CS 4800: Algorithms &
Data

Lecture 15
March 2, 2018

(Depth-First) Search in Graph

AP

e Search(vertex v)
* explored|v] « 1
* For (v,w) EE
* If explored|[w]| = 0 then
* parent|w] « v
e search(w)
* post-visit(v)

v Vv v v v Vv Vv
C d d d
e

Search(vertex v)

Observations explored[v] « 1

For (v,w) € E
If explored[w] = 0 then
parent|w] < v
search(w)

* If (u,v) € E then post-visit(v)
postorder|u] < postorder|v] & (u,v) is backward

‘ tree ‘ tree

tree

W °

back LE forward forward back tree !

back 2

/\ 4

© cross ‘u tree L 6
6 l 2 3

1

2

3

Observations

* If (u,v) € E then G

postorder|u] < postorder|v] & (u,v) is backward
Proof:

» search(v) finishes after searches for its children finish
e If (u,v) is tree edge then postorder[u] > postorder|[v]
e If (u,v) is forward edge then postorder[u] > postorder[v]
* If (u,v) is backward then postorder[u] < postorder[v]

If postorder|u] < postorder|[v] then search(u) finishes before search(v).

Thus, search(v) is not called by search(u)

explored[v]=1 when running search(u) i.e. search(v) started before search(u)

Search(v) starts before and ends after search(u)

* Can onli haiien for backward edie

Topological sort

 Directed graph G=(V,E)
Scheduling

e Vertices: tasks

* Edges: Precedence constraints: edge (u,v) implies u must
finish before v can start

Compiling large programs (e.g. in Go)
* Vertices: modules

e Edges: dependencies: edge (u,v) implies module v
depends on module u

Goal: figure out an ordering to satisfy all precedence
constraints

Observation: impossible if there are cyclic constraints

Directed acyclic graph (DAG)

Topological sort

e Claim: Scheduling by decreasing postorder satisfies all
constraints.

Proof.
If G is acyclic then there is no backward edge.
Thus, for all edge (u,v), we have postorder[u] > postorder[v].

If schedule by decreasing postorder, when v is processed, all
prerequisites for v are already processed.

Minimum spanning trees

- Put cable links to
/f%:-‘."

/.\ / connect all houses

Put cable links to
connect all houses

Minimum spanning tree (MST)

* G=(V, E, w), w positive

* Want a set of edges that connects all V and has
minimum cost

* For similicitil assume all weiihts are distinct

Minimum spanning tree (MST)

Looking for a set T of edges that
e Connect all vertices
e Has minimum total cost

Does T have cycles?
Can remove 1 cycle edge to reduce cost

How many edges does T have?

Blue rule

e Pick a set of nodes S

e Color minimum weight edge in cut induced by S
blue

All blue edges are essential

Lemma. MST contains every blue edge,

Proof. Let S be arbitrary subset of nodes and =(u,v) be the
minimum weight edge with one end pointin S.

Let T be MST that does not contain «.
T connects u and v so there is a path fromutovinT.

The path must have an edge e” with exactly
one end pointin S.

Consider " =T U {~} \ {e'}

T’ connects 2 ends of e’ so T’ still connects
all nodes.

w(T’) =w(T) +w() —w(e)
Butw() <w(e’)sow(T’) <w(T)i.e.T cannot

2lue edges connect all nodes

* Assume for contradiction that some u & v are not
connected by blue edges,

* Apply blue rule to S yields
another blue edoe

 MST = set of blue edges

Red rule

* Pick a cycle C

* Color the maximum weight edge in C rec

All are useless

Lemma. MST contains no
Proof. Let C be a cycle and be corresponding
Let T be MST containing «.

T \ {~} has 2 connected components Sand V \ S
Cisacycleso C \ {e}is a path connecting u & v.

There must be an edge €’ on this path with
exactly one end pointin S.

ConsiderT" =T \ {+} U {e'}
e’ connects Sand V \ S so T’ connects all nodes.
w(T") = w(T) + w(e) —w()

Butw(e') < w()sow(T”) < w(T) i.e.T cannot
be minimum.

Exercise

* Color as many edges red or blue as you can

Generic algorithm

* Maintain an acyclic set of blue edges -
* Initially no edge is colored, /' = @

* Repeat the following in arbitrary order

e Consider a cut with no blue edze. Color the minimum
weight edge in the cut blue.

* Consider a cycle with no edge. Color the maximum
weight edge in the cycle

* Terminate when n-1 edges colored "/,

Kruskal’s algorithm

» Consider edges in order of increasing weights

* When considering e=(u,v)

* |f uand v are connected by -, colore rec

 If uand v are not connected by I, color e blue
u

All edges on u to v path are

ave smaller weight than e

* Consider edges in order of increasing weights

 When considering e=(u,v)

* |f uand v are connected by I, color e rec
Example

e |f uand v are not connected by F, color e

