
Automated Specification Analysis Using an
Interactive Theorem Prover

Harsh Raju Chamarthi
Northeastern University

Email: harshrc@ccs.neu.edu

Panagiotis Manolios
Northeastern University

Email: pete@ccs.neu.edu

Abstract—A method for analyzing designs and their speci-
fications is presented. The method makes essential use of an
interactive theorem prover, but is fully automatic. Given a design
and a specification, the method returns one of three possible
answers. It can report that the design does not satisfy the
specification, in which case a concrete counterexample is pro-
vided. It can report that the design does satisfy the specification,
in which case a formal proof to that effect is provided. If
neither of these cases hold, then a summary of the analysis is
reported. The crux of our method is the use of the deductive
reasoning engine of an interactive theorem prover to semantically
decompose properties into subgoals that are either shown to
be true or that can be tested to find counterexamples. Testing
is interleaved with deduction in a synergistic fashion. When
the deductive engine generates a subgoal that it cannot further
simplify, we partially instantiate it by selecting a variable in
the subgoal and assigning it a value. We then use the deductive
engine to propagate the consequences of that assignment, which
may lead to further deductive simplifications or to backtracking
if propagation reveals a conflict. When all free variables of
the subgoal have been assigned (no conflict), we have found
a counterexample. We have implemented and experimentally
validated the method in ACL2s, the ACL2 Sedan.

I. INTRODUCTION

Many formal methods techniques have been developed that
help designers build complex, dependable systems. At one
extreme we have interactive theorem proving, which places
few restrictions on the kinds of systems and properties that
can be verified, but which requires well trained professionals
with a deep understanding of logic and proof. At the other
extreme, we have methods that find certain classes of errors
in a fully automated way, but which place severe restrictions
on the kinds of systems and properties they can analyze.

Is it possible to have the best of both worlds? Is it possible
to have a powerful, expressive modeling language with a
powerful deductive engine that can be used to interactively
prove theorems and that can be used to automatically generate
counterexamples? In this paper, we show how to do just that.
We present an algorithm that makes essential use of interactive
theorem proving technology but analyzes specifications in a
fully automated way.

Our algorithm allows us to turn an interactive theorem
prover into an extensible, automatic, analysis tool that can be
used by regular engineers to provide increased assurance in the
correctness of their designs. The user is responsible only for
modeling and specifying the properties of their design; they

are not responsible for providing proofs. It is in this regard
that our approach is automatic. Our approach is extensible
because it can exploit any existing or newly developed libraries
of definitions, theorems and proof techniques. For example,
the use of libraries for reasoning about non-linear arithmetic,
set theory, the theory of lists, etc, can lead to significant
improvements in our ability to prove theorems and to generate
counterexamples.

The main idea of our algorithm is to use the deductive
verification engine of an interactive theorem prover to se-
mantically decompose properties into subgoals that are either
shown to be true or that can be tested to find counterexamples.
Deduction and testing proceed in an interleaved, synergistic
fashion. When the deductive engine generates a subgoal that
it cannot further simplify, we proceed to test it by selecting a
variable in the subgoal and assigning it a value. We then use
the deductive engine to propagate the consequences of that
assignment, which may lead to further deductive simplifica-
tions or to backtracking if propagation reveals a conflict. At
this level of abstraction, the process is similar to the DPLL
select, assign, propagate loop. There are significant differences
with DPLL, however. Variables can be over infinite domains,
so selecting variables and assigning them reasonable values
requires a careful analysis. Propagation in our context can
involve arbitrary deductive reasoning, e.g., it can prune away
infinite subspaces. Backtracking also requires care because it
is very difficult to analyze conflicts when variables range over
infinite domains.

We present an abstract algorithm that makes minimal as-
sumptions about the underlying theorem prover. The assump-
tions are outlined in Section II and the abstract algorithm is
presented in Section III. We elaborate on the conrete details
of our implementation in Section IV. We have implemented
our algorithm in the ACL2 Sedan (ACL2s), a freely available,
open-source, well-supported theorem prover that uses ACL2
as its core reasoning engine. ACL2s is an Eclipse plug-in
that provides a modern integrated development environment
designed to bring computer-aided reasoning to the masses.
ACL2s has been used in several sections of a required fresh-
man course at Northeastern University to teach several hundred
undergraduate students how to reason about programs. We
evaluate our algorithm in Section V. We present a case study
on hardware verification and we also compare our algorithm
with Alloy on a collection of examples from the literature.



In addition, our algorithm was used by freshmen students
to debug their programs and specifications. For this purpose,
the algorithm was very successful, as in almost all cases, it
was able to automatically to generate counterexamples when
students made mistakes. In Section VI we discuss the role of
the interactive theorem prover in our method, in particular we
emphasize the aspect of extensibility. Related work appears in
Section VII and conclusions in Section VIII.

II. PRELIMINARIES

In this section, we outline the assumptions our algorithm
depends on. We assume that the specification language L
is a multi-sorted first-order logic which can be extended by
introducing new function and predicate symbols using well-
founded recursive definitions, and that L is executable.

We further assume that properties (also interchangeably
referred to as formulas, conjectures, or specifications) have
no nested quantifiers and are of the form hyp1∧· · ·∧hypn ⇒
concl , where hypi and concl are formulas, and n ≥ 0.
Properties are implicitly universally quantified.

We assume the existence of an Interactive Theorem Prover
(ITP) than can reason about specifications written in L. We
will treat the ITP as a blackbox and all that we require from
the ITP are two procedures: SMASH and SIMPLIFY.

SMASH takes as input a goal, a formula written in L, and
returns a list of subgoals. We require that SMASH preserves
validity, i.e., the conjunction of the subgoals returned is valid
iff the original goal is valid. Modern interactive theorem
provers use various techniques for this, including evaluation,
term rewriting, and various decision procedures for Boolean
logic, linear arithmetic, and congruence closure.

SIMPLIFY takes as input an L-formula, c, and a list of
assumptions (formulas), H . SIMPLIFY simplifies c assuming
the conjunction of H , and returns a formula that is equivalent
to c under H .

An assignment of a formula is a mapping from the free
variables in the formula to values in the domain of L. An
assignment may fail to satisfy all hypotheses, hyp1, . . . , hypn

of a formula P . In such a case, we say that the assignment is
vacuous. Vacuous assignments are not helpful. For example,
suppose that we are analyzing a compiler, whose specification
says that the compiler transforms well-formed programs into
semantically equivalent well-formed programs. That this prop-
erty holds for ill-formed programs is trivial and not interesting.
Therefore, we classify assignments as either: (1) vacuous,
assignments that do not satisfy all of the hypotheses, (2)
counterexamples, assignments that satisfy all the hypotheses,
but not the conclusion or (3) witnesses assignments that satisfy
all the hypotheses and also the conclusion. We note that
in order to simplify the presentation, in this paper we use
assumptions that are stronger than they really need to be. For
example, in ACL2s, we do not require that all functions are
executable.

