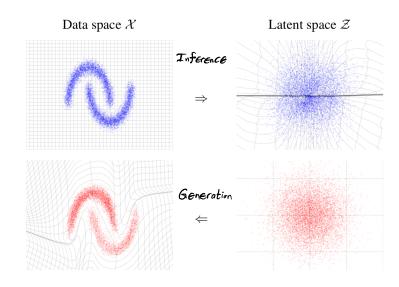
Invertible Neural Networks and Inverse Problems

Generative Models and Likelihood
Sample From distribution learned from data
Want: density
$$P_{\theta}(x)$$
 st. training data has high likelihood
Let $D = \{X_i\}_{i=1}^{\infty} \dots N$
 $\int_{\theta}(D) = \frac{1}{N} \sum_{i=1}^{N} -\log P_{\theta}(x_i)$
Min $\int_{\theta}(D)$
Variational Autoencoder (VAE)
Troin $G_{\theta}: R^k \rightarrow R^n$
 $Z \mapsto x = G_{\theta}(Z)$
As cange (Ge) is k-dim manifold, $P(x) = 0$ almost everywhere.
Define noisy abservation model
 $P_{\theta}(x|Z) = N(x \mid G_{\theta}(Z), \forall I)$
Likelihood is defined everywhere
 $P_{\theta}(x|Z) = \int P_{\theta}(x|Z) P(Z) dZ$
Simple prior on Z, eg $N(o_i I_k)$
Troin $G_{\theta}: R^k \rightarrow R^n$
 $Z \mapsto x = G_{\theta}(Z)$
Troin $G_{\theta}: R^k \rightarrow R^n$
 $Z \mapsto x = G_{\theta}(Z)$
Troin $G_{\theta}: R^k \rightarrow R^n$
 $Z \mapsto x = G_{\theta}(Z)$

Range (Ge) is k-dimensional Train adversarially w/ a discriminator/critic No direct modeling of likelihood

Invertible Neural Networks
Train
$$G_{\theta} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$$

 $\mathbb{Z} \mapsto \mathbb{X} = G_{\theta}(\mathbb{Z})$
Sull dimensional
latent space
Allows exact calculation of likelihood of any image
for any parameters Θ .
Con brain by likelihood maximization!
Impase prior on latent space: $\mathbb{Z} - N(0, \mathbb{I}_{n})$
Induces distribution in image space: $G_{\theta}(\mathbb{Z})$



Probability Basics - Change of Variables
Let ZER ~
$$P_Z$$
, $f(z)=x \sim P_X$, f differentiable and Strictly monobonic
What is relationship of P_Z and P_X ?
 $P_X(x) = \frac{P_Z(Z)}{|\frac{dx}{dz}|} = P_Z(z(x))|\frac{dz}{dx}(x)|$
 $rob. P_Z(z)dz = P_X(x)dx$
 $P_X(x) = P_Z(z)dx$

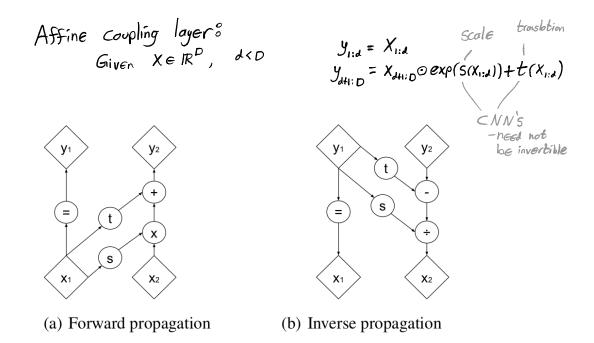
In multiple dimensions
Let
$$f \in \mathbb{R}^n \rightarrow \mathbb{R}^n \quad \mathbb{Z} = f(\mathfrak{X})$$

