CS 6140: Machine Learning — Fall 2021— Paul Hand

Midterm 1 Study Guide and Practice Problems

Due: Never.

Names: Sample Solutions

This document contains practice problems for Midterm 1. The midterm will only have 5 problems. The midterm will cover material up through and including the bias-variance tradeoff, but not including ridge regression. Skills that may be helpful for successful performance on the midterm include:

- 1. Setting up and solving a linear regression problem with features that are nonlinear functions of the model's input.
- 2. Writing down the optimization problem for least squares linear regression using matrix-vector notation
- 3. Familiarity with matrix multiplication, in particular when multiplying by diagonal matrices
- 4. Evaluating the true positive rate, false positive rate, precision, and recall of a predictor for binary classification
- 5. Setting up a logistic regression problem and writing down the appropriate function that is being minimized
- 6. Computing the mean, expected value, and variance of uniform random variables
- 7. Explaining causes and remedies for overfitting and underfitting of ML models

Linear Regression
$$\int_{\Theta} (x) = \Theta_{1} + \Theta_{1} \times_{1} + \dots + \Theta_{n} \times_{0}$$

$$y = \begin{bmatrix} y_{i} \\ \vdots \\ y_{m} \end{bmatrix} = \begin{bmatrix} y_{i} \\ \vdots \\ y_{m} \end{bmatrix} \in \mathbb{R}^{m}$$
$$\varepsilon \mathbb{R}^{n}$$

Then

$$\min_{\Theta} \frac{1}{2} \| \mathbf{y} - \mathbf{X} \mathbf{\Theta} \|_{\mathbf{y}}^{2}$$

$$= \min_{\boldsymbol{\Theta}} \frac{1}{2} \sum_{i=1}^{m} \left[y^{(i)} - \left(\boldsymbol{\Theta}_{\boldsymbol{\Theta}} + \boldsymbol{\Theta}_{\boldsymbol{I}} \times_{\boldsymbol{I}}^{(i)} + \dots + \boldsymbol{\Theta}_{\boldsymbol{H}} \times_{\boldsymbol{\Theta}}^{(j)} \right) \right]^{L}$$

Solution

 $\Theta = \left(\chi^{t} \chi \right)^{-1} \chi^{t} y$

(if X has rank ol)

Question 1.

Consider the following training data.

x_1	<i>x</i> ₂	y
0	0	0
0	1	1.5
1	0	2
1	1	2.5

Suppose the data comes from a model $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ +noise for unknown constants $\theta_0, \theta_1, \theta_2$. Use least squares linear regression to find an estimate of $\theta_0, \theta_1, \theta_2$.

Response:

$$\begin{aligned} \text{Det} \quad X &= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad y &= \begin{pmatrix} 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \end{pmatrix}, \quad \Theta &= \begin{pmatrix} \Theta_0 \\ \Theta_1 \\ \Theta_2 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} \text{We solve the least squares problem} \\ \text{min } & || \quad y - X \Theta ||^2 \\ \Theta \\ \text{The solution is given by} \\ \Theta^{-} & (X^{t}X)^{-1} X^{t} y \end{aligned}$$

$$\begin{aligned} \text{Solving} \quad X^{t}X &= \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}, \quad (X^{t}X)^{-1} &= \begin{pmatrix} 3/4 & -1/2 & -1/2 \\ -1/2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} Solving \quad S^{t}X &= \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}, \quad (X^{t}X)^{-1} &= \begin{pmatrix} 3/4 & -1/2 & -1/2 \\ -1/2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} Solving \quad Solve \quad Solve$$

Remark

Question 2.

Consider the following training data:

3 0.5

Suppose the data comes from a model $y = cx^{\beta}$ + noise, for unknown constants *c* and β . Use least squares linear regression to find an estimate of *c* and β .

Response:

Write
$$\log y = \log c + \beta \log x$$

 $\Theta_1 \quad \Theta_2$
Dota becomes: $\log x \log y$
 $\log 2 \log 3$
 $\log 2 \log 3$
 $\log 3 \log 0.5$
Let $X = \begin{pmatrix} 1 & 0 \\ 1 & \log 3 \\ 1 & \log 3 \end{pmatrix}$, $y = \begin{pmatrix} \log 3 \\ 0 \\ \log 0.5 \end{pmatrix}$, $\Theta = \begin{pmatrix} \log c \\ \beta \end{pmatrix}$
Solve min $\| y - X \Theta \|^2$
 Θ
Solution given by $\Theta = (X^T X)^T X^T y$
Using numpy, we compute $\Theta = \begin{pmatrix} 0.899 \\ -0.5 \end{pmatrix}$
 $= \sum_{\beta = -0.5}^{-0.899} \sum_{\beta = -0.5}^{-0.5} \sum_{\beta = -0.5}$

Question 3.