III. THE ABSTRACT ANALYZE ALGORITHM

Analyze (Algorithm 1) takes as input a property P and a
summary summary, which is initially empty. It analyzes P by

Algorithm 1 Analyze
Input: Property P , Summary summary
Output: Status, Summary of the analysis of P

1: if P is closed then return AnalyzeConst(P )

2: n, status := 0, not-done
3: while ¬StopCond(summary) ∧ n ≤ SLIMIT do
4: A,n := Search(P ), n+ 1
5: summary := UpdateA(summary, P,A)

6: if StopCond(summary) then return (done, summary)
7: S := SMASH(P )
8: summary := UpdateS(summary, P, S)
9: if S 6= {P} ∧ S 6= {} then

10: for all p ∈ S do
11: status, summary := Analyze(p, summary)
12: if status = done then return (done, summary)
13: return (not-done, summary)

recursively decomposing it into simpler properties, searching
for counterexamples and witnesses until a stopping condition
is reached. Analyze returns a status, indicating whether it
reached the stopping condition, and an updated summary.

Analyze first checks to see if it was given a closed prop-
erty, i.e., one with no free variables and does the obvious
thing. Otherwise it searches for counterexamples and witnesses
until either a user-defined stopping condition (StopCond)
is satisfied or SLIMIT, a user-defined limit on the number
of search attempts is reached (lines 3–5). The user-specified
stopping condition is a predicate on summary, e.g., our default
condition is that both the number of counterexamples and
witnesses found is ≥ 3. More intricate stopping conditions
involving notions of coverage can also be expressed. If the
user-specified stopping condition is satisfied, then we return
“done” to indicate this, as well as the summary (line 6).

The procedure Search (described next) uses a DPLL-like
algorithm to search for assignments that are either counterex-
amples or witnesses to P . To simplify the discussion, we
will focus on counterexamples in the sequel, as extending the
algorithms to deal with witnesses is straightforward.

Useful information is tracked in summary, e.g., it records
counterexamples (line 5), successful proofs (line 8), subgoals
for which we could neither generate counterexamples nor
proofs (these subgoals correspond to interesting restrictions
of the original property that merit closer examination by the
user), and other statistics including the number of unsuccessful
search attempts, the number of counterexamples and witnesses
found, the number of subgoals analyzed, etc.

If the stopping condition is not satisfied, then we semanti-
cally decompose the property P into simpler properties using
SMASH (line 7). Each such simpler property is recursively
analyzed (lines 10–12). In case the theorem prover is unable
to simplify P , or it successfully proves P , the appropriate
information is recorded (line 8) and the procedure returns with
the status “not-done” and the updated summary (line 13).

Analyze terminates, as long as all of the procedures it

2



Algorithm 2 Search
Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

1: local Stack A of (var, val, # assigns, type, prop)
2: A, i, x := [], 0,Select(P )
3: while true do
4: v, t := Assign(x, P )
5: P ′ := Propagate(x, v, P )
6: if ¬Vacuous(P ′) then
7: if t = “decision” then i := i+ 1

8: A := push((x, v, i, t, P ), A)
9: if A is complete then return A

10: i, P, x := 0, P ′,Select(P ′)
11: else if A 6= [] then
12: repeat
13: (x, , i, t, P ) := head(A)
14: A := pop(A)
15: until (t = “decision” ∧ i ≤ BLIMIT) ∨A = []

16: if A = [] ∧ (t = “implied” ∨ i > BLIMIT) then
17: return fail

depends on terminate and as long as no property gives rise
to an infinite number of calls to SMASH. Unfortunately, both
of these non-terminating behaviors are possible with modern
interactive theorem provers, but there are also tool-specific
methods for mitigating the problem.

Searching for counterexamples

Search (Algorithm 2) takes as input a property P and
searches for a counterexample by incrementally constructing
a falsifying assignment to P . If it finds a counterexample, it
returns it; otherwise it returns fail. (Recall that we also find
and return witnesses, but to simplify the exposition we do
not explicitly show how to do so.) The algorithm proceeds by
selecting a free variable, assigning it a value and propagating
this new information to obtain a partially instantiated property
P ′. If we can show that P ′ is inconsistent, we backtrack,
otherwise we continue until we obtain a complete assignment.

The partial assignment is stored in stack A, which consists
of five-tuples containing a variable, a value, the number of
assignments made to the variable, the type of assignment
(either the string “decision” or “implied”), and a property.

The main loop (lines 3–17) iteratively extends assignment
A. The invariant we preserve at the beginning of the loop
is that A is the current assignment, x is the free variable
appearing in P that we will assign a value to next, and i,
which records the number of “decision” assignments we have
already made to x and is used to control backtracking, is not
greater than BLIMIT, a natural number denoting the backtrack
limit. Line 2 initializes A, i, and x so that we establish our
invariant. Procedure Assign is used to assign x a value, v
(line 4). Assign also returns the type of assignment. If the type
is “implied” then assignment A and property P imply that x
has to have value v. For example, suppose that x = c, where

Algorithm 3 Select
Input: Property P with at least one free variable
Output: A free variable in P

1: if ∃h ∈ hyps(P ) of form x = c then return x

2: G= := buildEqualityDependencyChain(P, vars(P ))
3: Do SCC on G=, collect the leaf components in L
4: leaves= := choose single x from each l ∈ L
5: G./ := buildRestDependencyGraph(P, leaves=)
6: Do SCC on G./ to get dag D./

7: if D./ has a leaf marked constant then
8: return marked leaf
9: else

10: X := the leaf with the maximum i=
11: if X is a set (mutually-dependent variables) then
12: Xm := {x | i=(x) is maximal in X}
13: return some vertex in Xm

14: else
15: return X

c is a constant expression is a hypothesis of P . Then v will
be JcK (what c evaluates to) and this is an implied assignment.
This is but one of the optimizations Assign performs. If the
value of x cannot be uniquely determined, then Assign assigns
it a value as outlined in the next section and returns “decision”
as the type of the assignment. Next, in line 5, we use the
theorem prover to propagate the information that x has value
v in P , obtaining property P ′ (Propagate is described in a
later section). P ′ is vacuous if it contains falseas a hypothesis.1

There are now two options. First, perhaps P ′ is not vacuous.
In this case we increment i iff we made a decision. We
then push the appropriate tuple on A, which includes the
selected variable x, the value it was assigned v, i, the type
of assignment, and the property the previous values depended
on, P . We then check if A is complete; if so, we have a
counterexample and we return it. If not, then P ′ has at least
one free variable, so we select a new variable, re-establish the
previously mentioned invariant, and iterate. Second, perhaps
P ′ is vacuous, i.e., we discovered a conflict. In this case, if A
is not-empty, we backtrack, by popping A, until we go past a
decision whose backtrack limit has not been reached or until
A = []. After backtracking, we can only continue with the
while loop if we did not exceed our backtracking limit. If we
did exceed the limit, then the test in line 16 passes and we
return fail. Notice that if the test passes, then P ′ was vacuous
and every decision on A exceeded the backtrack limit.