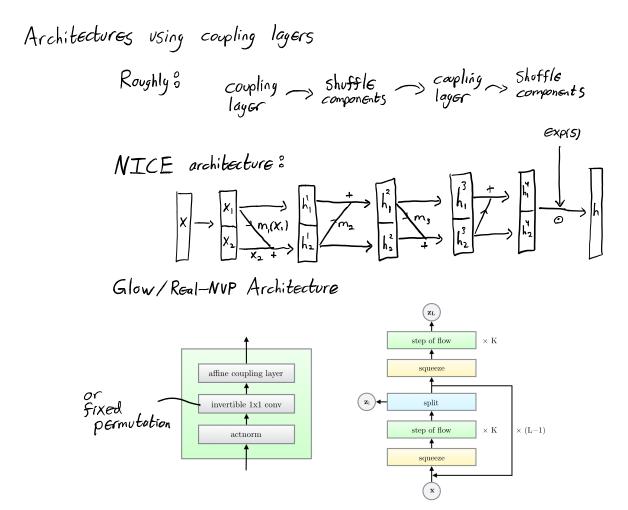
 $P_{\mathfrak{X}}(\mathfrak{X}) = P_{\mathfrak{Z}}(\mathfrak{Z}) \left| \det \frac{\partial \mathfrak{Z}(\mathfrak{X})}{\partial \mathfrak{X}} \right|$
 $Tacobian, \mathbb{R}^{n \times n}$

Architectures of INNs

Normalizing flow - Simple density in Z mapped to complicated density in X
by a sequence of invertible transformations
$$h_{k} = Z \stackrel{f_{k}}{\leftrightarrow} h_{k-1} \stackrel{f_{2}}{\leftrightarrow} \dots \stackrel{f_{2}}{\leftrightarrow} h_{i} \stackrel{f_{1}}{\leftrightarrow} X = h_{0}$$
$$\log P_{X}(X) = \log P_{Z}(Z) + \sum_{i=1}^{K} \log \left| \det \left(\frac{dh_{i}}{dh_{i-1}} \right) \right|$$
$$Trick^{\circ}_{i} Choose mappings f_{i} with triangular Jacobians$$
$$\log \left| \det \left(\frac{dh_{i}}{dh_{i-1}} \right) \right| = Sum \left(\log \left| \operatorname{diag} \frac{dh_{i}}{dh_{i-1}} \right| \right)$$

How can we use convolutions to build invertible transformations?



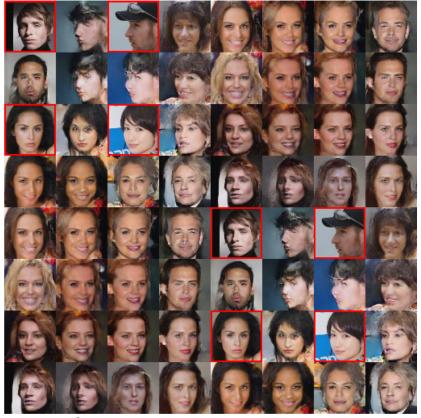


(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Samples From INNs

Source: Glow paper



Source: Real - NVP

Using INNs as priors for inverse problems
A trained INN provides a density
$$P(X)$$

induced by $X = G_0(Z)$ w $Z \sim N(O, I_n), G_0 \circ \mathbb{R}^n \rightarrow \mathbb{R}^n$
Consider image $X_* \in \mathbb{R}^n$
measurements $y = A_{X_*} + \gamma$ for $A \in \mathbb{R}^{m \times n}, \gamma \in \mathbb{R}^n$
Maximum Likelihood formulation
max $P(X)$ st $A_X = Y$ (noiseless case)
 X
Min $-\log p(X) + \gamma ||A_X - y||^2$ (noisy case)
 X
min $||AG(Z) - \gamma ||^2 \le Z_0 = O$ (optimization
 π latent space)
See: Asim et al. 2019

Out of distribution performance of INNs for Compressed Sensing Training Data

Other approaches for inverse problems w/ INNS Approximate forward operator by INN, get inverse for free (Supervised learning) Ardizzone et al. 2018

Limitations of INNs

- Computationally Expensive

- Do not have Explicit low-dimensional signal representations

Strengths of INNs

- Exact likelihood calculation
- Exact latent-voriable inference
- Memory sourings in back-prop
- All signals are in their range => Strong Out-of-distribution performance