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Lecture 12: Fast Algorithm for Compressive Sensing

Lecturer: Huy Lé Nguyén Scribe: Xuangui Huang

Last time we saw compressive sensing (noisy sparse vector recovery) using ¢4
minimization, named as “Basis Pursuit.” The goal is to recover a hidden vector x
that is k-sparse with noise, after observing measurements y = Ilx. What we did is to
solve the following linear programming:

min |z},

subject to [1z =y .

More generally, if there is a “post-measurement noise” e s.t. |lel|, < a and y =
[Ix + e, we can change the above LP into the following convex optimization:

min [z,

subject to ||Ilz —y|l, < a.

Similar to what we did last time, we can prove that this convex optimization can
successfully recover z if IT is RIP. Recall that we used 2* to denote the vector obtained
from picking top k coordinates of x and zeroing out the rest.

Theorem 1. If 11 satisfies (¢,2k)-RIP for sufficiently small € > 0, we can get z s.t.

e —af, < O(ﬁ o — 2], + ||e||2). )

However, algorithms for convex optimization, such as interior-point method and
ellipsoid method, are usually very slow so it is impractical to use them to recover a
vector x that has millions of entries.

In this lecture we introduce a fast algorithm for compressive sensing: the “Iterative
Hard Thresholding” (IHT) algorithm by Blumansath and Davies[1], based on the
CoSaMP algorithm by Needell and Tropp[2]. The algorithm is very simple:

Algorithm 1 Iterative Hard Thresholding
M 0
for t from 1 to 7' do
QD ¢ g ® 4 TIT (y — a®)
2D Hk(a(t—i-l))
end for

The Hy, operator above is the “hard thresholding operator,” which keeps the top k
coordinates (in absolute value) of the operand and zeros out the rest. This algorithm
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uses this operator iteratively, thus earning the name IHT. Observed that z(®*)’s are
guaranteed to be k-sparse, we can prove the “correctness” of this algorithm by the
following theorem.

Theorem 2. If 11 satisfies (g,3k)-RIP for e < ﬁi’ then for any t > 1,

1

Vk

The last two terms \/LE |z — kal and |le||, also appear in Equation (1). In the

||m(t+1)—xH2SO(Q_t||$||2+H$_$k||2+ Haf—x’“HﬁHeHz) 2)

following we will see that the second term ||:U — ka , 1s bounded by the third term. To
make the first term 27" ||z||, small enough, we need the total number of iterations 7" to
be log ||z||,, roughly the total number of bits of all the numbers in the input, which the
runtime of the convex optimization method also depends on (polynomially if we use
ellipsoid method). The only difference is that here the dependence of runtime on T
is explicit and linear whilst for the convex optimization it is implicit and polynomial.
Therefore HIT algorithm can not only outperform the convex optimization in time
but also achieve similar accuracy of solution.

Claim 1. Hx —x2kH2 < \/LE ||x — kal

Proof. We use the “Shelling trick,” which was already used in previous lectures for
several times. We sort coordinates of x in descending order of absolute value, obtain-
ing z1, g, ..., Ty s.t. |x1| > |x2| > -+ > |x,|. Then we divide them into groups of size

1
)

' - o=,
k, denoted as By, By, .... For any j € B; we have |z;| < minjep,_ {|7]} < e

1
s [e], =  r.

-, <>
HSL’ x 2 S th
t>3

J therefore by triangle inequality we have

x—kal. (3)

1 1
<y — =
2—;@\“@% Vi

[

Looking back into y = Ilz + e, we can instead write it as y = IIz?* +11 (1: - x%) +
e = [a% + ¢ if we define ¢/ =11 (;1: — x%) + e. In other words, we can take the noise
out of x and put it into the post-measurement noise.

Claim 2. |[¢/]l, < flell, + 4 o — 2],
Therefore, to prove Theorem 2, it is sufficient to prove that for 2k-sparse =z,

a0 — 2], < 0@ lall, + ') - “
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Proof of Claim 2.

e’y < llell, + ||H(~’U — " (by triangle inequality)

(B

<lell, + Z HHth H2 (by triangle inequality)
>3

<lelly + Z(l +¢) HthH (by RIP and k-sparsity of )
>3 2

<llelly,+(1+¢e)— \/_ ||[E—33kH1 (similar to Eq. (3))

[

Now we want to prove Eq. (4) for sparse . To make life easier we use k as 2k
and e as €. Intuitively, in each iteration of the IHT algorithm, we have

2 — f ()
= H, (x(t) + 1" (Iz + e — Ha:(t)))
~ Hy, (ac(t) +1(z— x(t)) +1I'e) (by RIP)

~xr+e.

Denote I'* = supp(z), 'V = supp(z)), BY =T*UT®, and rV =2 — 2.
Now we have

(t-i-l)H2 t+1 H2

Ir 2, =l -
- (t+1)
= HxB(t+1) — X B(t+1) )

(by def. of Bt+Y)

(t+1)

(t+1) (t+1)
< HxB(tH) Ap(t+1)

+ Api+yy — Tty )

(by triangle inequality)

(t+1)
<2 Tpe+1) — aB(t+1) )

(by optimality of Hy)

=2 Tp+1) — xfgt)(wl) - H;Hl) (y o H‘T(t)) H2

(where T is IT but with columns not in B zeroed out)

=2 ngt-‘rl) - H;(Hl) (Hr(t) + 6) )

=2 ngwl) HT(tH)Hrgg%tH) II “+1)Hrj(gzt+1) HIT?““)GHQ

<2 (I - HE(HUHBW)) ngtJrl) ) (since Hr(thJrl) = H3<t+1>¢§2t+1))
+2 HH;(wﬂ)HB(t)\B(Hl)ngt)\B(t*l) Q(Simﬂarly’ by ngtﬁ - TJ(B%\B“+1>>

-
+ 2 HHB(t+1)€B(t+1) )
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(t)

Claim 3. H (I — H;(t+1)HB(t+l)> r B(t+1)

B(t+1)

<ol
2

K
Proof. For any vector v with supp(v) € B®*, we have

t t
<U7 (I - H—lf;(t+1)HB(f+1)> T;2t+1>>‘ = <U7 Tg2t+1)> - <HB(t+1>Uv HB<t+1)T§32t+1>>‘

t
< ellolly s

9 Y
by Cauchy-Schwarz inequality and RIP. Take v = (I — Hg(t e U +1)) ngt +1)- O

We will finish our proof in next lecture.
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