Selecting variables to assign

Select (Algorithm 3) takes as input a property P with
at least one free variable and returns a variable occuring
free in P . The order in which variables are selected is very
important. The idea is to select unconstrained variables (this

1Note that hyp1 ∧ · · · ∧ hypn ⇒ concl is equivalent to hyp1 ∧ · · · ∧
hypn∧¬concl ⇒ false. In the above exposition, this implies that our vacuity
check on P ′ also succeeds if concl is true.

3



minimizes the probability that we assign the variable a value
that is inconsistent with the current assignment) on which other
variables depend (so that other variables will be “implied”).
Consider the following motivational example, where x, y, z,
and w are constrained to be integers and h is a function from
integers to integers.

(P ) z = yv3 ∧ y = h(x) ∧ w = h(y) ∧ v = h(6)⇒ z > w2

Since we are interested in finding counterexamples, recall that
we have four constraints to satisfy: the three hypotheses and
the negated conclusion.

Which variable should we select and assign a value to first?
Notice that v is equal to a constant expression, so the value
of v is implied. We select such variables first, as per line 1.
Assign will assign v the value JcK; we will discuss Assign in
a later section.

Notice that equality constraint fixes the value of y as soon
as x is assigned, and the value of z and w as soon as y is
assigned a value that does not falsify other constraints. Clearly,
choosing x before choosing y is beneficial from the point
of view of computation i.e., we just evaluate h(x) to obtain
the value of y. Selecting y before x, causes complication
in satisfying the constraint y = h(x), since computing the
inverse of a number-theoretic function might be non-trivial.
Moreover, any constraint solver used in Assign might not
be powerful enough to handle the complex arithmetic of h .
Treating equality in a special manner we can see that there is
a certain relation among the variables of the constraints that is
similar to the notion of data dependency in compiler literature.
The idea behind the algorithm is to select the variable with the
least dependency, breaking down the task of simultaneously
solving the constraints, into a more local directed approach of
solving the constraints one by one; we want to finally select
variables in an order such that we can reduce the chances of
running into an inconsistency (vacuous assignment) and back-
tracking. The procedure Select (Algorithm refsec:selectalg)
first canonicalizes the equality constraints in input P . We
basically make two passes over P constructing directed graphs
first characterizing the equality dependency relation among
variables and then taking care of the rest of the dependencies.
First we construct an equality dependency graph G= for P ,
that initially consists of no edges, with all the free variable
in P as nodes. The graph is constructed by iterating over the
constraints of P using the following three rules, implemented
in procedure buildEqualityDependencyChain (line 2) and
shown after this note.

Note: A leaf node (variable) is a node with no outgoing
edges and no dependency (of interest) on other variables. The
goal of our algorithm is to pick and return such a variable.
We will sometimes refer to them as independent variables.
We assume x and y are (distinct) free variables of P and
term is inductively defined to be either a variable, a constant
expression, or a function application with arguments that are
terms. Terms that are function applications are denoted by
fterm.

1) Case: x = c, where c is a constant expression. Mark x
to be a constant leaf node (no outgoing edges). Note:
Since the constraints are canonicalized, we dont have to
check for c = x.

2) Case: x = y. Add bidirectional edge between node x
and node y.

3) If P has a constraint of the form x = fterm such that
y ∈ freeVars(fterm) and x /∈ freeVars(fterm), we add
a directed edge from node x to node y, unless x is a
constant leaf node.

After G= is constructed, its strongly-connected components
are computed. A single representative variable is picked at
random from each leaf component and stored in leaves= (lines
3–4). Using only the leaves= as initial nodes, and no edges, we
make a second pass through all the constraints in P building a
non-equality dependency graph G./. The following rules form
the core of buildRestDependencyGraph. If more than one
rule applies, then the rule that comes earliest in the following
sequence overrides the others.

1) If P has a constraint of the form x ./ y where ./ ∈ {<
,≤, >,≥} we don’t draw an edge. Intuition: Constraint
x > 3 is as easy to satisfy as 42 > y, so we avoid
complicating the graph.

2) If P has a constraint of the form x ./ fterm such that
./ is a binary relation, y ∈ freeVars(fterm) and x /∈
freeVars(fterm), we add an ./-edge from node x to node
y. Intuition: It easier to satisfy x ≤ 25, simply evaluate
25 and solve x ≤ 32. Satisfying 32 ≤ 2y is trickier.

3) If P has a constraint of the form R(term1, term2,
. . ., termn), such that x ∈ freeVars(termi), y ∈
freeVars(termj), i 6= j, n ≥ 2 and R is an arbitrary
n-ary relation, then we simply add a bidirectional edge,
recording their mutual dependence, but giving no pref-
erence (locally) to either variable,

After the graph is constructed, using the aforementioned
rules, its dag D./ is obtained by SCC analysis. If the dag
has a leaf node marked constant, we return that variable.
Otherwise the procedure picks the leaf component, with the
maximum number of nodes that can reach it in G=, for any
node (component) x, we denote this by i=(x). So we pick
the component that has the potential to force the maximum
number implied assignments via the equality constraint (lines
7–10). If the component has just one node, then usually it
is an independent variable, in which case we return it. If
there are more than one variables to choose from (in case of
multiple variables in the connected component), the procedure
returns the variable with maximum i= value, if there is a tie,
we simply pick a variable randomly (lines 11–13). Note that
Select tries to ensure the following rule of thumb: select a
variable only when every variable it depends on has already
been assigned a value; this is not always the case.

4



Algorithm 4 Propagate
Input: Var x, Value v, Property P
Output: Property obtained by propagating x = v

1: hyps := x = v ∧ hyps(P )
2: shyps := simplifyAssumingRest(hyps)
3: sconcl := SIMPLIFY(conclusion(P ), shyps)
4: return

∧
shyps ⇒ sconcl

Propagating new assignments

After a variable is assigned a concrete value, we use the the-
orem prover to propagate this information, with Propagate,
shown in Algorithm 4. This procedure takes as input a
variable x, the value v assigned to x, and a property P . It
adds the constraint x = v to the list of hypotheses of P ,
calls simplifyAssumingRest, a procedure that given a list
of hypotheses calls SIMPLIFY to simplify each hypothesis as
much as possible, under the assumption that the rest of the
hypotheses are true. The resulting simplified hypotheses are
stored in shyps (line 2). Similarly, the conclusion is simplified,
assuming all the formulas in the list shyps are true (line 3).
The resulting propery is returned.

A. Example

We illustrate the working of Search on a simple example
involving numbers and some arithmetic functions. Consider
the following property P defined on integers x, y, z, w; hash
and min are textbook hash and minimum functions.

x = hash(y)∧y = hash(z)∧z > 0∧w < min(x, y)⇒ w < z

Before the main search loop begins, a variable is selected to
be instantiated. The dependency graphs for P (constructed
following the aforementioned rules) are shown in Figure 1
and 2.

