Question 1. Provide a summary of the contributions of this paper.

Response:

Question 2. Derive equation (2). Your response should point out any assumptions the derivation is
making.

log p(0|D) = log p(Dp|0) + logp(8|D4) — logp(Dp) 2)

Response:



Question 3. Explain how formulation (3) is obtained from equation (2).
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Abstract

Natural gradient descent, which preconditions a gradient descent update with the
Fisher information matrix of the underlying statistical model, is a way to capture
partial second-order information. Several highly visible works have advocated
an approximation known as the empirical Fisher, drawing connections between
approximate second-order methods and heuristics like Adam. We dispute this
argument by showing that the empirical Fisher—unlike the Fisher—does not
generally capture second-order information. We further argue that the conditions
under which the empirical Fisher approaches the Fisher (and the Hessian) are
unlikely to be met in practice, and that, even on simple optimization problems, the
pathologies of the empirical Fisher can have undesirable effects.

1 Introduction

Consider a supervised machine learning problem of predicting outputs y € Y from inputs rz e X
We assume a probabilistic model for the conditional distribution of the form py gy p(ylf(x,0)),
where p(y|-) is an exponential family with natural parameters in F and f: XxR” — ]F isa predlctlon
function parameterized by § € R”. Given N iid training samples (z.,, y»)2_,, we want to minimize

L(0) == =32, logpo(ynlrn) = =2, 1og p(yn| f (n, 0))- M
This framework covers common scenarios such as least-squares regression (Y = F = R and p(y|f) =
N (y; f,0?) with fixed 02) or C-class classification with cross-entropy loss (Y = {1,...,C},
F =R and p(y = c|f) = exp(f.)/ >, exp(f;)) with an arbitrary prediction function f. Eq (1)
can be minimized by gradient descent, Wthh updates ;1 = 6; — vV L(0;) with step size y; € R.
This update can be preconditioned with a matrix B, that incorporates additional information, such
as local curvature, 6; 1 = 0; — v:B;~'V L(6;). Choosing B; to be the Hessian yields Newton’s
method, but its computation is often burdensome and might not be desirable for non-convex problems.
A prominent variant in machine learning is natural gradient descent [NGD; Amari, 1998]. It adapts
to the information geometry of the problem by measuring the distance between parameters with the
Kullback—Leibler divergence between the resulting distributions rather than their Euclidean distance,
using the Fisher information matrix (or simply “Fisher”) of the model as a preconditioner,

F(0) := 3, Epy(ylen) [Vologpe(ylzn) Velogpe(yle,) '] . 2
While this motivation is conceptually distinct from approximating the Hessian, the Fisher coincides
with a generalized Gauss-Newton [Schraudolph, 2002] approximation of the Hessian for the problems
presented here. This gives NGD theoretical grounding as an approximate second-order method.

A number of recent works in machine learning have relied on a certain approximation of the Fisher,
which is often called the empirical Fisher (EF) and is defined as

15(9) = Zn v@ 1ng9(yn|xn) v@ Inga(yn|xn)T' (3)

Code available at github.com/fkunstner/limitations-empirical-fisher.


https://github.com/fkunstner/limitations-empirical-fisher

Question 4. Explain Figure 2ab. Make sure to include the context, a statement of what literally is
plotted, what is to be observed, and what is concluded.

Question 5. Explain Figure 2c. Make sure to include the context, a statement of what literally is plotted,
what s to be observed, and what is concluded.
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Question 6. How is the algorithm in this paper biologically inspired? Why is the method called “elastic
weight consolidation’?