(a) Let $\theta^* \in \mathbb{R}^d$, and let $f(\theta) = \frac{1}{2} ||\theta - \theta^*||^2$. Show that the Hessian of f is the identity matrix.

Response:

(b) Let $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$. For $\theta \in \mathbb{R}^d$, let $g(\theta) = \frac{1}{2} ||X\theta - y||^2$. Show that the Hessian of *g* is $X^t X$.

Response:

$$\begin{aligned} a) \quad \left(H\right)_{jk} &= \frac{\partial^{2}}{\partial\theta_{j}\partial\theta_{k}} f(\theta) \\ W_{rite} \quad f(\theta) &= \frac{1}{2} \sum_{i=1}^{d} \left(\theta_{i} - \theta_{i}^{*}\right)^{2} \\ \frac{\partial}{\partial\theta_{k}} f(\theta) &= \left(\theta_{k} - \theta_{k}^{*}\right) \\ \frac{\partial}{\partial\theta_{i}} \frac{\partial}{\partial\theta_{k}} f(\theta) &= \frac{\partial}{\partial\theta_{j}} \left(\theta_{k} - \theta_{k}^{*}\right) = \begin{cases} 4 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases} \\ S_{0} \quad H_{jk} &= \begin{cases} 0 & \text{if } j = k \\ if & j \neq k \end{cases} \\ \end{cases} \end{aligned}$$

 $f:\mathbb{R}^d\to\mathbb{R}$

$$\frac{\text{gradient}}{\left[\nabla f(\mathbf{o})\right]_{\kappa}} = \frac{2}{\sqrt{9}} f(\mathbf{o})$$

02

$$f(\theta+h)=f(\theta)+V^{T}h+\Theta(Ih(I))$$

then
$$\nabla f(\theta) = V$$

 $\nabla^2 f(\theta)$ or $H(\theta) \in \mathbb{R}^{d \times d}$

$$\begin{bmatrix} H(\mathbf{o}) \end{bmatrix}_{j \kappa} = \frac{\partial}{\partial \theta_{j}} \frac{\partial}{\partial \theta_{\kappa}} \int_{\sigma} (\mathbf{o}) = \frac{\partial}{\partial \theta_{\kappa}} \frac{\partial}{\partial \theta_{\kappa}} \int_{\sigma} (\mathbf{o}) = \begin{bmatrix} H(\mathbf{o}) \end{bmatrix}_{\kappa j}$$

02

$$J \nabla f(\Theta) = \begin{bmatrix} -\nabla_{\Theta} (\partial_{\Theta_{\alpha}} f)^{\mathsf{T}} \\ \vdots \\ -\nabla_{\Theta} (\partial_{\Theta_{\alpha}} f)^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \operatorname{Derivative} / \operatorname{Sacobien} \\ \operatorname{of the groochient} \\ \end{bmatrix}$$

う

$$f(\Theta+h) = f(\Theta) + \nabla f(\Theta)^T h + \frac{1}{2} h + O(\|h\|^2)$$

b)
$$g(\theta) = \pm ||X\theta - y||^{2}$$

By $doss_{1}$
 $\nabla g(\theta) = X^{t}(X\theta - y)$
 $= X^{t}X\theta - X^{t}y$
Let $M = X^{t}X \in \mathbb{R}^{d\times d}$. Let m_{h} be $k^{th}_{row of M}$
 $\int_{\partial \theta_{h}} g(\theta) = (M\theta - X^{t}y)_{h}$
 $= m_{h}^{t}\theta - (X^{t}y)_{h}$

So
$$\frac{\partial}{\partial \theta_{5}} \frac{\partial g}{\partial \theta_{h}} = M_{R,j}$$

jth on by of M_{k} .

Thus
$$H = M = \chi^t \chi$$
.

Matrix Kultiplication

• $A \in \mathbb{R}$, $B \in \mathbb{R}^{d_1 \times d_3}$ $A B \in \mathbb{R}^{d_2 \times d_3}$

• If you find that for $A \in \mathbb{R}^{d_2 \times d_1}$ A = Something + Something else $d_2 \times d_1$ $d_2 \times d_1$

• A E R (SQUARE!)

and in Vertible A"A=AA"

• A E R^{d x ol} diagonal matrix if

- when it's A_{ij} = 0
- Note you can still have A = 0
- Note that if $x \in \mathbb{R}^d$ and A diagonal $\begin{bmatrix} A \\ x \end{bmatrix}_i = A_{ii} x_i$ $\begin{bmatrix} A \\ y \end{bmatrix}_2 = A_{22} x_2$