W Z

Y

X

=

=

Fig. 1. G= for P

Z

W

Fig. 2. G./ for P

Notice that only the leaves of G= appear as nodes in G./.
Both w and z are leaves in D./ (same as G./) We pick z
since its i= value, which is 2 (both y and x implied as soon
as z is decided), is greater than w’s i= value, 0. Since z
is not a set (component) we simply return z. After having
selected the variable to instantiate (z), we use Assign to pick
a value for it, satisfying the local constraint on it, z > 0, along

with the implicit constraint that z is an integer. Lets say the
oracle procedure Assign picked 34. Then we propagate this
assignment by adding the constraint z = 34 in P and using the
ITP to simplify the hypotheses and conclusion in light of this
new information. Propagate returns the following simplified
property:

P ′ : x = 3623878690∧y = 268959709∧w < min(x, y)⇒ w < 34

whose dependency graphs are shown in Figure 3 and 4.

Y X

W

Fig. 3. G= for P ′

Y

W

X

< <

Fig. 4. G./ for P ′

Since false does not appear in the hypotheses(and neither
does true in the conclusion), P ′ is not inconsistent and we add
z = 34 to the partial assignment A and the search for the rest
of the assignment is continued.

The motivation for Propagate is that one assignment to a
variable, should result in assignment of the maximum number
of remaining variables. In this case, the assignment to z, results
in y and x being fixed to constants. Since both x and y are
leaf nodes in figure 4 and have the same i= value, we will
randomly choose one (the order does not matter). Lets say
y is selected. Search directly assigns it a value by virtue of
the equality constraint y = 268959709. Notice that this is an
assignment of type “implied” and was propagated due to the
decision assignment (z = 34) by the oracle procedure Assign
in the previous iteration. This information is again propagated
resulting in the further grounded property:

P ′′ : x = 3623878690∧w < min(x, 268959709)⇒ w < 34

whose dependency graphs is shown in Figure 5 and 6.

W X

Fig. 5. G= for P ′′

W X<

Fig. 6. G./ for P ′′

x is clearly the lone leaf node in Fig 6, it is selected
and directly assigned using the equality implication x =
3623878690. This assignment is further propagated, resulting
in the almost grounded property having just one free variable:

P ′′′ : w < 268959709⇒ w < 34

Assigning w (using implicit constraint that w is an integer
and the local constraints w < 268959709 and w ≥ 34) a
value 33 or value 268959710, will lead to inconsistency (after
the propagation), in which case we need to throw away the
current assign and decide a new value for w. If in the process
we exhaust the limit on number of assigns (BLIMIT) for w we

5



backtrack all the way to the decision variable z, by undoing
the implied assignments to x and y, in A, popping P ′′ and P ′

from S and continuing (the main search loop). If an assign
to w, say w := 42, did not lead to an inconsistency, then we
have a complete assignment A, we quit the loop and return
A, which is a counterexample of P .

IV. CONCRETE ALGORITHM IN ACL2S

We have implemented the proposed method in ACL2 Sedan
(ACL2s) [11]. We employ the ACL2 interactive theorem prov-
ing system [19] to provide the interface methods SIMPLIFY
and SMASH. The specification language, also called ACL2, is
untyped2. To attract the common programmer (or designer) to
use our tool, we provide a data definition facility (defdata)
in ACL2s to specify various kinds of type idioms, like record
types, enumeration types, union types etc, commonly found in
most modern programming languages. The engineering of the
interface with the ACL2 theorem prover and the extension
to ACL2, in support of this interface, the data definition
facility, and other ACL2-specific details are described in [7].
The Analyze algorithm is simulated using the computed hints
mechanism of ACL2 (see [7]). The implementation of the
Search, Select and Propagate closely follow their abstract
algorithms shown in the previous section. We will briefly
describe the implementation details of the Assign method that
had been left unspecified.

In view of delegating most of the heavy work to the theorem
prover we incorporated the lightweight method of random
testing inspired by the success of Quickcheck-like tools [8].
Alternatively we could also have chosen more heavyweight
constraint solving techniques (e.g., SAT/SMT Solvers). ACL2
formulas tend to be executable, hence testing in ACL2 simply
involves executing a formula under an instantiation of its free
variables. To assign a value to a variable, we need to know
its domain, which in a given formula is determined by the
“type-like” hypotheses constraining the variable. The domain
can be characterized by an enumerator which is a surjective
function from natural numbers to elements of the domain.

Thus the problem of supporting user-defined data definitions
and automatic testing (sampling) is elegantly solved by adding
a notion of an enumerable type to our untyped specification
language (ACL2). This is accomplished in our tool, using
the defdata form that introduces a “type”, by virtue of a
predicate and an enumerator being automatically generated.
Such predicates are used to specify the type-like constraints
for a variable in a property. In addition to types introduced by
defdata and the primitive types, all elements of the ACL2 value
universe are treated as singleton types, and a special type All
denotes the universal type. The defdata form additionally takes
care of maintaining a type hierarchy called (datadef ordering
graph) which captures the subtype relationship among the
introduced and primitive types.

2In fact many specification languages are untyped, an interesting discussion
can be found in an article by Lamport and Paulson [21].

Algorithm 5 Assigning free variables
Input: Property P , free variable x
Output:

1: typ := inferType(x, P )
2: if typ denotes a constant expression then
3: mtyp := typ
4: return [|e|], “implied”
5: else
6: mtyp := refineType(typ, P )

7: e := BuildValueExpr(mtyp,nil , 0)
8: if mtyp is a singleton type then
9: return [|e|], “implied”

10: else
11: return [|e|], “decision”

Separation of concerns between enumerators and random
number generators also gives us the flexibility to choose be-
tween random sampling and bounded exhaustive sampling of
test data. Assign does static analysis to infer the (enumerable)
type of a variable from the type hypotheses of P , if the
domain of the type is greater than one, we decide a value
to return (using the enumerator and the chosen sampling
distribution), otherwise, we simply return the implied singleton
value. Assign is shown in Algorithm 5, it takes a variable x
and a property P , uses InferType to extract the “type” typ
of x. InferType uses straightforward syntactic analysis of the
type-like hypotheses constraining x in P . If typ denotes a
constant expression, we simply return it, otherwise, Assign
refines typ using procedure refineType as much as possible
to find minimal type information, mtyp. Finally the minimal
type expression is used to build a value expression e using
the procedure BuildValueExpr. The procedure finally returns
the value of e, along with the information about the type of
assignment. Note that e is of type mtyp. If the domain of
mtyp consists of exactly one value object, then clearly, there
is no choice but to return it as the value to be assigned,
such an assignment is named “implied”. Otherwise, if the
domain of mtyp has more than one value object, then we
decide a value object to return, and name the assignment,
“decision”. The choice of which value object to return is
hidden in the implementation of BuildValueExpr, and is
determined by the user-specified sampling distribution (by
default random sampling is used), it builds a value expression
whose evaluation performs the actual sampling of the domain
of mtyp (e.g., for mtyp=integer, the value expression ’(nth-
integer 42) might be built).

