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Randomized algorithms



Events and probabilities

Suppose you’re on a game show, and you’re given the
choice of three doors (A, B, C). Behind one door is a car,
behind the others, goats. You pick a door, say A, and the
host, who knows what’s behind the doors, opens
another door, say C, which has a goat. He says to you,
”Do you want to pick door B?” Is it to your advantage to
switch your choice of doors?



Assumptions

• Car is equally likely to be behind each door

• Player is equally likely to pick each door

• After player picks, host opens a different door with 
a goat behind

• If the host has choices, he is equally likely to pick 
each of them 



Sample space

• Randomly determined quantities:
• Car location

• Door chosen by player

• Door opened by host

• Every possible combination is an outcome

• Set of all outcomes is sample space
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Random variables

• Random variable R is a function 
𝑅: {𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒} → ℝ

• Outcomes of 2 fair coin tosses

• R=#heads in the outcome

• R(HH) = 2

• R(HT) = 1

• Pr[R = 1] = Pr[HT]+Pr[TH] = ¼ + ¼ = ½ 



Expectation

• R is random variable on sample space S

• 𝐸 𝑅 = σ𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑤𝑅 𝑤 Pr[𝑤]

• R: #heads in 2 fair coin tosses

• 𝐸 𝑅 = 𝑅 𝑇𝑇 Pr 𝑇𝑇 + 𝑅 𝑇𝐻 Pr 𝑇𝐻 +
𝑅 𝐻𝑇 Pr 𝐻𝑇 + 𝑅 𝐻𝐻 Pr 𝐻𝐻

• 𝐸 𝑅 = 0 +
1
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Linearity of expectation
Claim. For any variables R1, R2, 

𝐸 𝑅1 + 𝑅2 = 𝐸 𝑅1 + 𝐸[𝑅2]

Proof. Let 𝑅 = 𝑅1 + 𝑅2.

𝐸 𝑅 = σ𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑤∈𝑆𝑅 𝑤 Pr[𝑤]

= σ𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑤∈𝑆(𝑅1(𝑤) + 𝑅2(𝑤))Pr[𝑤]

= σ𝑤∈𝑆𝑅1(𝑤)Pr[𝑤] + σ𝑤∈𝑆𝑅2(𝑤)Pr[𝑤]

= 𝐸 𝑅1 + 𝐸[𝑅2]



Application

• R: #heads in 2 fair coin tosses

• 𝑅 = 𝑅1 + 𝑅2 where R1=#heads in 1st coin toss

• E[R1]=1/2 (head with probability ½, tail with probability ½)

• E[R2]=1/2

• E[R] = ½ + ½ = 1

• E[#heads in 100 coin tosses] = ?

• 100 coin tosses. E[#times where two consecutive coins are 
different] = ?



• Pick an element p
• Partition the list using p as pivot

• Left half are elements < p
• Right half are elements > p

• Recursively sort both halves

p

Quicksort

How to pick good pivot p?



Picking good pivot

• Can run median algorithm to use median as pivot

• O(n) time to find pivot

• T(n) = 2T(n/2) + O(n)

• Solution?

• Cons: Constant in O(n) is large

• New idea: use random pivot



Running time with random pivot

• Suffices to count number of comparisons

• 𝑉𝑖: i
th smallest value in array A[1…n]

• 𝑋𝑖𝑗: random variable that is 1 if we compare 𝑉𝑖 and 𝑉𝑗
and 0 otherwise

• #𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 = σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑋𝑖𝑗

• 𝐸 #𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 = σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝐸[𝑋𝑖𝑗]



When do we compare 𝑉𝑖 and 𝑉𝑗?

• If 𝑉𝑘 is picked as pivot and  𝑉𝑖 < 𝑉𝑘 < 𝑉𝑗
• 𝑉𝑖 goes left, 𝑉𝑗 goes right

• We do not compare 𝑉𝑖 and 𝑉𝑗

• In general, we compare 𝑉𝑖 and 𝑉𝑗 if and only if the first 
pivot chosen from {𝑉𝑖, 𝑉𝑖+1,…, 𝑉𝑗} is either 𝑉𝑖 or 𝑉𝑗.

• By symmetry, the probability of this is 
2

𝑗−𝑖+1

• 𝐸 𝑋𝑖𝑗 =
2

𝑗−𝑖+1



Running time of Quicksort
• 𝐸 #𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 = σ𝑖=1

𝑛−1σ𝑗=𝑖+1
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Harmonic number < ln(𝑛)


