CS 4800: Algorithms &
Data

Lecture 17/
March 20, 2018



Shortest paths



What is the fastest way to get
from A to B?

Positive edge weights



Directed graphs

Positive edge weights




Dynamic programming

* Source vertex s
e d(v): length of shortest tentative path fromstov
e d*(v): length of shortest path from stov

* pred(v): predecessor of v in shortest terniative path
fromstov

/\/\EEd(V)
>V




Optimal substructure

Consider shortest path P from s tov

Let u be a vertexon P

The cubpath of P from s to u must be shortest path from s to u

If there isa shorter path from s to u then there is a shorter path
from stovthan P

Vv
S u




Relation among shortest distances

e Consider arbitrary edge (u,v)
cd*(v) <d*(uw) +w(u,v)
* The path s = u = v is a feasible path from sto v

u
i
S /
 Edge (u,v) is ifd(v) >du) +w(u,v)
* When a tense edge is found, can improve d(v)




Generic shortest path algorithm

* Initialize d(s) = 0and d(v) = coforallv # s

* Q < {s}
« WhileQ # 0
* Remove some u from Q
e Foralledgesu = v
e Ifd(v) >du) + w(u,v)
e d(v) «d(u) + w(u,v)
e pred(v) < u
e If v & Q, putvin Q. Otherwise, DecreaseKey(v).



Dijkstra’s algorithm

* Initialize d(s) = 0and d(v) = coforallv # s

* Q < {s}
« WhileQ # 0
 Remove u with minimum d(u) from Q
e Foralledgesu = v
e Ifd(v) >du) + w(u,v)
e d(v) «d(u) + w(u,v)
e pred(v) < u
e If v & Q, putvin Q. Otherwise, DecreaseKey(v).






Correctness of Dijkstra’s

Theorem. Let S be set of nodes removed from Q. For all vin S, we have
d(v)=d*(v) when v is removed from Q.

Proof. Induction over number of iterations.
First node to be removed is s and d(s) = d*(s) = 0.

Assume claim is true for first k nodes.

Let v be the k+15t about to be removed. Let u = pred(v).




Correctness of Dijkstra’s

Let v be the k+15t about to be removed. Let u = pred(v).
u is removed from Q before (when we set pred(v) = u), so d(u) = d*(u).

Consider any other path P from s to v not via edge (u,v).
P must leave S at some point via edge (x,y).

v is about to be removed, noty, so d(v) < d(y).
X is removed from Q so d(x) = d*(x)

d(y) < d(x) + w(x,y) < distance fromstoyon?P
Thus, d(v) < Length(F).
Therefore, d(v) = d*(v).




Running time

* Initialize d(s) = 0and d(v) = coforallv # s
* Q < {s}
« WhileQ # 0
V times * Remove u with minimum d(u) fromQ «——Q(log V)
e Foralledgesu = v

e Ifd(v) >du) + w(u,v)
e d(v) «d(u) + w(u,v)
« pred(v) < u /O(Iog V)

E times e if v & Q, insert vinto Q. Otherwise DecreaseKey(v)

O((V+E)log V) time




Breadth-first search

* All edge weights are 1
* Distance = #edges on the path



Breadth-first search

* Initialize d(s) = 0and d(v) = coforallv # s
* Q < (s,) < Qisaqueue: first in first out
* WhileQ =0
* Remove first u in Q
* Forall edgesu —» v
e Ifd(v) >d(u) +1
e dv) «d(u) +1
* pred(v) « u
* Putvlastin Q



Negative weights?

* What goes wrong with previous proof?

y
2<0
‘V

 When v is removed, d(v) < d(y) for all unremoved y
so no way shortest path goes from sto vviay




Infinitely short path?

Restrict our attention to the case
with no negative cycles