Currently refineType is a no-op in our implementation. But
we believe it is important to obtain the minimal possible type
information from the conjecture, since smaller the domain
of the variables to be instantiated, the higher the probability
of hitting counterexamples (and witnesses). We present our
design of the refineType algorithm below.

Given variable x appearing in property (conjecture) C, we
want to determine the (minimal) type of x. The type has to

6



be an element (or union of elements) of our type graph GT

(datadef ordering graph). Recall that GT can be turned into a
dag by performing a strongly connected component analysis,
so, wlog, we assume that GT is a dag. Formally, we want to
compute the following:

Type(x) = {t : t ∈ GT , P (C, x, t),

∀t′ ∈ T :: t′ ⊂ t⇒ ¬P (C, x, t′)}

i.e., we want to compute the set of all types t in our graph GT

such that under the hypothesis in property C, x is provably
always an element of t (denoted by P (C, x, t) above) and there
is no proper subtype, t′ of t such that x is provably always
an element of t′.

There are several problems to address. First of all determin-
ing P (C, x, t) precisely is an undecidable problem, so we will
instead use P (C, x, t) to denote that given the hypotheses in
conjecture C, our theorem prover can prove that x is always
an element of t.

It would be nice if |Type(x)| = 1, but unfortunately, it is
possible for there to be more than one element in Type(x),
e.g., suppose that the hypotheses in c state that x is a positive
even integer, and that T includes four types: the set of integers,
the set of rationals, the set of positive rationals, and the
universe. Then, Type(x) contains two elements (the set of
integers and the set of positive rationals).

We now consider algorithms for computing Type . Here is
a first attempt.

Algorithm A:
1) Find t0 such that P (C, x, t0). We do this with a simple

static check and we can always just set t0 to be All , the
universe.

2) Traverse GT collecting all types t such that P (C, x, t)
but for all t′, where t′ is a successor of t, we have
¬P (C, x, t′). We can use depth-first search to do this in
linear time.

Algorithm A is incorrect because our theorem prover is not
monotonic, i.e., it may prove h but not g even if h ⇒ g.
For example, suppose that GT contains the following edges
t1 ⇒ t2, t2 ⇒ t3, t3 ⇒ t4. It is possible that the following
hold: P (C, x, t1), ¬P (C, x, t2), and P (C, x, t3). According
to our definition of Type(x), we should return {t3}, but
Algorithm A will return {t1}. We could just query the theorem
prover for every type in GT , to P (C, x, t) for all t ∈ T ,
but this seems wasteful since calls to the theorem prover can
be expensive. Algorithm 6, below shows how to do better
by using counterexample generation (but with simple random
testing using the type information from InferType to avoid
mutual-recursion). Each t ∈ T will have a label associated
with it which is either “?” (indicating that we do not know
if x is always in t), or “yes” (indicating that x is always in
t), or “no” (indicating that x is not always in t). When we
initialize GT , we label all nodes with “?”, except All , which
is labeled with “yes”. When we label t “yes”, we also label
nodes that can reach t with “yes”. Similarly, when we label t
with “no” we label all nodes that t can reach with “no”. We

Algorithm 6 Refine Type
Input: Initial type t0, Constraint C, Variable x
Output:

1: local Stack M (of Minimal types to be returned)
2: Initialize GT

3: Label t0 with “yes”
4: t := t0
5: while DFS on GT , current visited node = t do
6: if label(t)! = “?” then
7: P := hyps(C)⇒ x satisfies predicate of type t
8: if random instantiation of P returns false then
9: setLabel(t, “no”, GT )

10: else if SMASH(P ) = true then
11: setLabel(t, “yes”, GT )
12: else
13: skip
14: t,M := t0, empty
15: while DFS on GT , current visited node = t do
16: if label(t) = “yes” then
17: if s ∈ Successors(t)⇒ label(s)! = “yes” then
18: push(t,M)

19: return union of types in M

maintain the invariant that if a node is label “yes” then so are
all of the nodes that can reach it and that if a node is labeled
“no” then so are all nodes it can reach. This means that when
we propagate labels, we stop as soon as we find a node with
a label that differs from “?”.

Algorithm 6 requires a linear number of queries to the
theorem prover and runs in linear time (in the size of GT ).
Also, since in most cases we do expect |Type(x)| = 1, it
is much more efficient than the algorithm that queries the
theorem prover for every type in GT .

V. EXPERIMENTAL EVALUATION AND DISCUSSION

We present two experiments3 to evaluate our method. In
Section V-A, we present an in-depth hardware case-study,
analyzing the design of a simple, yet non-trivial, pipelined
machine, demonstrating the effectiveness of our method in
uncovering subtle design errors. In Section V-B we compare
our method with the popular Alloy method (Alloy modeling
language and Alloy Analyzer). We modeled various Alloy
examples in ACL2 and analyzed them with our method.
We find counterexamples to all failed properties (falsified by
Alloy), but more importantly we prove all the properties that
Alloy posits are theorems (based on the absence of small coun-
terexamples). Surprisingly, in addition to the counterexamples,
we also found all the proofs, automatically.

A. Hardware: Finding hazards in a Pipeline Machine

Pipelining is a key optimization technique used to increase
performance in modern microprocessors. The instruction-set

3We recommend the reader download the experiments from
http://ccs.neu.edu/home/harshrc/fmcad11

7



architecture (ISA) model is a natural functional specification
for any pipelined design. The correctness of the implemen-
tation i.e., machine architecture (MA) can be established
by showing that all behaviors (execution traces) of MA are
observationally equivalent to behaviors of its specification
(ISA).

We analyze a three stage pipeline, consisting of fetch,
read, and execute/write-back stages. The machine is based
on previous work [23]. The machine fetches an instruction
pointed to by the program counter in the fetch stage, reads
the source register from the register file in the read stage, and
updates the destination register with the result of the operation
it performs (execution) in the write-back stage. The primary
challenge in designing a correct pipeline implementation is re-
specting program dependency and avoiding resource conflicts
among instructions that are in different stages of the pipeline.
Consider the following sequence of ADD instructions:

I1 : r3 = r2 + r1 ; I2 : r4 = r3 + r2

Instruction I2 will read stale data for register r3, if read
phase of I2 overlaps with the execution phase (write-back)
of instruction I1. In such a scenario (called Read-after-Write
data hazard), to correctly handle the data dependency, the
pipeline must be stalled to allow the older instruction (I1)
to execute and update the destination register (r3) before the
younger dependent instruction (I2) reads it. In our pipeline
machine model, we will on purpose introduce a design error
by failing to stall the read for I2 in the above scenario. Another
scenario that we consider is related to handling of branch/jump
instructions. By the time, the program counter is updated to
fetch from the target of a BEZ/JMP instruction, subsequent
instructions from the sequential program code have already
been fetched. To prevent the wrongly fetched instruction
from polluting the architectural state (control hazard), it is
required to invalidate the latches holding information related
to instructions from the wrong execution path. A common
error occurring in initial phases of the design of a pipeline
machine, is to forget invalidating latch 2, in the scenario that
latch 1 is invalid.

