CS 6140: Machine Learning — Fall 2021— Paul Hand

Midterm 2 Study Guide and Practice Problems (revised) Due: Never.

Names: [Put Your Name(s) Here]

This document contains practice problems for Midterm 1. The midterm will only have 5 problems. The midterm will cover material up through and including the bias-variance tradeoff, but not including ridge regression. Skills that may be helpful for successful performance on the midterm include:

- 1. Write down the optimization problem corresponding to MAP estimation under a Bayesian Prior.
- 2. Solve the optimization problem corresponding to MAP estimation, in cases where this is possible.
- 3. Be able to state and prove the condition for convergence of gradient descent with a constant step size in the case of a quadratic function.
- 4. Write down an analytical expression for the solution to least squares problems with and without quadratic regularization terms.
- 5. Explain the behavior of the solutions to ridge regression for various values of regularization parameter λ , including relating the problem to overfitting, underfitting, bias, complexity, and convexity.
- 6. Explain the behavior of the solutions to k-nearest neighbors for regression and classification for various values of the parameter *k*, including relating the problem to overfitting, underfitting, and bias.
- 7. Compute the predictions for a *k*-nearest neighbor algorithm given a provided data set.
- 8. Implement cross validation for a provided data set and model.
- 9. Identify if a quadratic function is convex.

Question 1. Maximum A Posteriori Estimation

Suppose $y_i \sim \mathcal{N}(\mu, 1)$ for i = 1...n. Suppose μ has a Bayesian prior given by a Uniform[-1,1] distribution. Given the following data, find the MAP estimate of μ .

 $\begin{array}{c|cc} i & y_i \\ \hline 1 & -1.5 \\ 2 & -1.1 \\ 3 & -0.5 \end{array}$

Question 2. Maximum A Posteriori Estimation and Logistic Regression

Consider the task of building a binary classifier. You have a training dataset $\{(x_i, y_i)\}_{i=1...n}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$. Consider the statistical model where $P(y = 1 | x) = \sigma(\theta^t x)$, where σ is the logistic function. Write down the optimization problem that would be solved to perform MAP estimation of θ provided that θ has a prior distribution where each component θ_i is independent and normally distributed with mean 0 and variance σ^2 .

Question 3.

(a) Show that for any matrix $X \in \mathbb{R}^{n \times d}$, XX^t and X^tX are positive semidefinite.

Response:

(b) Show that $\lambda_{\max}(X^tX) = \sigma_{\max}^2(X)$, where λ_{\max} is the largest eigenvalue of X and σ_{\max} is the largest singular value of X. Hint: Use a singular value decomposition of X in order to get an eigenvalue decomposition of X^tX .

Question 4. Ridge Regression

Let $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $\lambda > 0$ and $\theta \in \mathbb{R}^d$. Consider the following optimization problem given by ridge regression:

$$\min_{\theta} \frac{1}{2} \|X\theta - y\|^2 + \frac{1}{2}\lambda \|\theta\|^2$$

For the following statements, answer whether they are TRUE or FALSE and provide a justification.

(a) Ridge regression can be viewed as logistic regression under a Bayesian perspective with a uniform prior on the parameters θ .

Response:

(b) Ridge regression has a unique solution if $\lambda > 0$, even if *X* has a null space.

Question 5. *Gradient Descent*

Consider gradient descent with step size α on a function $f : \mathbb{R}^d \to \mathbb{R}$. Let $x^{(n)}$ be the *n*th iterate of gradient descent.

(a) TRUE or FALSE?

For any function *f*, if α is a small enough positive number, then $x^{(n)}$ will converge as $n \to \infty$. Provide a justification for your answer.

Response:

(b) TRUE or FALSE? For a general function f, it is always the case that $f(x^{(n+1)}) < f(x^{(n)})$. If it is TRUE, provide a justification. If it is FALSE, present an example where this inequality does not hold and provide a justification.

Question 6. *k Nearest Neighbors (KNN)*

(a) TRUE or FALSE? Using too small of a value of *k* for *k*-nearest neighbors would likely lead to overfitting. Provide a justification. **Response:**

(b) Describe a situation (in the context of regression) where using least squares linear regression would likely result in a better model than using KNN.

Question 7. Linear Regression and Cross Validation

Consider using linear regression with the following training data.

x y -1 -1 0 0 1 2

(a) Suppose you model the response $y = \theta_0 + \theta_1 x$. Using least squares linear regression, find the parameters θ_0, θ_1 .

Response:

(b) Using leave-one-out cross validation, estimate the test error of the predictor from part (a). Use the square loss to measure error.