• BER^{d × M} and AER diagonal

 $AB = \begin{bmatrix} -A_{i} & b_{i} \\ -A_{i} & b_{i} \end{bmatrix}$

bi i-th zow

•
$$C \in \mathbb{R}$$
 = $\begin{bmatrix} C_{2}, \dots, C_{d} \end{bmatrix}$

Ci i-th Column

 $C A = \begin{bmatrix} A_{11} C_{1}, \dots, A_{olol} C_{0} \end{bmatrix}$

Model
$$y = \sigma \left(\theta_0 + \theta_1 X_1 + \theta_2 X_2 \right) = \hat{y}(X;\theta)$$

where $\sigma = \frac{\sigma}{\sigma(z) = \frac{e^z}{e^z + 1}}$
"Sigmoid" $\sigma = \frac{\sigma}{\sigma(z) = \frac{e^z}{e^z + 1}}$

Solver min $\hat{\Sigma} L(y_i, \hat{y}(x^{(\tilde{v})}; \theta))$ for $\hat{\theta}$

Predict:
For new sample X, predict

$$\begin{cases} class 1 & \text{if } \hat{y} > \frac{1}{2} \\ class 0 & \text{if } \hat{y} < \frac{1}{2} \end{cases}$$

Decision boundary
$$\hat{y} = \frac{1}{2}$$

 $\varepsilon(z) = \frac{1}{2}$ if $z = 0$
=> Decision boundary; $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 = 0$

Question 4.

Consider a binary classification problem whose features are in \mathbb{R}^2 . Suppose the predictor learned by logistic regression is $\sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$, where $\theta_0 = 4, \theta_1 = -1, \theta_2 = 0$. Find and plot curve along which P(class 1) = 1/2 and the curve along which P(class 1) = 0.95.

Response:

 $G (G_{o} + G_{i} \chi_{i} + G_{z} \chi_{z}) = 0.9 S$ Recall $G(Z) = \frac{E^{Z}}{E^{Z} + 1} = \frac{1}{1 + e^{-Z}}$ So $G(Z) = 0.9S \implies \frac{1}{1 + e^{-Z}} = 0.9 S$ $\implies e^{-Z} = -1 + \frac{1}{0.9S} = 0.052G$ $\implies Z = 2.94$

 $\Rightarrow \theta_0 + \theta_1 \times_1 + \theta_2 \times_2 = 2.94 \Rightarrow 4 - \chi_1 = 2.94 \Rightarrow \chi_1 = 1.06$

Multiclass Classification
Consider a 3 class classification problem
$$\binom{n_0}{n_0} \frac{bios}{berm}$$
)
Training Dabus $\left\{ (\chi^{(i)}, y^{(i)}) \right\}_{i=1\cdots n}$
 $\chi^{(i)} \in \mathbb{R}^d$ for all i
 $y^{(i)} \in \mathbb{R}^3$, $y^{(i)} = \begin{cases} \binom{i}{0} & if \quad y^{(i)} of \ class I \\ \binom{i}{0} & if \quad y^{(i)} of \ class 2 \end{cases}$
One-het ording
 $\binom{2}{1} & if \quad y^{(i)} of \ class 3 \end{cases}$
Model $\stackrel{\circ}{}_{2} \quad Y = Softmax (\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3)$
 $\mathcal{R}ogits \begin{cases} \mathbb{Z}_1 = 0 \\ \mathbb{Z}_2 = 0 \\ \mathbb{Z}_3 = 0 \\ \mathbb{Z}_3 = 0 \\ \mathbb{Z}_3 \in \mathbb{R}^4 \end{cases}$
 $\binom{2}{1} \in \mathbb{R}^4$
 $\binom{2}{1} \in \mathbb{R}^3$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(2) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$
 $(3) = 0$

$$Train \stackrel{\circ}{\rightarrow} \min_{\substack{i \in I}} \sum_{i \in I} L(y^{(i)}, softmax(\theta_{1}, x^{(i)}, \theta_{2}, x^{(i)}, \theta_{3}, x^{(i)}))$$

$$Pog loss \stackrel{\circ}{\rightarrow} L(y, \hat{y}) = -\sum_{\substack{i \in I}}^{3} y_{i} \log \hat{y}_{i}$$

$$\prod_{\substack{i \in I}}^{3} \prod_{\substack{i \in I}}^{1} \frac{1}{R^{3}}$$

$$Prediction \stackrel{\circ}{\rightarrow} Given X, compute \hat{y}(x; \hat{\theta}) \in \mathbb{R}^{3}$$

$$Predict class \stackrel{\circ}{\leftarrow} w/ \stackrel{\circ}{\leftarrow} argmax \stackrel{\circ}{y}_{i}$$

What will decision boundary look like for 3-class classification?

