CS 4800: Algorithms &
Data

Lecture 1
January 9, 2018

Huy L. Nguyen

e Email: hu.nguyen@northeastern.edu
e Office hours: Wednesday 2:00 — 4:00, WVH 358

e Research:
* Algorithms for massive data sets (“big data”)
e Theoretical aspects of machine learning

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000
1,000,000,000

100,000,000 4

10,000,000 +

1,000,000

100,000

10,000

2,300 -

16-Core SPARCT3
Six-Core Core i7

Six-Care Xeon 74-00_.\& ®10-Core Xeon Westmere-EX

Dual-Core Ktanium 2 @ ;E-cuée DDWlEé%?
4 Quad-core z
AMDKI0- “:gusd-c«jre T nium Tukwila
POWERG® B

Itanium 2 with 9MB cache @
AMD

. -Core Xean Nehalem-EX
Six-Core Opteron 2400

Caore i7 (Quad
Core 2 Duo
ftanium 2 @
@®Barton
Pentium4; @ Atom
o MD KT
curve shows transistor AMD K-
count doubling every AMDKE
two years '/ ®Pentum Il
Pentiumil
® AMDK5
4004@ Rca1802
T T T 1
1980 1990 2000 2011

Date of introduction

[]
BL is

Software Progress Beats Moore’s Law

By STEVE LOHR MARCH 7, 2011 3:56 PM W 21

. a study of progress over a 15-year span on a benchmark
production-planning task. Over that time, the speed of
completing the calculations improved by a factor of 43 million.
Of the total, a factor of roughly 1,000 was attributable to faster
processor speeds, according to the research by Martin
Grotschel, a German scientist and mathematician. Yet a factor of
43,000 was due to improvements in the efficiency of software
algorithms.

CS4800 syllabus

Algorithm analysis
Algorithm design

Course structure

* http://www.ccs.neu.edu/home/hlnguyen/cs4800/spring18
 Lectures: Tuesdays and Fridays 1:35pm — 3:15pm

* Homework: problem sets posted every week (50%)
* Math proofs
* Programming problems

e Tests: 2 midterms (15% each)
* Final exam (20%)

Recipe for success

HLN lecture

staff office hour

you reading

you homework

you programming assignment
you midterms

you final exam

= Partnership!

Discussion forum

* https://piazza.com/northeastern/spring2018/cs4800
* Ask questions
* Help your peers

Homework submission

 Register at https://gradescope.com/courses/13862
e Use entry code: 9ERX47

Topics

* Divide and conquer

* Dynamic programming
* Greedy algorithms

e Greedy in graphs

* Minimum spanning trees
e Shortest paths

e Shortest paths via dynamic programming
* Maximum flows, matching

Grades

CS4800: Algorithms and Data

[Home] [Schedule]

The schedule is tentative and subjects to change (e.g. snow days)

Date

Topic

Reading

Problem sets

Jan 9

Introduction, induction

Lecture slides

DPV Chapter 0

Erickson Appendix [

PS0 out
PSO0 source

Jan 12

asymptotic order of growth, Karatsuba

Lecture slides

Karatsuba: Erickson 1.8, demo

PSO due
PS1 out
PS1 source

recursion tree, mergesort

Lecture slides

Erickson Appendix I1.1-3

Mergesort: demo

Master theorem, change of variable

Lecture slides

Master theorem: Erickson Appendix I1.3

PS1 due
PS2 out
PS2 source

deterministic median

Lecture slides

Erickson 1.7

LaTeX

The Not So Short
Introduction to IATEX 2¢

Or BTEX 2= in 157 minutes

by Tobias Oetiker

Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

LaTeX

* Many editors: TeXShop,
Texmaker, TeXstudio,

* Homework template on
course website

P
»
B
H
= |
B
E

olds fo i
h witl : Witk oca ibliographies

{thebibliograph
column : 45

TeXstudio

Overleaf.com

Homework policies

* Discuss with peers (strongly encouraged!)

* Write up in your own words, acknowledge people
you worked with

* Write your own codes
* Do not submit anything you cannot explain to me

Algorithms

e al-Khwarizmi (c. 780 — c. 850)

* The Compendious Book on Calculation by

Completion and Balancing
Algorithms

e Proccaures for solving linear and

qguadratic equations

* Introduce decimal numbers to Western world

Fibonacci (c. 1170 —c. 1250)

* Popularize decimal positional number
YA EN

* Fibonacci numbers

(F,_ i+ F, ,ifn>1
E, =5 lifn=1

\ 0ifn=20

 E grows very quickly, E, ~ 206941

An algorithm for computing
Fibonacci numbers

Pseudocode Python
function fib(n): def fib(n):
if n=0thenreturnO ifn==0:return 0
else if n =1 then return 1 elif n==1:return 1
else return fib(n-1) + fib(n-2) else: return fib(n-1) + fib(n-2)

How fast?

