Day 4 - Linear Regression
Agenda:

- Review: Supervised vs Unsupervised Learning
- Regression vs Classification
- Parametric Regression, Linear Regression
- Least Squares Formulation
- Solving Least Squares Formulation
- Issues to Pay Attention To with Linear Regression

FIGURE 3.1. For the Advertising data, the least squares fit for the regression of sales onto TV is shown. The fit is found by minimizing the residual sum of squares. Each grey line segment represents a residual. In this case a linear fit captures the essence of the relationship, although it overestimates the trend in the left of the plot.
Regression:
Given $\left\{\left(x^{(i)}, y_{i}\right)\right\}_{i=1}^{n}$ where $y_{i} \approx f\left(x^{(i)}\right)$,
Find f
$\begin{gathered}1 \\ \text { continuously valued }\end{gathered}$

Supervised Learning

Supervised vs Unsupervised Learning

Figure 3.6 The differences in input and output of supervised and unsupervised algorithms

Supervised Learning Pipeline

Figure 2.3 The two phases of machine learning: training and inference

Example of features and labels from the context of home prices:

Figure 2.2 An Excel sheet with features and labels for several examples

House-price prediction example

Regression and Classification

Regression: Predict a CONTINUOUS value/label/output based on features/inputs Classification: Predict a DISCRETE/CATEGORICAL label based on features

Examples:

Regression:

- Determine the energy efficiency of a data center given cooling operational data
- Determine the value a home will sell for given features of the home

Classification:

- Given an image of a telephone phone, determine if there is rust on it
- Given an image of a dog, determine what breed of dog it is.

Activity: Decide if these are regression problems or classification problems

- You are have a conveyer belt of cucumbers. A photograph is taken and the cucumber is identified as either high, medium, or low quality.
- You are given a resume of a person, and you predict the salary they will be offered for a job if hired.

Activity: Would you approach the following task as a regression or a classification problem?

The company Square has access to the financial transactions (on its platform) for a given company. The company asks for a $\$ 2000$ loan. Square needs to decide if they will approve or deny the loan request.

Figure 2.7 How the house-prediction example and the Square and Google case studies used supervised learning

Regression:

Features: Account balances, recent financial transactions, other market conditions
Training Labels: Market valuation OR account balance in two weeks

Classification:

Features: Account balances, recent financial transactions, other market conditions
Training Labels: Did they repay loan (requested in the past)

Predict:

Mathematically

Regression: predict a continuous value Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
y=f(x)+\text { noise }
$$

Given: $\left\{\left(x^{(i)}, y_{i}\right)\right\}_{i=1 \ldots n}$ Find: f

Classification: predict membership in a category

$$
\begin{aligned}
& \text { Let } f: \mathbb{R}^{d} \rightarrow\left\{\begin{array}{cc}
\text { cat } 1 \\
\vdots \\
\text { cat } m
\end{array}\right\} \\
& \qquad y=f(x)+\text { noise } \\
& \text { Given: }\left\{\left(x^{(i)}, y_{i}\right)\right\}_{i=1 \ldots n} \\
& \text { Find: } f
\end{aligned}
$$

Terminology:
χ - input variables, predictors, independent vars, features
y - response, dependent variable, output variable
f - model, predictor, hypothesis

The parametric approach to regression

With a parametric approach to regression, you assume the relationship of the input to output is given by a function, f, with unknown parameters. This requires making modeling assumptions on f .

FIGURE 2.4. A linear model fit by least squares to the Income data from Figure 2.3. The observations are shown in red, and the yellow plane indicates the least squares fit to the data.

Example of data model

$$
\begin{gathered}
\text { income } \approx \beta_{0}+\beta_{1} \times \text { education }+\beta_{2} \times \text { seniority. } \\
\text { unknown parameters }
\end{gathered}
$$

Mathematically,

$$
\begin{gathered}
\text { Consider } \quad x \in \mathbb{R}^{2}, \quad y=f(x) \in \mathbb{R} \text { of form } \\
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\text { error } \\
\text { for unknown } \beta_{0} \beta_{1}, \beta_{2}
\end{gathered}
$$

Or perhaps we want a model that is not linear in its input:

FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters of $f_{\theta}(x)$ are chosen so as to minimize the sum-of-squared vertical errors.

$$
\begin{aligned}
y= & \beta_{o c}+\beta_{10} x_{1}+\beta_{2} x_{1}^{2}+\beta_{01} x_{2}+\beta_{02} x_{2}^{2}+\beta_{11} x_{1} x_{2}+\text { error } \\
& \text { for unknown } \beta_{09} \beta_{10}, \beta_{20}, \beta_{01}, \beta_{02}, \beta_{11}
\end{aligned}
$$

Parametric
Regression: predict a continuous value Model $f_{\theta} \circ \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
y=f_{\theta}(x)+\text { noise }
$$

$$
\text { Given: } \left.\left\{x^{(i)}, y_{i}\right)\right\}_{i=1, \ldots n}
$$

Find: θ

What is linear regression?
A linear regression problem is one where the response is linear in the model parameters.

