
CS 4800: Algorithms & 
Data

Lecture 15

March 2, 2018



(Depth-First) Search in Graph

• Search(vertex v)

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1

• For (𝑣, 𝑤) ∈ 𝐸

• If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
• 𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣

• search(w)

• post-visit(v)

v e

c d

v v

c

v v

d

v

d

e

v

d

v



Observations

• If (𝑢, 𝑣) ∈ 𝐸 then
𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 ↔ 𝑢, 𝑣 is backward

a b c d

e f g h

tree tree

tree

tree

tree

tree

tree

back

back
back

forward forwardback

cross

Vertex Post-
order

a 8

b 7

c 5

d 4

e 6

f 1

g 2

h 3

8 7 5 4

3216

Search(vertex v)
𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1
For (𝑣, 𝑤) ∈ 𝐸

If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣
search(w)

post-visit(v)



Observations

• If (𝑢, 𝑣) ∈ 𝐸 then
𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 ↔ 𝑢, 𝑣 is backward

Proof: 

• search(v) finishes after searches for its children finish

• If (u,v) is tree edge then postorder[u] > postorder[v]

• If (u,v) is forward edge then postorder[u] > postorder[v]

• If (u,v) is backward then postorder[u] < postorder[v]

• If 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 then search(u) finishes before search(v).

• Thus, search(v) is not called by search(u)

• explored[v]=1 when running search(u) i.e. search(v) started before search(u)

• Search(v) starts before and ends after search(u)

• Can only happen for backward edge

• Cannot happen for cross edge

v

e

c d



Topological sort
• Directed graph G=(V,E)

• Scheduling
• Vertices: tasks
• Edges: Precedence constraints: edge (u,v) implies u must 

finish before v can start

• Compiling large programs (e.g. in Go)
• Vertices: modules
• Edges: dependencies: edge (u,v) implies module v 

depends on module u

• Goal: figure out an ordering to satisfy all precedence 
constraints

• Observation: impossible if there are cyclic constraints

• Directed acyclic graph (DAG)



Topological sort
• Claim: Scheduling by decreasing postorder satisfies all 

constraints.

Proof.

If G is acyclic then there is no backward edge.

Thus, for all edge (u,v), we have postorder[u] > postorder[v].

If schedule by decreasing postorder, when v is processed, all 
prerequisites for v are already processed.



Minimum spanning trees



Put cable links to 
connect all houses



Put cable links to 
connect all houses3

6

8

10

9
5

13



Minimum spanning tree (MST)

• G = (V, E, w), w positive

• Want a set of edges that connects all V and has 
minimum cost

• For simplicity, assume all weights are distinct

3

6
8

10

9
5

13



Minimum spanning tree (MST)

Looking for a set T of edges that

• Connect all vertices

• Has minimum total cost

Does T have cycles? NO

3

6
8

10

9
5

13

Can remove 1 cycle edge to reduce cost

How many edges does T have? V-1



Blue rule

• Pick a set of nodes S

• Color minimum weight edge in cut induced by S 
blue

3

6
8

10

9
5

13



All blue edges are essential
Lemma. MST contains every blue edge.

Proof. Let S be arbitrary subset of nodes and e=(u,v) be the 
minimum weight edge with one end point in S. 

Let T be MST that does not contain e.

T connects u and v so there is a path from u to v in T.

𝑆 𝑉 ∖ 𝑆

u vThe path must have an edge e’ with exactly 
one end point in S.

Consider 𝑇’ = 𝑇 ∪ 𝑒 ∖ {𝑒′}

e’

𝑇’ connects 2 ends of e’ so 𝑇’ still connects 
all nodes.

𝑤 𝑇’ = 𝑤 𝑇 + 𝑤 𝑒 − 𝑤(𝑒′)

But 𝑤 𝑒 < 𝑤(𝑒′) so 𝑤 𝑇’ < 𝑤 𝑇 i.e. T cannot
be minimum.



Blue edges connect all nodes 

• Assume for contradiction that some u & v are not 
connected by blue edges.

• Apply blue rule to S yields
another blue edge

• MST = set of blue edges
𝑆={nodes 

connected to 
u by blue 

edges}

𝑉 ∖ 𝑆

u v



Red rule

• Pick a cycle C

• Color the maximum weight edge in C red

3

6
8

10

9
5

13



𝑆

𝑉 ∖ 𝑆

All red edges are useless
Lemma. MST contains no red edges.

Proof. Let C be a cycle and e=(u,v) be corresponding red edge.

u

v

Let T be MST containing e.

C is a cycle so 𝐶 ∖ {𝑒} is a path connecting u & v.

𝑇 ∖ {𝑒} has 2 connected components S and V ∖ 𝑆

There must be an edge e’ on this path with
exactly one end point in S.

e’

Consider 𝑇’ = 𝑇 ∖ {𝑒} ∪ 𝑒′

e’ connects S and V ∖ 𝑆 so T’ connects all nodes.

𝑤 𝑇’ = 𝑤 𝑇 + 𝑤 𝑒′ − 𝑤(𝑒)

But 𝑤 𝑒′ < 𝑤(𝑒) so 𝑤 𝑇’ < 𝑤 𝑇 i.e. T cannot
be minimum.



Exercise

• Color as many edges red or blue as you can

3

6
8

10

9
5

13

11



Generic algorithm

• Maintain an acyclic set of blue edges F

• Initially no edge is colored, 𝐹 = ∅

• Repeat the following in arbitrary order
• Consider a cut with no blue edge. Color the minimum 

weight edge in the cut blue.

• Consider a cycle with no red edge. Color the maximum 
weight edge in the cycle red.

• Terminate when n-1 edges colored blue.



Kruskal’s algorithm

• Consider edges in order of increasing weights

• When considering e=(u,v)
• If u and v are connected by F, color e red

• If u and v are not connected by F, color e blue

u

v

All edges on u to v path are 
colored/considered before (u,v)
→ have smaller weight than e

S={nodes 
connected 
to u by F}

𝑉 ∖ 𝑆

u v



Example

3 5 6 8 9 10 11 13

3

6
8

10

9
5

13

11

✓ ✓ ✓ ✓   

• Consider edges in order of increasing weights

• When considering e=(u,v)

• If u and v are connected by F, color e red

• If u and v are not connected by F, color e 
blue