045

040

035 |

0.30 |

025 |

Time (5]

0.20

0.15

010 |

0.05 |

0.00

10

15

20

Running time analysis

function fib(n):
if n =0 then return O
else if n =1 then return 1
else return fib(n-1) + fib(n-2)
FunctionAcaII// \Fungtion call
addition

T(n) = T(n-1) + T(n-2) + 3

T(n) is larger than F

Induction

* Guess: computing F_ takes more than 2"/2
operations

* Verify: computing F,, F, needs > 21/2 gperations
e Cannot verify all n=0,1,2,3,4,...
* How to prove for for all n?

* Induction: assume that the claim is true for all n<k,
will prove it is true for n=k

* True for n=1 = True for n=2 = True for n=3 ...
* True for all n!

An induction proof

e Claim: for all integer n, computing F_ needs at least 2"/2
operations

* Base case: computing F,, F, needs at least 21/? operations
* |Inductive step: assuming claim is true for all n<k

* To compute F,
* Make 2 recursive calls to compute F, ; and F, ,

« By assumption, these calls require 2(k1)/2 gnd 2(k-2)/2
operations, respectively

* Thus, we need at least 2(k1)/2 4 2(k-2)/2 5 9k/2 gperations

YOUR PROOQF: fill in ???

function exponential(a, n):

if n =0 then return 1

else if n =1 then return a
else return exponential(a, [n/2])*exponential(a, [n/2])

 What does this function compute?
* Prove that exponential(a,n) needs n-1 multiplications for n>=1

e Claim: for all integer n, ??? .

* Base case: computing
exponential(a,0) and .
exponential(a,1) needs ?7??

* Inductive step: assuming .
claim is true for all n<k, will
show the claim is true for .
n=k

o P77

SAMPLE PROOF:

Claim: for all n, computing F_needs 2"/2
operations

Base case: computing F,, F, needs 2%/2
operations

Inductive step: assume claim is true for all
n<k, will prove it for n=k

To compute F,, we make 2 recursive calls
to compute F, ; and F, ,

By assumption, these calls require 2(k1)/2
and 2(2)/2 operations, respectively

We need 2k1)/2 4 2(k2)/25 2k/2 gperations

function exponential(a, n):
if n=0thenreturn1
else if n =1 then return a
else return exponential(a, [n/2])*exponential(a, [n/2])

 What does this function compute?
* Prove that exponential(a,n) needs n-1 multiplications for n>=1

Claim: for all integer n>0, exponential(a,n) needs n-1 multiplications
Base case: computing exponential(a,1) needs O multiplication

Inductive step: assuming claim is true for all n<k, will show the claim
is true for n=k

exponential(a,k) makes 2 recursive calls to exponential(a, [k/2]) and
exponential(a, |k/2])

By assumption, they require [k/2] — 1 and |k/2] — 1 multiplications

On top of these 2 calls, we perform 1 more multiplication

Thus, in total, we need [ﬂ — 14 E‘ — 1+ 1 = k — 1 multiplications

Why so slow?
10 (F,_ 1 +F, ,ifn>1

E, =+ lifn=1
/F'N-:’\)/\ \ Olfn=0

Fib(8) Fib(8)
Fib(;)/\ Fib(7) Fib(7)/\

Fib(6) Fib(6)

Store intermediate results

* Create array fib[0..n]
e fib[0] « O
e fib[1] « 1
e Forifrom 2 to n:
* fibli] « fibli — 1] + fib[i — 2]

Python:

fib = [0] * (n+1)
fib[0] =0

fib[1] =1
foriinrange(2,n+1):

* New total time: 0.000385 second!

* Speedup by 1000 fold!

Running time analysis

* Single for loop with one addition inside the loop
* Total time: n

* Inaccuracy: F, grows quickly, each addition is not a
single operation

Goal

* Formal framework for analyzing running times

e Accurate enough to describe general behaviors of
algorithms

* Imprecise enough to avoid intricacy in processor
types, programming languages

