CS 6140: Machine Learning — Fall 2021— Paul Hand

Midterm 1 Study Guide and Practice Problems Due: Never.

Names: [Put Your Name(s) Here]

This document contains practice problems for Midterm 1. The midterm will only have 5 problems. The midterm will cover material up through and including the bias-variance tradeoff, but not including ridge regression. Skills that may be helpful for successful performance on the midterm include:

- 1. Setting up and solving a linear regression problem with features that are nonlinear functions of the model's input.
- 2. Writing down the optimization problem for least squares linear regression using matrix-vector notation
- 3. Familiarity with matrix multiplication, in particular when multiplying by diagonal matrices
- 4. Evaluating the true positive rate, false positive rate, precision, and recall of a predictor for binary classification
- 5. Setting up a logistic regression problem and writing down the appropriate function that is being minimized
- 6. Computing the mean, expected value, and variance of uniform random variables
- 7. Explaining causes and remedies for overfitting and underfitting of ML models

Question 1.

Consider the following training data.

x_1	<i>x</i> ₂	У
0	0	0
0	1	1.5
1	0	2
1	1	2.5

Suppose the data comes from a model $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \text{noise}$ for unknown constants $\theta_0, \theta_1, \theta_2$. Use least squares linear regression to find an estimate of $\theta_0, \theta_1, \theta_2$.

Question 2.

Consider the following training data:

3 0.5

Suppose the data comes from a model $y = cx^{\beta} + \text{noise}$, for unknown constants *c* and β . Use least squares linear regression to find an estimate of *c* and β .

Question 3.

(a) Let $\theta^* \in \mathbb{R}^d$, and let $f(\theta) = \frac{1}{2} ||\theta - \theta^*||^2$. Show that the Hessian of f is the identity matrix.

Response:

(b) Let $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$. For $\theta \in \mathbb{R}^d$, let $g(\theta) = \frac{1}{2} ||X\theta - y||^2$. Show that the Hessian of *g* is $X^t X$.

Question 4.

Consider a binary classification problem whose features are in \mathbb{R}^2 . Suppose the predictor learned by logistic regression is $\sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$, where $\theta_0 = 4$, $\theta_1 = -1$, $\theta_2 = 0$. Find and plot curve along which P(class 1) = 1/2 and the curve along which P(class 1) = 0.95.

Question 5.

Consider a 3-class classification problem. You have trained a predictor whose input is $x \in \mathbb{R}^2$ and whose output is softmax($x_1 + x_2 - 1, 2x_1 + 3, x_2$). Find and sketch the three regions in \mathbb{R}^2 that gets classified as class 1, 2, and 3.

Question 6.

Suppose $x \sim \text{Uniform}([-1,1])$ and $y = x + \varepsilon$, where $\varepsilon \sim \text{Uniform}([-\gamma, \gamma])$ for some $\gamma > 0$. Consider a predictor given by $f_{\theta}(x) = \theta_1 + \theta_2 x$, where $\theta \in \mathbb{R}^2$. Evaluate the risk of f_{θ} with respect to the square loss. Your answer should be a deterministic expression only depending on θ_1, θ_2 , and γ .

Question 7.

You are training a logistic regression model and you notice that it does not perform well on test data.

- Could the poor performance be due to underfitting? Explain.
- Could the poor performance be due to overfitting? Explain.