The objective of the experiment was to evaluate the ef-
fectiveness of our method to find these important and subtle
design errors (data and control hazards). How do we find these
bugs using our method? Given that the designer has written
both the ISA and MA models of the pipeline machine, one just
needs to formalize the aforementioned correctness definition
and analyze it. We will use a notion of refinement, where the
main idea is to show that infinite behavior of MA and ISA
are observationally equivalent under an appropriate refinement
map. By using the theory of Well-founded equivalence bisim-
ulation (WEB) refinement, we can establish this by proving a
local property that only requires reasoning about MA states,
their successors, and ISA state and their successors [22]. The
refinement map is straightforward, except for the matter of
relating the program counters of MA and ISA states. Since
the observable effect of any instruction only appears in the
write-back stage, the observable program counter is simply

the PC value of the oldest instruction in the pipeline. Let M ′

denote the state of the machine after it has taken one step
i.e., it has been run for one hardware clock cycle. Then the
safety part of our WEB refinement proof obligation is that if
ISA state S and MA state M are observationally equivalent,
and both take a step to S′ and M ′ respectively, then either S
is observationally equivalent to M ′, or S′ is observationally
equivalent to M ′ (stepping MA for one cycle resulted in an
observable architectural-fallback change).

Analyzing this high-level property, our method is able to
uncover both the design errors in our MA machine which
manifested as hazards (in under 2 minutes). The counterex-
amples (instances of MA that falsified the safety property)
were illuminating; they pointed out the kind of hazards and the
scenarios in which they occurred. We recommend the reader
to play around with the model provided to see if the tool can
uncover other scenarios he/she has seen before.

A few observations are in line. No assertions were provided.
No lemmas were written down. No manual tests (micropro-
grams) were provided as inputs. No test driver needed to be
given. The only effort on part of the designer was in writing
the ISA and MA models in ACL2, defining the datatypes (used
for automatic test data generation), specifying the abstraction
function (for observational equivalence) and formulating the
high-level correctness property.

B. Software: Comparison with Alloy
Alloy [17] is a declarative modeling language based on

sets and relations, primarily used for describing high-level
specifications and designs. Alloy Analyzer [18] is a tool that
supports automatic analysis of models written in Alloy. Given
a bound on the number of model elements, called scope,
the Alloy Analyzer (AA) translates Alloy models (and its
specifications) into Boolean formulas, uses off-the-shelf SAT
solvers to generate satisfying instances and translates them
back to corresponding set and relation instances of the objects
in the model. Alloy is based on a first-order relational logic
with transitive closure, which allows expressing rich structural
properties using succinct expressions. However to enable fea-
sible automatic analysis, it has poor support for two features
that we feel naturally apply in many types of modeling/design
examples: recursive definitions and arithmetic. The ACL2
language, on the other hand, has excellent support for recursive
definitions (in fact, in ACL2, most interesting properties are
expressed using recursive definitions) and arithmetic [27]. In
view of this (and our limited Alloy expertise), we avoid doing
a comparison on problems that we perform well (e.g., the prop-
erty involving hash function in Section III is inexpressible in
Alloy due to absence of multiplication), and restrict ourselves
to examples (from the Alloy distribution) that we think Alloy
performs well on.

We analyzed 12 properties from 4 Alloy problems (speci-
fications), except the markSweep problem, all the others are
from the Alloy book [17] and can alternatively be downloaded
from the Alloy distribution.4 Table 1 shows results, comparing

4Alloy Analyzer can be downloaded from http://alloy.mit.edu/alloy4

8



Alloy Analyzer Our method
Property Scope Time Result Time Result

delUndoesAdd 25 26.41 – 0.07 QED
addIdempotent 25 37.76 – 0.19 QED

addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE

writeRead 34 99.69 – 0.02 QED
writeIdempotent 33 44.13 – 0.01 QED
hidePreservesInv 61 24.91 – 0.26 QED

cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE

pasteAffectsHidden 27 117.63 – 0.42 QED
markSweepSound 8 47.34 – 0.28 QED

markSweepComplete 7 58.12 – 0.34 QED

TABLE I
COMPARISON WITH ALLOY ANALYZER (AA)

the performance of our method implemented in ACL2s, with
the performance of the Alloy Analyzer (AA). The time (in
seconds) is measured on an Intel Core i3, 2.8GHz, 4GB
memory machine. The Alloy analysis time is the total of the
time spent on generating CNF and solving it using the SAT4J
solver. The time taken by our method is what the ACL2 macro
time$ reports and includes the time taken by the ACL2
theorem prover. The Scope column for AA either denotes the
minimum scope that finds a counterexample, or the maximum
scope for which AA can check the property before exceeding
the 2 minute time limit, or the 1 GB memory limit. The
Result column shows either ’CE’,’QED’ or ’–’, that stand for
Counterexample found, Proof found, Neither Counterexample
nor Proof found, respectively.

The first 4 properties are from the model of an email client’s
address book supporting aliases and groups, the writeRead
and writeIdempotent properties are from the abstract memory
problem, the next 4 properties are from an Alloy model de-
scribing the design of a media file management software. The
last 2 rows are the Soundness and Completeness properties of
the mark-and-sweep model, where live (reachable from root)
nodes of the heap are marked and garbage (unreachable from
root) nodes are sweeped into a freelist. The mark-and-sweep
Alloy model was taken from an experiment in [14] where
Alloy specifications are automatically translated to SMT2
language supported by the Z3 SMT solver [10]. We would
have also liked to provide experimental comparision with the
Alloy-to-SMT approach taken in [14], but we did not have
access to their implementation.

We took the above examples and modeled them in the
ACL2 language; mimicking the original formulation in Alloy
as much as possible. In particular we used set types and map
types i.e., binary relations, which are part of the rich datatype
support provided by ACL2s [11]. These respectively make use
of the ordered sets library and the records library [24], [20],
[9] in the ACL2 standard library distribution. These libraries
provide a generic collection of reasoning rules (used in rewrit-
ing) about sets and records. In fact they are powerful enough
to prove all the properties that Alloy exhaustively checked
within the scope. No intermediate lemmas were provided, no

hint or guidance was offered to the theorem prover, the proof
of pasteAffectsHidden by ACL2s was as unassisted as the
counterexample generated by Alloy for cutPaste. The coun-
terexamples generated by our method, in few cases, required
some manual assistance when random testing (default) was not
good enough to catch the counterexample, we had to bound the
types, to simulate automated bounded testing. But this is not
hard to automate and is a shortcoming in our implementation
rather than the method itself. If you are curious how the set
and map theory libraries helped in the automated proofs, one
can look at the proofs obtained in ACL2s. For example, the
proof of pasteAffectsHidden succeeded primarily by the use
of four rewrite rules (enabled by inclusion of set and record
libraries). The first rewrite rule says, that union operation of
sets is symmetric, the other rewrite rules are the classic record
update axioms [25], where r is a map (record) and a,v stand
for addresses and values respectively.