Examples

$$
\begin{aligned}
f: & \mathbb{R} \rightarrow \mathbb{R} \\
y= & \beta_{0}+\beta_{1} x \\
& \underbrace{}_{\text {linear in } \beta_{0} \beta_{1}}
\end{aligned}
$$

$$
\begin{aligned}
f: & \mathbb{R} \rightarrow \mathbb{R} \\
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2} \\
& \operatorname{lintear~in~}_{\substack{\beta_{0}, \beta_{1}, \beta_{2}}}
\end{aligned}
$$

$f: \mathbb{R} \rightarrow \mathbb{R}$

Are the following models linear in their parameters?

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
y=\beta_{1} e^{x}+\beta_{2} \sin x \\
f: \mathbb{R} \rightarrow \mathbb{R} \\
y=\sin \left(\beta_{1} x+\beta_{2} x^{2}\right)+\beta_{2} \\
N O
\end{gathered}
$$

Higher dimensional examples

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& y=\frac{\beta_{0}}{y \in 3}+\underline{\beta_{1} x_{1}}+\underline{\beta_{2} x_{2}} \\
& f: \quad \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1}^{2}+\beta_{4} x_{2}^{2}
\end{aligned}
$$

yes

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
y= & \beta_{0}+X_{1} x_{2}^{\beta_{2}} \\
& N_{0}
\end{aligned}
$$

Can you use linear regression to solve for the parameters of the following models?

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& y= \sqrt{\beta_{0}+\beta_{1} x} \quad y^{2}=\beta_{0}+\beta_{1} x \\
& y \in S \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& y= \beta_{0} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \quad \log y=\frac{\left(\alpha_{g} \beta_{0}\right.}{+\left(\beta_{1}\right) \log x_{1}} \\
&+\left(\beta_{2}\right) \lg x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given: } D=\left\{\left(x^{(i)}, y_{i}\right)\right\}_{i=1 \cdots n}, \quad x^{(i)} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R} \\
& \operatorname{Mode}: \quad y=\underbrace{\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{d} x_{d}}_{f_{\theta}(x)}+\text { error }
\end{aligned}
$$

want θ such that $y_{i} \approx f_{\theta}\left(x^{(i)}\right)$

Idea: minimize square deviation of y_{i} from $f_{\theta}\left(\chi^{(i)}\right)$

Rewrite using vectors and matrices

$$
\begin{aligned}
& \text { Let } y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \\
& \mathbb{R}^{n \times d}-\underline{X}=\left(\begin{array}{c}
-x^{(1)}- \\
-\chi^{(2)}- \\
\vdots \\
-x^{(n)}-
\end{array}\right)=\left(\begin{array}{ccc}
x_{1}^{(1)} & x_{2}^{(1)} & \cdots \\
\vdots & x_{\alpha}^{(1)} \\
\vdots & \cdots & \\
x_{1}^{(n)} & x_{2}^{(n)} & \cdots \\
x_{\alpha}^{(n)}
\end{array}\right)
\end{aligned}
$$

Want $\quad y \approx X \theta$

$$
\min _{\theta} \frac{1}{2}\|y-X \theta\|^{2}
$$

Recall: if $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{n}$

- $\langle a, b\rangle=\sum_{i=1}^{n} a_{i} b_{i}$

$$
\text { - } \begin{aligned}
\|a\|^{2} & =\sum_{i=1} a_{i}^{2} \\
& =a^{t} a \\
& =\langle a, a\rangle
\end{aligned}
$$

Least squares formulation for linear regression (with models linear in their input)

$$
\begin{gathered}
\min _{\theta} \frac{1}{2}\|y-X \theta\|^{2} \\
\text { where } y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \quad X=\left(\begin{array}{c}
-x^{(1)}- \\
-x^{(2)}- \\
\vdots \\
-x^{(n)}-
\end{array}\right)
\end{gathered}
$$

Solving the least squares formulation using vector calculus

Consider

$$
\min _{\theta} \frac{1}{2}\|y-X \theta\|^{2}
$$

If X has rank d,
the solution is given by $\theta=\left(X^{t} X\right)^{-1} X^{t} y$
why?