Question 5.

Consider a 3-class classification problem. You have trained a predictor whose input is $x \in \mathbb{R}^2$ and whose output is softmax($x_1 + x_2 - 1, 2x_1 + 3, x_2$). Find and sketch the three regions in \mathbb{R}^2 that gets classified as class 1, 2, and 3.

Response:

$$Z_{1} = X_{1} + X_{2} - 1$$

 $Z_{2} = 2X_{1} + 3$
 $Z_{3} = X_{2}$

a) where is classified as class 1? $X_1 + X_2 - 1 > 2X_1 + 3 \& X_1 + X_2 - 1 > X_2$ $= -X_1 + X_2 > 4 \& X_1 > 1$

b) Where is classified as class
$$2^{\circ}$$

 $2X_1 + 3 > X_1 + X_2 - 1$ & $2X_1 + 3 > X_2$
 $-X_1 + X_2 < 4$ & $2X_1 - X_2 > -3$
c) Where is classified as class 3°
 $X_2 > 2X_1 + 3$

RISK

prolictor • $f: x \mapsto f(x)$ ·2) loss =) (•l

Risk of f is

 $R(f) = \mathbb{E}_{(x,y)\sim D} \quad l(y, f(x))$

If f depends on some O then

 $R(\Theta) = R(f_{\Theta}) = \mathbb{E}_{(x,y) \sim D} l(y, f_{\Theta}(x))$

Notre 0 here is just a paroimeter fixed (constent)

Note when we stroky Bias-Voriance ?. then & is estimated from deta => Roundom so we also take expectation over S = somples

Question 6.

Suppose *x* ~Uniform([-1,1]) and $y = x + \varepsilon$, where ε ~Uniform([- γ , γ]) for some $\gamma > 0$. Consider a predictor given by $f_{\theta}(x) = \theta_1 + \theta_2 x$, where $\theta \in \mathbb{R}^2$. Evaluate the risk of f_{θ} with respect to the square loss. Your answer should be a deterministic expression only depending on θ_1 , θ_2 , and γ .

Response:

$$\mathbb{R} \{ \boldsymbol{\theta} \} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\xi}} \left[\left[\left[\int_{\boldsymbol{\theta}}^{\boldsymbol{\theta}} (\mathbf{x}) - \boldsymbol{y} \right]^{2} \right] = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\xi}} \left[\left[\left(\boldsymbol{\theta}_{1} + \boldsymbol{\theta}_{2} \, \boldsymbol{x} - \boldsymbol{x} - \boldsymbol{\xi} \right)^{2} \right] \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1} + \left(\boldsymbol{\theta}_{2} - \boldsymbol{i} \right) \boldsymbol{x} - \boldsymbol{\xi} \right)^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1} + \left(\boldsymbol{\theta}_{2} - \boldsymbol{i} \right) \boldsymbol{x} - \boldsymbol{\xi} \right)^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1}^{2} - \boldsymbol{i} \right) \boldsymbol{x}^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1} - \boldsymbol{i} \right)^{2} \boldsymbol{x}^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1} - \boldsymbol{i} \right)^{2} \boldsymbol{x}^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{1} - \boldsymbol{i} \right)^{2} \boldsymbol{x}^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \boldsymbol{\xi}} \left[\left(\boldsymbol{\theta}_{2} - \boldsymbol{i} \right)^{2} \boldsymbol{x}^{2} \right] + \mathbb{E} \left[\boldsymbol{\xi}^{2} \right]$$

Since Θ_1, Θ_2 or deterministic => $\mathbb{E}[\Theta_1 \varepsilon] = \Theta_1 \mathbb{E}[\varepsilon]$ $\mathbb{E}[x] = \mathbb{E}[\varepsilon] = 0$ and $x \in \mathbb{E}[x] = \mathbb{E}[x] \mathbb{E}[x] \mathbb{E}[\varepsilon]$

$$R(\theta) = \theta_{1}^{2} + \frac{1}{3}(\theta_{2} - 1)^{2} + \frac{1}{3}\delta^{2}$$

Question 7.

You are training a logistic regression model and you notice that it does not perform well on test data.

- Could the poor performance be due to underfitting? Explain.
- Could the poor performance be due to overfitting? Explain.

Underfitting yes, logist rugression separates the 2 classes using only a line. This might be too simple to explain the verietions in the date

Consider for example the case of 2 classes separable by a curved line.

Over Sitting

YES, if there are too many Seatures, the data could appear to be linearly separable as a mathematical artifact. This could result in overfitting of braining data.

High test error

Low test error

High test error