (ja)]

1 j1,J2.73,74:
h(jr)=1,Yke[4]

i

I
NE

> El]+3 > E[za])]
1\ j:h()=i J1#£72:
h(j1)=h(j2)=i

3 <z Ly _)

i=1 \j=1 1772

.
I
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where the third step comes from the observation that whenever an element occurs an
odd number of times, the expectation is 0.

Therefore we have EH[H|H95||2 - 1|2] <1+2-2+41=2 = 2% if we set
m = @(%). [

3 Subspace Embedding

Now we look at a slightly different problem, where we only require II to preserve the
length of vectors in a specific linear subspace.

Definition 2. For a linear subspace E C R™, we say I1 is e-subspace embedding for
E if for any unit vector x € E, we have |||HxH2 —1| <e.

Suppose dim(E) = d. Let U be an orthonormal basis of E, ie. U'U = I,
UeR™ and E = {x|x = Uz,z € R?}. Then for any unit vector x € E we have
|z ||* = ||(ITU) 2| for some vector unit vector z € R% We have the following fact.

Fact 2. Suppose o1 > o2 > ... are singular values of the matriz M, then | M|, =
01 = max,.|,|=1 2 Mz, and | M|, = />, 0.

Therefore we have

max |||Hm||2 — 1| = max |||(HU)Z||2 —1]

zEE:||z||=1 z:||z]|=1
= s |(Huz) 10 - 1‘
= max 27 ((HU)T U — I) 2
z:||z]|=1
— )(HU)T U — 1‘ ,
2

thus the condition in the above definition is equivalent to H (HU)T U — ]H <e. To
2

find such matrix II, it is sufficient to find II such that H(HU)T U — IH <e.
P

From the previous sections we know that there is a distribution D of matrices
IT € R™™ with (¢, 6,2)-JLMP for m and €’ to be determined, such that

]

()" T UTUHF > 2/ |UII}] <,
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which is equivalent to Pr[H(HU)T U — ]H > 25’d} < 0. By setting ¢ = ¢/2d
F

and m = O(d?*/e?0), we get what we want: a distributional version of e-subspace
embedding. Note that the choice D only depends on d (in addition to ¢ and 4), i.e.
it works for all linear subspaces E of the same dimension d.

Our II comes from the previous section, so multiply it with matrix A only takes
time O(nnz(A)). An iid. Gaussian II will make the number of rows m only linear
in d, but as it is dense it would be slower to multiply it with other matrices.

4 Ordinary Least Square Regression

In the least square regression problem, we are given an X € R™ ¢ representing n
examples with d features, and a vector y € R”. Usually we will have n > d. The
goal is find the best parameter - = argmingcpa [| X8 — yHi

There is an analytical solution for this problem: suppose X "X is invertible, then
BLY = (XTX)f1 X Ty. This method takes O(nd?) time, and O(nd“~!) if we use fast
matrix multiplication, which is too slow in practice.

Let E be the span of columns of X and y. Then we have dim(E) < d+ 1. We
can use our previous result for subspace embedding to speed up the calculation.

Claim 2. IfII is an e-subspace embedding for E, then with E = argming || (I1X) 8 — HyHg,
we have

~ 2 1]
|5y, < =

R P

Proof. By optimality of B and e-subspace embedding property, we have

I

- | < e g < (16) X5 -y

2

~ 2 ~
On the other hand we also have HHXB —Ilyl| >(1—¢) HXB -yl - O

Therefore our strategy is to calculate IIX and Ily first then solve the least square
regression of reduced size using the analytical solution. This takes time O(d-nnz(A)/e+
poly(d,1/¢)) if we use Gaussian II, and only O(nnz(A) + poly(d, 1/¢)) if we use the
IT from the last section (but the poly(d, 1/¢) factor would be larger).
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