$$
\nabla_{\theta} \quad \frac{1}{2}\|y-\bar{X} \theta\|^{2}=-X^{t}(y-X \theta)
$$

set this gradient Equal to 0 ,

$$
X^{t}(y-X \theta)=0
$$

normal eqns $\longrightarrow X^{t} X \theta=X^{t} y$

$$
\theta=\left(x^{t} x\right)^{-1} x^{b} y \quad \text { (if } x^{t} x
$$ is invertible)

If x has rank d, $x^{t} X$ has rank d Note $X^{t} x$ is $d x d$, so $x^{t} x$ is invertible

Why is $\nabla_{\theta} \frac{1}{2}\|y-X \theta\|^{2}=-X^{t}(y-X \theta)$?
Recall Taglors the for multivariate functions
If $\quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+O\left(\|h\|^{2}\right)
$$

You can use this to read off a gradient after applying a perturbation h

Let $f(\theta)=\frac{1}{2}\|y-x \theta\|^{2}=\frac{1}{2}\|x \theta-y\|^{2}$

$$
=\frac{1}{2}\langle X \theta-y, X \theta-y\rangle
$$

So

$$
\begin{aligned}
f(\theta+h) & =\frac{1}{2}\langle x \theta+x h-y, x \theta+X h-y\rangle \\
& =\frac{1}{2}\langle X \theta-y+x h, x \theta-y+x h\rangle \\
& =\frac{1}{2}\langle x \theta-y, x \theta-y\rangle+\frac{1}{2}\langle x h, x \theta-y\rangle
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\langle X \theta-y, X h\rangle+\frac{1}{2}\langle X h, X h\rangle \\
= & \left.f(\theta)+\langle X \theta-y, X h\rangle+O\|h\|^{2}\right) \\
= & f(\theta)+\underbrace{\left\langle X^{t}(X \theta-y)\right.}_{\nabla f(\theta)}, h\rangle+O\left(\|h\|^{2}\right)
\end{aligned}
$$

So $\nabla f(\theta)=x^{t}(x \theta-y)=-x^{t}(y-x \theta)$

When is X of rank d ?

- If $n<d, \quad x$ is of rank $n n$
\Rightarrow Need more data points than parameters to get a unique θ.
- If any features are duplicates (or linear combinations of each other) X is of rank $<d$.
\Rightarrow Need to remove dependent features to USE formula above

Other ways to solve least squares formulation for linear regression

Use a computer package such as TensorFlow or PyTorch to run Gradient Descent down the objective.

$\theta_{n+1}=\theta_{n}-\varepsilon \nabla f\left(\theta_{n}\right)$

Grad Desc.

Given: $D=\left\{\left(X^{(i)}, y_{i}\right)\right\}_{i=1 \cdots n}, \quad X^{(i)} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$
$\operatorname{Mode} 1: \quad y=\underbrace{\theta_{1} g_{1}\left(x^{(i)}\right)+\cdots \theta_{k} g_{k}\left(x^{(i)}\right)}_{f_{\theta}(x)}+$ Error
want $y \approx \bar{X} \Theta$

$$
w / X=\left(\begin{array}{ccc}
g_{1}\left(x^{(1)}\right) & g_{2}\left(x^{(11)}\right) & \cdots \\
\vdots & g_{k}\left(x^{(11)}\right) \\
\vdots & \ddots & \vdots \\
g_{n}\left(x^{(n)}\right) & \cdots & g_{k}\left(x^{(n)}\right)
\end{array}\right)=\left(\begin{array}{c}
-g\left(x^{(1)}\right)- \\
-g\left(x^{(2)}\right)- \\
\vdots \\
-g\left(x^{(n)}\right)-
\end{array}\right)
$$

So, do same process as above but w/ features

$$
\left(g_{1}(x), g_{2}(x), \cdots g_{k}(x)\right)
$$

instead of X.

$$
\begin{aligned}
& \text { Ex: } \quad f_{i} \mathbb{R} \rightarrow \mathbb{R} \quad\left\{\left(x^{(i)}, y_{i}\right)\right\}_{i=1}^{n} \\
& y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \\
& \min \sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x^{(i)}+\beta_{2} x^{(i) 2}\right)\right)^{2}
\end{aligned}
$$

Things that can go wrong: Underfitting and Overfitting

Other topics:
What happens when there is fewer data than features?

How do you deal with categorical features?

Be careful about whether you want to view your problem as a prediction task

