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Statistical Framework for ML supervised

Assume

X y are sampled from a joint probability distribution

Training data D Hi Yi i n
are Eid samples

Test data are also Eid samples

can estimate the modellpredictor by maximum likelihood Estimati

Results usually in an optimization problem

I argmin If lf frail Yif EH
where

L loss function Eg try yl 15 yl
H hypothesis class Eg degree d polynomial

Q'go What loss doyou choose and why
What hypotheses shouldyou search over



Linear Regression and Square Loss
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Estimate a big maximum likelihood
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maximizing data likelihood minimizing square loss
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Logistic Regression and Cross Entropy Loss
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Estimate a big maximum likelihood
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Cross Entropy loss
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Maximizing data likelihood minimizing cross Entropylos
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Note
Cross Entropy loss penalizes datapoints
of a observed category to which the model

assigns a very low probability

0
Question to pondero

Is minimizing cross Entropy loss all that
different from minimizing a square loss in
the case of regression



Bias Variance Tradeoff

What class of hypotheses shouldyou search over

Standard Statistical ML story

test error
highercomplexity models
have lower bias but
higher varianceXining error
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model dominates test Error
complexity

after a certain threshold

larger models are worse

Bias Variance Decomposition

Consider regression model
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Let D Xi Yi e in
be Eid samples

Estimate f by an algorithm producing FD

Evaluate ID by Expected loss on a new sample

Riff E f xi yfD X y
risk test

Sample Squareloss

Performance will vary based on D Take Expectation over D
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We will decompose into 3 Effects bias variance irreducible

EDR E fiform free
error
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Evaluating the first term conditioning on X
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Illustration of bias variance tradeoff
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High complexity model 3 Y Cote Xtc X't Cox

F full ED f is
Exvarotorxi is high

Standard Statistical ML story
qderfitting overfitting

test error
highercomplexity models
have lower bias but
higher varianceXining error If.EEfFidbaegistoriahnIEh'term

model dominates test Error
complexity

after a certain threshold

larger models are worse

Modern story based on Neural Nets 8

Test Error Can decrease as
test Error model complexity continues
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model Phenomenon double descent
complexity

underparameterized overparametorized larger models are better
regime regime