1. (equal (union x y) (union y x))
2. (equal (mget a (mset a v r)) v)
3. (implies (not (equal a b))

(equal (mget a (mset b v r))
(mget a r)))

4. (implies (not (equal a b))
(equal (mset b y (mset a x r))

(mset a x (mset b y r))))

In experiments shown in [14], it is found that the correctness
of the translated (from Alloy into Z3) mark-and-sweep model
could not be proven by Z3; the authors mention that this prob-
lem is particularly difficult due to the fact that the simulation
of recursion involved in mark-and-sweep by transitive closure
results in deeply-nested quantifiers that Z3 cannot handle.
We modeled the problem in ACL2, used sets and maps as
mentioned before, the mark procedure (involving transitive
closure) is modeled using a simple recursive definition. We
then formalize the following properties that imply correctness:
Soundness: No live node appears in the freelist
Completeness: All garbage nodes are eventually collected
We were able to prove the above properties automatically.
Again, no domain-specific lemmas were used, no hints were
given to the theorem prover, no expert knowledge of theorem
prover was required. This might seem surprising, and we
must deflate some optimism here, by pointing out that this
automation will not scale for non-trivial models, but surely
we must not overlook the effectiveness of powerful libraries
(e.g., set reasoning) by the tool-writer put to use by the choice
of right abstractions (e.g., using set datatypes) by the designer.

VI. DISCUSSION

There are various ways in which the ITP helps the search
procedure, it might reduce the complexity of the constraints
(characterizing the solution space of a property), pruning away
whole (possibly infinite) subspaces from the complete search
space, it might decompose the constraints in a manner that
focuses the search on interesting portions of the search space,
it might help refine the type information, furthur reducing the
search (sample) space for each variable, and finally it might
massage the constraints to an equivalent form more amenable

9



to the heuristics and internals of the search algorithm. Thus,
the more powerful the theorem prover, the more powerful the
search for counterexamples. Unlike other tools, an ITP can
be customized, it can be made more powerful, by proving
lemmas, an user can program the ITP’s main deductive rea-
soning engine (rewriter), enabling it to simplify more formulas
than was possible before. It is in this regard that we call our
tool extensible. Adding a domain-specific theory (library) of
rewrite rules transforms the ITP into a powerful reasoning
engine for that domain. For example, the standard arithmetic
library enables ACL2 to simplify even non-linear arithmetic
terms, something that is beyond more automatic tools. So
even though, this does not mean that our tool, by virtue of
including domain-specific libraries will automatically, answer
an yes (valid) or no (invalid) when posed with a conjecture
from that domain, the simplification of the conjecture by the
ITP rewriter, decreases the probability of answering neither
yes or no. Thus one can view an ITP as a very powerful
preprocessor, which can be used to simplify the problem as
much as possible, before resorting to decision procedures (like
SAT and SMT Solvers).

But what if for a particular property, the tool neither
produces a proof, nor a counterxample? There are two main
issues at hand here.

Firstly, how best can we summarise this result? Can we give
some sort of a coverage result? Say our method decomposed
the property being checked into a 100 subgoals, and the ITP
proves 99 subgoals and fails to prove one. How do we translate
this information into the more traditional coverage metrics that
engineers are used to, for e.g., branch coverage. It seems the
coverage notion obtained from a theorem prover is stronger
than traditional software coverage notions.

Secondly, what should the user do now. There are three
choices for the user. First, the user might run the tool with
different parameters for the search algorithm, for example, our
search algorithm uses a random test-case generation method to
assign variables, one can tune the distribution of data, choose
a bounded-exhaustive test strategy and so on. We have not yet
implemented coverage metrics, but we plan to, once its done,
the user can run the tool till it meets the coverage criteria given
by the user. Secondly, the user might add a third-party library
that provides reasoning power for his domain of interest.
Finally we note that if the user is willing, he might directly
help the tool by providing hints that will increase the reasoning
power of the ITP (and in turn the counterexample search).
This fact is worth emphasizing, since often the engineer who
has designed a system, has a fairly intimate knowledge of the
main characteristics of the system, and might be certain of
some facts, and uncertain of others. For example, he might
have a hunch, about what scenario might reveal a bug i.e., the
engineer has some insight that might help prune the search
space (for counterexamples). As an illustration here is an
anecdote of how Euler disproved one of Fermat’s conjecture
that is recounted in the book [12]. Fermat had conjectured that
all numbers of the form 22

n

+ 1 are primes, and showed this
to be true for n = 1, 2, 3, 4. But 22

5

+ 1 = 4294967297 is a

huge number, and in those days of hand calculations, it would
have been a painful task to enumerate factors of 4294967297.
Studying these number, Euler used some mathematical insight
to break down the problem, he found that all factors of 22

n

+1
should be of form k ∗2n+1+1 for some k. Using this insight,
he greatly narrowed down the list of potential factors to be
considered and in fact it turned out, he didnt have to put in
much effort, he found a counterxample to Fermats conjecture
for the very next number n = 5, the factor 641 was found for
k = 10. Thus an engineer might be reluctant to undertake a
full formal proof, but might be willing to formalize the facts
(insights) he thinks are obvious as lemmas (rewrite rules),
and if the ITP proves them, then it results in more powerful
tool both in terms of refuting (searching for counterexamples)
and proving the top-level main conjecture, since the ITP uses
these simple facts and possibly simplifies away some complex
constraint that was blocking the search for the counterexample,
or was hindering the top-level proof. Thus our method provides
a user-customized migration path from testing to full proof.

VII. RELATED WORK

Counterexample Generation in Interactive Theorem Provers

Random Testing is a well-studied, scalable, lightweight
technique for finding counterexamples to executable formulas.
Many Interactive Theorem Provers motivated by the success
of QuickCheck and related random testing tools [8] have
implemented random testing libraries e.g., Isabelle/HOL [1],
Agda [13] and PVS [26]. The other standard technique for
generating counterexamples for a conjecture is to use a SAT or
SMT solver. This requires translating from a rich, expressive
logic to a restricted logic with limited expressiveness. The
major constraint on such approaches is that a counterexample
to the translated formula should also be a counterexample
to the original formula. However, the absence of a coun-
terexample does not imply that the conjecture is true. Some
tools making use of the above technique are Pythia [28],
SAT Checking [29], Refute [30] and Nitpick [2]. The work
mentioned above has the same goal as our work: automatically
exhibit counterexamples to false properties. However, unlike
our work, none of the above mentioned approaches use the
interactive theorem prover to generate counterexamples for
arbitrary properties.

Combining Testing and Interactive Theorem Proving

Ideas for using formal specifications and combining simpli-
fication (theorem-proving) and testing date back to at least
1981 [6]. One of the first examples of combining testing
and interactive theorem proving was carried using Agda [13].
Random testing was used to check for counterexamples, and
the point was made that the user could apply random testing
also to subgoals. Another instance of leveraging a theorem
prover to improve testing is the HOL-Testgen tool [3] which
was designed for specification-based testcase generation. Com-
pared to the above approaches, our method has a more fine-
grained and tighter integration with the interactive theorem
prover.

