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Abstract

Natural gradient descent, which preconditions a gradient descent update with the
Fisher information matrix of the underlying statistical model, is a way to capture
partial second-order information. Several highly visible works have advocated
an approximation known as the empirical Fisher, drawing connections between
approximate second-order methods and heuristics like Adam. We dispute this
argument by showing that the empirical Fisher—unlike the Fisher—does not
generally capture second-order information. We further argue that the conditions
under which the empirical Fisher approaches the Fisher (and the Hessian) are
unlikely to be met in practice, and that, even on simple optimization problems, the
pathologies of the empirical Fisher can have undesirable effects.

1 Introduction

Consider a supervised machine learning problem of predicting outputs y 2 Y from inputs x 2 X.
We assume a probabilistic model for the conditional distribution of the form p✓(y|x) = p(y|f(x, ✓)),
where p(y|·) is an exponential family with natural parameters in F and f : X⇥RD ! F is a prediction
function parameterized by ✓ 2 RD. Given N iid training samples (xn, yn)Nn=1, we want to minimize

L(✓) := �
P

n log p✓(yn|xn) = �
P

n log p(yn|f(xn, ✓)). (1)
This framework covers common scenarios such as least-squares regression (Y = F = R and p(y|f) =
N (y; f,�2) with fixed �

2) or C-class classification with cross-entropy loss (Y = {1, . . . , C},
F = RC and p(y = c|f) = exp(fc)/

P
i exp(fi)) with an arbitrary prediction function f . Eq. (1)

can be minimized by gradient descent, which updates ✓t+1 = ✓t � �tr L(✓t) with step size �t 2 R.
This update can be preconditioned with a matrix Bt that incorporates additional information, such
as local curvature, ✓t+1 = ✓t � �tBt

�1r L(✓t). Choosing Bt to be the Hessian yields Newton’s
method, but its computation is often burdensome and might not be desirable for non-convex problems.
A prominent variant in machine learning is natural gradient descent [NGD; Amari, 1998]. It adapts
to the information geometry of the problem by measuring the distance between parameters with the
Kullback–Leibler divergence between the resulting distributions rather than their Euclidean distance,
using the Fisher information matrix (or simply “Fisher”) of the model as a preconditioner,

F(✓) :=
P

n Ep✓(y|xn)

⇥
r✓ log p✓(y|xn) r✓ log p✓(y|xn)>

⇤
. (2)

While this motivation is conceptually distinct from approximating the Hessian, the Fisher coincides
with a generalized Gauss-Newton [Schraudolph, 2002] approximation of the Hessian for the problems
presented here. This gives NGD theoretical grounding as an approximate second-order method.

A number of recent works in machine learning have relied on a certain approximation of the Fisher,
which is often called the empirical Fisher (EF) and is defined as

eF(✓) :=
P

n r✓ log p✓(yn|xn) r✓ log p✓(yn|xn)>. (3)

Code available at github.com/fkunstner/limitations-empirical-fisher.
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CS 7150: Deep Learning — Spring 2021 — Paul Hand

Day 19 — Preparation Questions For Class
Due: Wednesday 3/31/2021 at 2:30pm via Gradescope

Names: [Put The Names Of Your Group Here]

You may consult any and all resources in answering the questions. Your goal is to have answers
that are ready to be shared with the class (or on a hypothetical job interview) as written. Your
answers should be as concise as possible. When asked to explain a figure, your response should
have the following structure: provide context (state what experiment was being run / state what
problem is being solved), state what has been plotted, remark on what we observe from the
plots, and interpret the results.

Submit one document for your group and tag all group members. We recommend you use
Overleaf for joint editing of this TeX document.

Directions: Read ‘Overcoming catastrophic forgetting in neural networks’ by Kirkpatrick et al.

• Read Sections 1, 2.0, 2.1, 3

Question 1. Provide a summary of the contributions of this paper.

Response:

Question 2. Derive equation (2). Your response should point out any assumptions the derivation is

making.

Response:

Question 3. Explain how formulation (3) is obtained from equation (2).

Response:

Question 4. Explain Figure 2ab. Make sure to include the context, a statement of what literally is

plotted, what is to be observed, and what is concluded.

Response:
Context:
What is plotted:
What we observe:
Interpretation:

Question 5. Explain Figure 2c. Make sure to include the context, a statement of what literally is plotted,

what is to be observed, and what is concluded.
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http://khoury.northeastern.edu/home/hand/teaching/cs7150-spring-2021/index.html
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Response:
Context:
What is plotted:
What we observe:
Interpretation:

Question 6. How is the algorithm in this paper biologically inspired? Why is the method called ‘elastic

weight consolidation’?

Response:
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