
CS 4800: Algorithms & 
Data

Lecture 21

April 6, 2018



Bipartite matching



Bipartite matching



Bipartite matching

• Given graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) where the edges are 
between L and R

• Find the largest subset 𝑀 ⊆ 𝐸 such that each 
vertex is incident to at most one edge in M



Reduction to max flow

s t

All edges have capacity 1

Find max flow and return all middle edges e with f(e)=1



Correctness
Claim. If there is a matching of size k, then there is a flow 
of value k.

Proof. Let M be a matching of size k. Construct a flow f as 
follows.

If (𝑥, 𝑦) ∈ 𝑀 set f(s,x) = f(x,y) = f(y,t) = 1.

Clearly f satisfies

• Capacity constraints

• Flow conservation

|f| = |M|.



Correctness
Claim. If max flow = k then algorithm finds matching of 
size k.

Proof. All capacities are integers so Ford-Fulkerson 
algorithm finds integral flow.

𝑀 = {(𝑥, 𝑦) 𝑠. 𝑡. 𝑥 ∈ 𝐿, 𝑦 ∈ 𝑅 𝑎𝑛𝑑 𝑓(𝑥, 𝑦) = 1}

Capacities are 1 so all edges have flow = 0 or 1.

c(s,x)=1 so each 𝑥 ∈ 𝐿 is incident to at most one edge in M. 

|f|=k so there are exactly k vertices 𝑥 ∈ 𝐿 with f(s,x)=1. 

Each such x is incident to one edge in M and thus |M|=k.

c(y,t)=1 so each 𝑦 ∈ 𝑅 is incident to at most one edge in M. 

Thus M is a matching.



Running time

• Each augmenting path increases flow value by 1

• Max flow is at most V

• Running time of Ford-Fulkerson for bipartite 
matching is O(VE)



Network design



Edge-disjoint paths

• Given directed graph G = (V, E), source s, 
destination t

• Find max number of edge-disjoint paths from s to t
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Communication network, protection against link failure



Reduction to max flow
Assign capacity 1 to every edge.
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Thm. Max # edge-disjoint paths = max flow.

Proof. ≤

Put f(e)=1 for e on the paths, f(e)=0 otherwise.

Paths are edge-disjoint so f has k edges out of s, |f|=k.

Suppose there are k paths.



Reduction to max flow
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Thm. Max # edge-disjoint paths = max flow.

Proof. ≥

Ford-Fulkerson implies there is an integral flow of value k

Consider edge (s,u) with f(s,u)=1.

Suppose |f|= k.

By flow conservation, there exists (u,v) with f(u,v)=1.

Repeatedly apply flow conservation to trace out a path to t.

|f|=k so k edges e out of s with f(e)=1 → k edge disjoint paths.



Node-disjoint paths

• Given directed graph G = (V, E), source s, 
destination t

• Find max number of node-disjoint paths from s to t
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Communication network, protection against machine failure



Reduction to max flow
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Image segmentation



Image segmentation

• Foreground/background segmentation

• Label each pixel as foreground/background

• V=set of pixels, E=neighboring pixels

• 𝑎𝑖 ≥ 0: likelihood of pixel i in foreground

• 𝑏𝑖 ≥ 0: likelihood of pixel i in background

• 𝑝𝑖𝑗 ≥ 0: penalty of separating pixels i, j

• Goal: find partition that maximize # correct labels

• A formulation: find partition V=(A,B) that maximizes
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Reduction to min cut

• Maximizing
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• Is minimizing
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• New objective
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Reduction to min cut

• Add source s and sink t

s ti j

𝑎𝑗

𝑏𝑖

𝑝𝑖𝑗

A = foreground
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Densest subgraph



Community detection

• Social network graph G = (V, E)

• Tight-knit community = dense subgraph

• Find densest subgraph 𝑆 ⊂ 𝑉 that maximizes 
2𝐸(𝑆,𝑆)

|𝑆|



Goldberg’s algorithm

•
2|𝐸 𝑆,𝑆 |

|𝑆|
≥ 𝑐

• 2|𝐸 𝑆, 𝑆 | ≥ 𝑐|𝑆|

• σ𝑣∈𝑆 deg(𝑣) − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐|𝑆|

• σ𝑣∈𝑉 deg(𝑣) − σ𝑣∈ ҧ𝑆 deg 𝑣 − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐|𝑆|

• σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

𝑆 ҧ𝑆



Goldberg’s algorithm

s t

u v
deg(𝑢)

deg(𝑣)

𝑐

𝑐

Cut cost = σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆

𝑆 ҧ𝑆

Check if min cut ≤ 2|𝐸|