10



Automatic Analysis tools

Alloy is a declarative specification language based on re-
lations and sets. The Alloy Analyzer can automatically find
small counterexamples to Alloy specifications. This is done by
translating the Alloy specification into a boolean satisfiability
formula and using an off-shelf SAT Solver to find a solution
(model). In contrast, we primarily make use the deduction
power of an ITP to simplify the problem at the specification
level and then using a search algorithm which uses both the
ITP and testing. As a result, we can, in addition to finding
(short) counterexamples, 1) prove their non-existence and 2)
find deep counterexamples that the bounded method of Alloy
will miss. Also see V-B for comparision of our implemented
method (ACL2s) and Alloy. We believe some of the techniques
are complementary, and both can benefit from each other.

A. Dynamic Test Generation

There has been much recent work on using symbolic
execution for dynamic test generation [15], [5], [4], [16]. Since
such tools differ significantly from our method, we will briefly
mention the conceptual similarities and then make a case for
how these tools can benefit from our work. These tools are
similar to our method in the sense, that when we decompose a
property (say model P and assertion A), one can think of it as
symbolic execution, but interleaved with simplification driven
by the deduction engine (ITP). DART [15] and SAGE [16]
concretely execute a given program P starting from a random
(or some well-formed interesting) input and collect symbolic
path constraints (symbolic execution) on the side. EXE [5]
and KLEE [4] perform mixed symbolic and concrete execution
(user can manually set some inputs as concrete, leaving others
symbolic). At interesting program points, say assertions, the
symbolic path constraint and the negated assertion (¬A) are
given to a constraint solver, a solution obtained is a counterex-
ample. When the constraint is too complex for the constraint-
solver to handle, some tools (DART) randomly pick certain
input variables to be replaced by their concrete values, perhaps
simplifying the constraint within the reach of the constraint-
solver. Consider our example from III-A, unless they exactly
pick z (found by analyzing the variable dependency graph),
the aforementioned tools will fail to handle it. But these tools
dont have a systematic procedure of choosing which variables
to be replaced. We believe our Select algorithm can provide
a simple starting point for such a procedure.

VIII. CONCLUSIONS

We presented an algorithm that uses an interactive theorem
prover to automatically analyze models and specifications. Our
approach has several advantages over related work. It allows
designers to use expressive languages to model systems at
various levels of abstraction, with support for data structures,
arithmetic, and recursive procedures. It is fully automated
and compares favorably to existing methods for analyzing
high-level models. Our algorithm is implemented and freely
available in ACL2s, the ACL2 Sedan.

IX. ACKNOWLEDGMENTS

We would like to thank Peter Dillinger, Mitesh Jain,
and Matt Kaufmann for their invaluable help. This re-
search was funded in part by NASA Cooperative Agreement
NNX08AE37A. This article reports on work supported by the
Defense Advanced Research Projects Agency under Air Force
Research Laboratory (AFRL/Rome) Cooperative Agreement
No. FA8750-10-2-0233. The views expressed are those of the
authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

REFERENCES

[1] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In SEFM,
pages 230–239. IEEE Computer Society, 2004.

[2] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann
and L. C. Paulson, editors, ITP, volume 6172 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2010.

[3] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive
recursive functions. In J. Grabowski and B. Nielsen, editors, FATES,
volume 3395 of LNCS, pages 16–32. Springer, 2004.

[4] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, pages 209–224. USENIX Association, 2008.

[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. Exe: auto-
matically generating inputs of death. ACM Transactions on Information
and System Security (TISSEC), 12(2):1–38, 2008.

[6] R. Cartwright. Formal program testing. In Proceedings of the 8th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’81, pages 125–132, New York, NY, USA, 1981. ACM.

[7] H. R. Chamarthi, P. Dillinger, M. Kaufmann, and P. Manolios. Inte-
grating testing and interactive theorem proving. In Ninth International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2
’11), November 2011.

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In ICFP, pages 268–279, 2000.

[9] J. Davis. Finite set theory based on fully ordered lists. In Fifth Inter-
national Workshop on the ACL2 Theorem Prover and Its Applications
(ACL2 ’04), November 2004.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[11] P. Dillinger and P. Manolios. ACL2 Sedan homepage. See URL
http://www.acl2s.ccs.neu.edu/doc.

[12] W. Dunham. Journey through genius: the great theorems of mathematics.
Wiley, 1990.

[13] P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving
in dependent type theory. In D. A. Basin and B. Wolff, editors, TPHOLs,
volume 2758 of LNCS, pages 188–203. Springer, 2003.

[14] A. A. E. Ghazi and M. Taghdiri. Relational reasoning via smt solving.
In FM, 2011.

[15] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random
testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[16] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Proceedings of the Network and Distributed System Security
Symposium. Citeseer, 2008.

[17] D. Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[18] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint
analyzer. In ICSE, pages 730–733, 2000.

[19] M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://-
www.cs.utexas.edu/users/moore/acl2.

[20] M. Kaufmann and R. Sumners. Efficient rewriting of operations on
finite structures in ACL2. In Third International Workshop on the ACL2
Theorem Prover and its Applications (ACL2 ’02), April 2002.

[21] L. Lamport and L. C. Paulson. Should your specification language be
typed. ACM Trans. Program. Lang. Syst., 21:502–526, May 1999.

11



[22] P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, August 2001.

[23] P. Manolios. Refinement and theorem proving. In M. Bernardo and
A. Cimatti, editors, International School on Formal Methods for the
Design of Computer, Communication, and Software Systems: Hardware
Verification, volume 3965 of LNCS, pages 176–210. Springer-Verlag,
2006.

[24] P. Manolios and M. Kaufmann. Adding a total order to ACL2. In
M. Kaufmann and J. S. Moore, editors, Proceedings of the ACL2
Workshop 2002, 2002.

[25] J. McCarthy. Correctness of a compiler for arithmetic expressions.
Mathematical Aspects of Computer Science, 19, 1967.

[26] S. Owre. Random testing in PVS. In Workshop on Automated Formal
Methods(AFM), volume 10, Seattle, WA, USA, 2006.

[27] D. Russinoff. A mechanically checked proof of ieee compliance of
the floating point multiplication, division and square root algorithms of
the amd-k7 processor. LMS Journal of Computation and Mathematics,
1(-1):148–200, 1998.

[28] A. Spiridonov and S. Khurshid. Automatic generation of counterexam-
ples for ACL2 using Alloy. In Seventh International Workshop on the
ACL2 Theorem prover and its Applications (ACL2 ’07), 2007.

[29] R. Sumners. Checking ACL2 theorems via SAT checking. In Third In-
ternational Workshop on the ACL2 Theorem Prover and its Applications
(ACL2 ’02), April 2002.

[30] T. Weber. Sat-based finite model generation for higher-order logic. Ph.D.
thesis, Dept. of Informatics, T.U.München, 2008.

12


