
CS 4800: Algorithms &
Data

Lecture 21

April 6, 2018

Bipartite matching

Bipartite matching

Bipartite matching

• Given graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) where the edges are
between L and R

• Find the largest subset 𝑀 ⊆ 𝐸 such that each
vertex is incident to at most one edge in M

Reduction to max flow

s t

All edges have capacity 1

Find max flow and return all middle edges e with f(e)=1

Correctness
Claim. If there is a matching of size k, then there is a flow
of value k.

Proof. Let M be a matching of size k. Construct a flow f as
follows.

If (𝑥, 𝑦) ∈ 𝑀 set f(s,x) = f(x,y) = f(y,t) = 1.

Clearly f satisfies

• Capacity constraints

• Flow conservation

|f| = |M|.

Correctness
Claim. If max flow = k then algorithm finds matching of
size k.

Proof. All capacities are integers so Ford-Fulkerson
algorithm finds integral flow.

𝑀 = {(𝑥, 𝑦) 𝑠. 𝑡. 𝑥 ∈ 𝐿, 𝑦 ∈ 𝑅 𝑎𝑛𝑑 𝑓(𝑥, 𝑦) = 1}

Capacities are 1 so all edges have flow = 0 or 1.

c(s,x)=1 so each 𝑥 ∈ 𝐿 is incident to at most one edge in M.

|f|=k so there are exactly k vertices 𝑥 ∈ 𝐿 with f(s,x)=1.

Each such x is incident to one edge in M and thus |M|=k.

c(y,t)=1 so each 𝑦 ∈ 𝑅 is incident to at most one edge in M.

Thus M is a matching.

Running time

• Each augmenting path increases flow value by 1

• Max flow is at most V

• Running time of Ford-Fulkerson for bipartite
matching is O(VE)

Network design

Edge-disjoint paths

• Given directed graph G = (V, E), source s,
destination t

• Find max number of edge-disjoint paths from s to t

s

4

3

t

6

1

52

Communication network, protection against link failure

Reduction to max flow
Assign capacity 1 to every edge.

s

4

3

t

6

1

52

1

1

1

1

1

1

1

1

1

1

Thm. Max # edge-disjoint paths = max flow.

Proof. ≤

Put f(e)=1 for e on the paths, f(e)=0 otherwise.

Paths are edge-disjoint so f has k edges out of s, |f|=k.

Suppose there are k paths.

Reduction to max flow

s

4

3

t

6

1

52

1

1

1

1

1

1

1

1

1

1

Thm. Max # edge-disjoint paths = max flow.

Proof. ≥

Ford-Fulkerson implies there is an integral flow of value k

Consider edge (s,u) with f(s,u)=1.

Suppose |f|= k.

By flow conservation, there exists (u,v) with f(u,v)=1.

Repeatedly apply flow conservation to trace out a path to t.

|f|=k so k edges e out of s with f(e)=1 → k edge disjoint paths.

Node-disjoint paths

• Given directed graph G = (V, E), source s,
destination t

• Find max number of node-disjoint paths from s to t

s

4

3

t

6

1

52

Communication network, protection against machine failure

Reduction to max flow

s

4

3

t

6

1

52

3in 3out1

Image segmentation

Image segmentation

• Foreground/background segmentation

• Label each pixel as foreground/background

• V=set of pixels, E=neighboring pixels

• 𝑎𝑖 ≥ 0: likelihood of pixel i in foreground

• 𝑏𝑖 ≥ 0: likelihood of pixel i in background

• 𝑝𝑖𝑗 ≥ 0: penalty of separating pixels i, j

• Goal: find partition that maximize # correct labels

• A formulation: find partition V=(A,B) that maximizes

෍

𝑖∈𝐴

𝑎𝑖 +෍

𝑗∈𝐵

𝑏𝑗 − ෍

𝑖,𝑗 ∈𝐸, 𝐴∩ 𝑖,𝑗 =1

𝑝𝑖𝑗

X

Reduction to min cut

• Maximizing

෍

𝑖∈𝐴

𝑎𝑖 +෍

𝑗∈𝐵

𝑏𝑗 − ෍

𝑖,𝑗 ∈𝐸, 𝐴∩ 𝑖,𝑗 =1

𝑝𝑖𝑗

• Is minimizing

෍

𝑖∈𝑉

𝑎𝑖 +෍

𝑗∈𝑉

𝑏𝑗 − ෍

𝑖∈𝐴

𝑎𝑖 +෍

𝑗∈𝐵

𝑏𝑗 − ෍

𝑖,𝑗 ∈𝐸, 𝐴∩ 𝑖,𝑗 =1

𝑝𝑖𝑗

• New objective

min෍

𝑖∈𝐵

𝑎𝑖 +෍

𝑗∈𝐴

𝑏𝑗 + ෍

𝑖,𝑗 ∈𝐸, 𝐴∩ 𝑖,𝑗 =1

𝑝𝑖𝑗

Reduction to min cut

• Add source s and sink t

s ti j

𝑎𝑗

𝑏𝑖

𝑝𝑖𝑗

A = foreground

෍

𝑗∈𝐵

𝑎𝑗 +෍

𝑖∈𝐴

𝑏𝑖 + ෍

𝑖,𝑗 ∈𝐸, 𝐴∩ 𝑖,𝑗 =1

𝑝𝑖𝑗

Densest subgraph

Community detection

• Social network graph G = (V, E)

• Tight-knit community = dense subgraph

• Find densest subgraph 𝑆 ⊂ 𝑉 that maximizes
2𝐸(𝑆,𝑆)

|𝑆|

Goldberg’s algorithm

•
2|𝐸 𝑆,𝑆 |

|𝑆|
≥ 𝑐

• 2|𝐸 𝑆, 𝑆 | ≥ 𝑐|𝑆|

• σ𝑣∈𝑆 deg(𝑣) − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐|𝑆|

• σ𝑣∈𝑉 deg(𝑣) − σ𝑣∈ ҧ𝑆 deg 𝑣 − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐|𝑆|

• σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

𝑆 ҧ𝑆

Goldberg’s algorithm

s t

u v
deg(𝑢)

deg(𝑣)

𝑐

𝑐

Cut cost = σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆

𝑆 ҧ𝑆

Check if min cut ≤ 2|𝐸|

